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Abstract

The authors present a new method for the realization of exact non-reflecting (transparent) boundary conditions in

two dimensional direct scattering problems. This work is an extension of Keller, Givoli, and Grote�s work on such

conditions which required that the shape of the boundary be quite specific, i.e. circular or elliptical. The condition is

enforced via the Dirichlet–Neumann operator (DNO) which, on general boundaries, presents the main difficulty in the

method. The implementation is performed by one of two perturbative methods (where the perturbation parameter

measures the deformation of the general geometry from a canonical one). A rigorous proof of the analyticity for the

DNO with respect to this perturbation parameter is presented. Numerical results show both perturbative methods are

fast and accurate, and can enable significant computational savings.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in science and engineering involve problems posed on domains of infinite extent and, in
order to realize a unique solution, one must typically specify the behavior of the solution at infinity. In this

paper we focus on a numerical technique for enforcing these conditions exactly in the context of two di-

mensional electromagnetic and acoustic bounded obstacle scattering. In scattering applications the ap-

propriate condition at infinity is the Sommerfeld radiation condition which mandates that, given incoming

radiation incident upon a scatterer, the scattered waves must be outgoing [14,49]. Of course, numerical

simulations require a truncation of the computational domain to one of finite extent. The reduced problem

should be well-posed, convenient to implement, and yield accurate approximations to solutions of the

original scattering problem. These aims are often conflicting, and much past and current research centers
on this issue.
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A common approach to computational approximations is to introduce an artificial boundary, B, away

from the scatterer and enforce a boundary condition there which incorporates information about the far-

field behavior of the scattered field (see Fig. 1). A very simple and popular choice of boundary condition on
B is the natural (Neumann) boundary condition. Given the exact Dirichlet trace of the scattered wave onB,

one obtains this Neumann boundary condition via the Poincar�e–Stekhlov map. These maps are defined for

very general shapes B, and are non-local in nature. It is easily seen that prescribing such boundary con-

ditions leads to a reduced problem which is well-posed. The implementation of such a map, however, poses

interesting computational challenges. One possibility is the use of boundary integral equations to obtain

this map [34,35]. While this method requires few restrictions on the shape of B, it necessitates the com-

putation of integrals with singular kernels, and leads (at the discretized level) to unacceptably dense ma-

trices. A more severe drawback to boundary integral methods is the absence of high-order quadrature
methods, especially in three dimensions. Finally, boundary integral methods are not effective in time-

dependent problems.

On the other hand, if the surface B is simple then, as we shall see in Section 3, the Dirichlet problem

exterior to the artificial boundary can be solved exactly using separation of variables [32]. This can be used

to prescribe the Poincar�e–Stekhlov map exactly at B. In the literature featuring this approach, the Poin-

car�e–Stekhlov map is more commonly referred to as a Dirichlet–Neumann operator (DNO), or as a Di-

richlet-to-Neumann (DtN) map [24,37]. This boundary condition coupled with a finite element method

(FEM) discretization of the resulting domain of finite extent is the DtN-FE method of Keller and Givoli
[22–24,37] and Keller and Grote [28]. We note that the DtN-FE method is not specific to scattering ap-

plications and has been generalized to problems in elasticity and time dependent problems [23,27,29,30] (see

also the list of references in [24]).

This approach is limited in two ways: The requirement that the artificial boundary be of a quite simple

shape (circular or elliptical in two dimensions, and spherical or ellipsoidal in three dimensions) and the non-

local nature of the DNO. The latter limitation stems from the non-local nature of the Poincar�e–Stekhlov
maps: The discretization of the DNO results in dense sub-matrices being introduced into otherwise sparse

linear systems, and degraded accuracy when the DNO is applied to functions of low smoothness (which
typically occur in FEM simulations). This concern has been examined by several authors (see Givoli�s
survey paper [24]). Indeed, many local approximate boundary conditions have been devised, including the

perfectly matched layer [4]. However, these local boundary conditions either have stability issues [1,3], or

cause spurious reflections into the computational region. A uniformly satisfactory local boundary condition

has not been invented and the DtN-FE method, which eliminates these spurious reflections, remains

important in applications.
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Fig. 1. Depiction of a scatterer, R, with boundary CR and unit exterior normal nðRÞ enclosed within the artificial boundary B with

normal NB. The region XðR;BÞ is the intersection of the exterior of R with the interior of B.
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The aim of the current research is to address the geometric limitation of the DtN-FE method: The

specific form of the artificial boundary B required. Our approach is inspired by the work of Milder and

Sharp [39–43], Craig and Sulem [17], and Nicholls and Reitich [46–48] on perturbative methods for
computation of DNO on domains which are deformations of simple (separable) regions. This work is also

very much in the spirit of the perturbative calculations of grating and bounded-obstacle scattering due to

Bruno and Reitich [5–12], the first-order calculations of Yeh [53], and the scattering matrix calculations of

Givoli [25]. Milder [39–42] and Milder and Sharp [43] devised a numerical method for grating scattering of

acoustic and electromagnetic waves which produced, via integral formulas, the scattered field from incident

radiation and the DNO at the surface of the scatterer. Assuming that the shape of the scatterer was a small

(but general) deformation of a plane they formulated a recursive procedure (denoted the Method of op-

erator expansions (OE), see Section 3.2) for calculating the terms in the Taylor series expansion of the DNO
about this canonical geometry. Independently, Craig and Sulem [17] noted that the Hamiltonian for free-

surface ideal fluid flows (the water wave problem), due to Zakharov [54], could be rewritten entirely in

terms of surface variables with the introduction of a DNO associated with Laplace�s equation on the ir-

regular domain occupied by the ideal fluid. Using the analyticity properties of the DNO with respect to

surface deformations [15,18,45,46,48] they produced recursive OE formulas for the Taylor series of the

DNO and conducted several low (fourth and fifth) order calculations. Nicholls and Reitich [46–48] in-

vestigated the conditioning properties of the OE and field expansions (FE) [6–8,20] methods for computing

the DNO associated with Laplace�s equation on irregular domains and, upon identifying their unstable
nature at high order, devised a new, stable high order method (termed the method of transformed field

expansions (TFE)) which, at the cost of somewhat greater computational complexity, produces highly

accurate approximations in a stable fashion.

Our approach expands the DtN-FE method by enlarging the class of allowable artificial boundaries to

include perturbations of a simple (separable) surface: A circle in two dimensions and a sphere in three

dimensions. This generalization is shown to be fast and accurate, and, in the setting of irregular bounded

obstacle scattering, it is demonstrated that this new algorithm can greatly reduce the cost of non-reflecting

boundary conditions thereby enabling the simulation of otherwise prohibitive configurations (Note the
number of elements required to enclose the star-shaped scatterer with a circle in Fig. 8(a) as opposed to the

star-shaped boundary in Fig. 8(b)). Indeed, since ellipses, rectangles, and even the star-shaped domain in

Fig. 8(b) (to name just a few) may be approximated by a perturbation of a circle, our framework allows the

immediate implementation of artificial boundaries with these useful shapes without recourse to the com-

putation of complicated, numerically unstable basis functions, e.g. Mathieu functions relevant to elliptical

geometries [28]. Our approach will also have advantages over methods such as the recent extension of

Djellouli et al. [19] of the Bayliss–Turkel non-reflecting boundary conditions to non-circular convex arti-

ficial boundaries. Not only is our boundary condition exactly transparent but it also permits, as Fig. 8(b)
illustrates, perturbations which can give rise to non-convex artificial boundaries.

The choice of the Poincar�e–Stekhlov map to prescribe the artificial boundary condition is by no means

the only one possible. Indeed, there is a vast literature concerning the characterization of solutions to

partial differential equations in terms of their boundary traces, using the machinery of pseudodifferential

operators (see, e.g., [33,51] for a good introductory exposition). One may use the difference potentials

method of [50] to construct artificial boundary conditions (see, e.g., the review article [52] and references

therein). In this technique, the computation of a Calder�on projection for an arbitrary artificial boundary

would typically require the solution of an auxiliary problem on a (larger) regular domain containing the
scatterer and the artificial boundary.

The organization of the paper is as follows: In Section 2 we discuss the governing equations of direct

scattering in two dimensions and the FEM for numerical simulations of such problems when coupled with

non-reflecting boundary conditions. In Section 3 we discuss the DNO on perturbed geometries, methods for

its perturbative calculation, and a rigorous analyticity result for DNO. We conclude with Section 4 where
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numerical simulations are presented which illustrate the speed, accuracy, and advantages in complexity of

our new algorithm.
2. Governing equations and the numerical method

In two dimensions Helmholtz�s equation governs the amplitude of a time-harmonic plane wave scattered

by a bounded object. In this section we show how the problem on an infinite domain together with the

radiation boundary condition can be reformulated as a problem on a finite domain with an exact boundary

condition at the outer boundary. We then show how the FEM can be used to discretize this problem.

2.1. Electromagnetic and acoustic scattering in two dimensions

The total field, vT, associated with a two dimensional time-periodic electromagnetic or acoustic plane

wave incident upon a bounded, perfectly conducting (impenetrable) object R � R2 satisfies Helmholtz�s
equation

DvT þ k2vT ¼ 0 in R2 n �R; ð1Þ

where k is given by the wavenumber of the incident radiation, coupled with either a Dirichlet or Neumann

condition at the boundary of the scatterer, oR ¼ CR [14,49]. The reflected field vr ¼ v and incident field vi
also satisfy Helmholtz�s equation (1). The final condition necessary for a unique solution is the Sommerfeld

radiation condition which states that reflected waves be outgoing. Gathering these conditions we find, in the

Neumann case, that the reflected field must satisfy

Dvþ k2v ¼ 0 in R2 n �R; ð2aÞ
onðRÞv ¼ �onðRÞvi at CR; ð2bÞ
lim
r!1

r1=2ðorv� ikvÞ ¼ 0; ð2cÞ

where nðRÞ is the unit normal pointing exterior to R, see Fig. 1. A considerable challenge to numerical
simulation of solutions of (2) is the infinite nature of the domain coupled with the faithful enforcement of

the Sommerfeld radiation condition (2c).

A common approach to the numerical solution of (2) is to introduce an artificial boundary B properly

enclosing R, and then to discretize the annular domain between them, XðR;BÞ. More precisely, we dis-

cretize the intersection of R2 n �R and the interior of B, see Fig. 1. The key consideration in this method is

the boundary condition which is enforced at B. One way to enforce the Sommerfeld radiation condition

exactly is via a DNO, also known in the literature as a Poincar�e–Stekhlov or DtN map, which maps Di-

richlet data n at the boundary B to Neumann data at that boundary,

GðBÞn ¼ rwjB � NB ð3Þ

(note that NB is not necessarily a unit vector), where w solves

Dwþ k2w ¼ 0 in exterior of B; ð4aÞ
w ¼ n at B; ð4bÞ
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lim
r!1

r1=2ðorw� ikwÞ ¼ 0; ð4cÞ

and the normal NB points toward R. Now (2) may be equivalently stated as

Dvþ k2v ¼ 0 in XðR;BÞ; ð5aÞ
onðRÞv ¼ �onðRÞvi at CR; ð5bÞ
rv � NB ¼ GðBÞv at B: ð5cÞ

Of course the utility of this method depends heavily upon the ease and accuracy with which one can

compute the DNO associated with the artificial boundary; this issue is discussed in depth in Section 3.

2.2. Finite element formulation

For simplicity of presentation we shall from now on consider the Neumann problem (5); the Dirichlet

problem requires only straightforward modifications. The weak form of (5) is, for any test function
u 2 H 1ðXðR;BÞÞ,

aðv;uÞ ¼ f ðuÞ; ð6Þ

where

aðv;uÞ ¼ �
Z
XðR;BÞ

rv � rudV þ k2
Z
XðR;BÞ

vudV �
Z
B

GðBÞv
NBj j udS;
f ðuÞ ¼ �
Z
CR

ðonðRÞviÞudS:

The finite element discretization [36] of (6) begins by triangulating XðR;BÞ,

XðR;BÞ ¼
[Nt

j¼1

Tj;

which produces the vertex nodes mj, j ¼ 1; . . . ;Np. We define

h ¼ max
16 j6Nt

diamðTjÞ; ð7Þ

a triangular mesh parameter. In the case of the piecewise linear FEM let us define

Vh ¼ fvjv is continuous on XðR;BÞ; vjTj
is linearg;

which is spanned by u1; . . . ;uNp
where uj is a linear function such that ujðmkÞ ¼ dj;k, the Kronecker delta.

The Galerkin FEM seeks a solution ~v 2 Vh,

~v ¼
XNp

j¼1

vjuj;

such that

að~v;uÞ ¼ f ðuÞ; 8u 2 Vh:
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This is equivalent to the linear system

ð�K þ k2M þ QÞ~v ¼ ~f ; ð8Þ

where~vj ¼ vj,

Kj;k ¼
Z
XðR;BÞ

ruj � ruk dV ; ð9aÞ
Mj;k ¼
Z
XðR;BÞ

ujuk dV ; ð9bÞ
Qj;k ¼ �
Z
B

GðBÞuj

NBj j uk dS; ð9cÞ
~fk ¼ �
Z
CR

ðonðRÞviÞuk dS: ð9dÞ

The matrices K (stiffness) and M (mass), and vector~f can all be calculated in a standard manner [36]; the

only calculation left to be described is that of Q. For arbitraryB this is quite difficult, but ifB is of a specific
(but quite general) type, e.g. a deformation of a circle, then, as we shall see in Sections 3.1 and 3.2, it can be

accomplished simply, quickly, and accurately via perturbation techniques.
3. The Dirichlet–Neumann operator

In order for the reformulation of the scattering problem on a bounded domain (5) to be useful, one must

be able to enforce (5c), i.e. one must be able to compute the DNO, GðBÞ, which allows one to approximate
the matrix Q in (8). The approach investigated by Han and Wu [32] and Keller and Givoli [37] considers an

artificial boundary B of circular type, i.e.

B ¼ fr ¼ ag:
In this case one can write the exact solution of (4) as

wðr; hÞ ¼
X1
p¼�1

H ð1Þ
p ðkrÞ

H ð1Þ
p ðkaÞ

n̂p e
iph;

where nðhÞ ¼
P1

p¼�1 n̂p eiph, and H ð1Þ
p is the pth Hankel function of the first kind (or Bessel function of the

third kind). From this and (3) we can write the DNO as

Gðr ¼ aÞn ¼ �
X1
p¼�1

k
dzH ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
n̂p e

iph ¼ �k
dzH

ð1Þ
D ðkaÞ

H ð1Þ
D ðkaÞ

n; ð10Þ

where dz denotes differentiation of the Hankel function with respect to its argument. Note that this formula

defines the Fourier multiplier

dzH
ð1Þ
D ðkaÞ

H ð1Þ
D ðkaÞ

;

where D ¼ �iox.
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While this approach has been useful in applications [22,26–30,37] and has been extended to boundaries

of elliptic shape, there are many scatterers which are not efficiently enclosed by either a circle or an ellipse

(e.g. star-like domains, see Fig. 8) resulting in many unnecessary elements far from R which must be in-
cluded in the computation.

We can significantly enlarge the class of artificial boundaries if we allow a perturbation of a circle,

say

B ¼ fr ¼ aþ gðhÞg:

If the size of the deformation, g, from the circular separable geometry, r ¼ a, is small then a perturbative

approach is natural and will be highly efficient and accurate. In fact, if we now specify gðhÞ ¼ df ðhÞ, then,
as we shall prove in Section 3.3, the DNO is analytic with respect to the perturbation parameter d (Theorem
1), i.e. we can write the Taylor series

Gðdf Þn ¼
X1
n¼0

ðGnðf ÞnÞdn; ð11Þ

which converges in a strong sense made precise in the following result.

Theorem 1. Given an integer sP 0, if f 2 Csþ2ð½0; 2p�Þ then the series (11) converges strongly as an operator

from Hsþ3=2ð½0; 2p�Þ to Hsþ1=2ð½0; 2p�Þ. In other words there exists a constant K1 such that

kGnðf ÞnkHsþ1=2 6K1knkHsþ3=2Bn

for any B > Cjf jCsþ2 .

Furthermore, it can be shown (and will prove to be very useful in Section 4) that the DNO can be

analytically continued beyond the disk of convergence guaranteed by Theorem 1. Following [48] we in-

vestigate the domain of analyticity of the DNO by fixing f ðhÞ and examining

Gðef Þ

which, Theorem 2 will show, is analytic for all e 2 R as long as ejf jL1
�� �� < a, i.e. e 2 ð�a= fj jL1 ; a= fj jL1Þ.

Consider e0 2 ð�a= fj jL1 ; a= fj jL1Þ and let

f0 ¼ e0f ; d ¼ e� e0:

Then

Gðef Þ ¼ Gðf0 þ df Þ

and the problem of determining the domain of analyticity of the DNO reduces to establishing analyticity in

d at d ¼ 0, i.e. the convergence of the series

Gðf0 þ df Þn ¼
X1
n¼0

ðGnðf0; f ÞnÞdn: ð12Þ

We now state, without proof (please see [48]), the following theorem.
Theorem 2. Given an integer sP 0, if f0, f 2 Csþ2ð½0; 2p�Þ then the series (12) converges strongly as an op-

erator from Hsþ3=2ð½0; 2p�Þ to Hsþ1=2ð½0; 2p�Þ.
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The focus of the next two subsections is the formulation of two methods for the numerical approxi-

mation of the Gn in (11). The final subsection is dedicated to the rigorous proof of Theorem 1.
3.1. Field expansions

The method of FE for computing the DNO [6–8,20,46–48] is based upon the fact that both the DNO and

the field are analytic with respect to boundary variations, parameterized by d (Theorems 1 and 3, re-
spectively). With this in mind we expand the field w in powers of d,

wðr; h; dÞ ¼
X1
n¼0

wnðr; hÞdn; ð13Þ

and insert this into the defining Helmholtz problem (4) with B ¼ fr ¼ aþ df g. By equating like powers of

d we find that the wn must satisfy

Dwnðr; hÞ þ k2wnðr; hÞ ¼ 0 r > a; ð14aÞ
wnða; hÞ ¼ dn;0nðhÞ �
Xn�1

l¼0

on�l
r wlða; hÞ

f n�l

ðn� lÞ! ; ð14bÞ
lim
r!1

r1=2 orwnð � ikwnÞ ¼ 0; ð14cÞ

where dn;p is the Kronecker delta. Noting that

wnðr; hÞ ¼
X1
p¼�1

an;pH ð1Þ
p ðkrÞeiph; ð15Þ

satisfies Eqs. (14a) and (14c), we can use (14b) to derive recursive formulas for the Fourier coefficients

an;p:

an;p ¼ dn;0
n̂p

H ð1Þ
p ðkaÞ

�
Xn�1

l¼0

X1
q¼�1

Cn�l;p�q

dn�l
z H ð1Þ

q ðkaÞ
H ð1Þ

p ðkaÞ
al;q

where the Cl;p are defined by

klf ðhÞl

l!
¼
X1
p¼�1

Cl;p e
iph:

With the an;p in hand we can now compute the nth term in the expansion of the DNO. Recalling Eqs. (3),

(13) and (15) we note that

Gðdf Þn ¼ rwðaþ df ðhÞ; hÞ � Ndf

¼
X1
n¼0

X1
p¼�1

�
� kðaþ df ÞdzH ð1Þ

p ðkðaþ df ÞÞ þ dohf
ðaþ df Þ ðipÞH

ð1Þ
p ðkðaþ df ÞÞ

�
an;p eiphd

n;

where Ndf ¼ ð�ðaþ df Þ; dohf Þ. If we multiply by ðaþ df Þ (to remove quotients involving d terms) and

expand the DNO in powers of d we discover the following recursion for Gnðf Þ
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Gnðf Þn ¼ � ka
Xn
l¼0

X1
p¼�1

al;p
ðkf Þn�l

ðn� lÞ! d
nþ1�l
z H ð1Þ

p ðkaÞeiph � f
a
Gn�1ðf Þn

� 2kf
Xn�1

l¼0

X1
p¼�1

al;p
ðkf Þn�1�l

ðn� 1� lÞ! d
n�l
z H ð1Þ

p ðkaÞeiph � k
a
f 2
Xn�2

l¼0

X1
p¼�1

al;p
ðkf Þn�2�l

ðn� 2� lÞ!

� dn�1�l
z H ð1Þ

p ðkaÞeiph þ 1

a
ðohf Þ

Xn�1

l¼0

X1
p¼�1

al;p
ðkf Þn�1�l

ðn� 1� lÞ! d
n�1�l
z H ð1Þ

p ðkaÞðipÞeiph: ð16Þ
3.2. Operator expansions

In contrast to the FE method outlined above, the method of OE [17,39–43,46–48] computes directly the

terms Gn in the perturbation series for the DNO (11). Again recalling the defining Helmholtz problem (4)

we note that a solution of (4a) and (4c) is

wpðr; hÞ ¼ H ð1Þ
p ðkrÞeiph:

Now

wpðaþ df ; hÞ ¼ H ð1Þ
p ðkðaþ df ÞÞeiph

so that from the definition of the DNO, (3),

Gðdf Þ H ð1Þ
p ðkða

h
þ df ÞÞeiph

i
¼ �ðaþ df Þor H ð1Þ

p ðkrÞeiph
� ����

r¼aþdf
þ dohf
aþ df

oh H ð1Þ
p ðkrÞeiph

� ����
r¼aþdf

;

that is

Gðdf Þ H ð1Þ
p ðkða

h
þ df ÞÞeiph

i
¼ �kðaþ df ÞdzH ð1Þ

p ðkðaþ df ÞÞeiph þ dohf
aþ df

ðipÞH ð1Þ
p ðkðaþ df ÞÞeiph:

ð17Þ

Thus, after multiplying (17) through by ðaþ df Þ, we expand the result in a series in d and, equating like

powers, obtain
Gnðf Þeiph ¼ � ak
ðkf Þn

n!

dnþ1
z H ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
eiph � 2fk

ðkf Þn�1

ðn� 1Þ!
dn
zH

ð1Þ
p ðkaÞ

H ð1Þ
p ðkaÞ

eiph � f 2k
a

ðkf Þn�2

ðn� 2Þ!
dn�1
z H ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
eiph

þ ohf
a

ðkf Þn�1

ðn� 1Þ!
dn�1
z H ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
ðipÞeiph �

Xn�1

l¼0

Glðf Þ
ðkf Þn�l

ðn� lÞ!
dn�l
z H ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
eiph

" #

� f
a

Xn�1

l¼0

Glðf Þ
ðkf Þn�1�l

ðn� 1� lÞ!
dn�1�l
z H ð1Þ

p ðkaÞ
H ð1Þ

p ðkaÞ
eiph

" #
:

Recognizing nðhÞ as a sum of Fourier modes eiph, and using the self-adjoint nature of the operators Glðf Þ
and dl

zH
ð1Þ
D ðkaÞ, we obtain
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Gnðf Þn ¼ � ak
dnþ1
z H ð1Þ

D ðkaÞ
H ð1Þ

D ðkaÞ
ðkf Þn

n!
n� 2k

dn
zH

ð1Þ
D ðkaÞ

H ð1Þ
D ðkaÞ

f
ðkf Þn�1

ðn� 1Þ! n�
k
a
dn�1
z H ð1Þ

D ðkaÞ
H ð1Þ

D ðkaÞ
f 2 ðkf Þ

n�2

ðn� 2Þ! n

� 1

a
dn�1
z H ð1Þ

D ðkaÞ
H ð1Þ

D ðkaÞ
DðDf Þ ðkf Þ

n�1

ðn� 1Þ! n�
Xn�1

l¼0

dn�l
z H ð1Þ

D ðkaÞ
H ð1Þ

D ðkaÞ
ðkf Þn�l

ðn� lÞ!Glðf Þn

� 1

a

Xn�1

l¼0

dn�1�l
z H ð1Þ

D ðkaÞ
H ð1Þ

D ðkaÞ
ðkf Þn�1�l

ðn� 1� lÞ!Glðf Þ f n½ �: ð18Þ
3.3. Analyticity

In the case of Laplace�s equation (k ¼ 0) the analyticity properties of the DNO have been well studied in
Cartesian coordinates. From the work of Calder�on [13] and Coifman and Meyer [15] the analyticity of the

DNO with respect to d can be deduced for domains with upper boundary shaped by a Lipschitz curve. This

was extended by Craig et al. [18] and Craig and Nicholls [16] to the case of three and n dimensions re-

spectively for domains with C1 upper boundaries. In all of this work the analyticity properties were deduced

from an implicit integral equation formula for the DNO coupled with delicate estimates on singular integral

operators.

In contrast, and with stable high-order computations in mind, Nicholls and Reitich [46] established the

analyticity of the DNO directly using a transformed set of recursions. We shall use this method of TFE for
the analyticity proof of the DNO due to its direct nature. It should be noted that while the OE and FE

recursions cannot be used for a verification of the analyticity of the DNO, they are, as we shall see in

Section 4, highly accurate and stable over a large range of physically relevant deformations f and sizes d.
We begin our proof by introducing a second artificial boundary at fr ¼ bg, where b > aþ d fj jL1 , and a

transparent boundary condition at that boundary, orw ¼ Tw, where

T ¼ k
dzH

ð1Þ
D ðkbÞ

H ð1Þ
D ðkbÞ

:

This allows us to state the DNO problem, (4), equivalently on the bounded domain Xðaþ df ; bÞ as

Dwþ k2w ¼ 0 in Xðaþ df ; bÞ; ð19aÞ
w ¼ n at r ¼ aþ df ; ð19bÞ
orw� Tw ¼ 0 at r ¼ b: ð19cÞ

Following Nicholls and Reitich [46] we introduce the change of variables

r0 ¼ ða� bÞr þ dbf ðhÞ
a� bþ df ðhÞ ;
h0 ¼ h;

which maps the domain Xðaþ df ; bÞ to the annulus Xa;b ¼ Xða; bÞ. The change of variables transforms w
into:

uðr0; h0; dÞ ¼ wððða� bþ df ðh0ÞÞr0 � dbf ðh0ÞÞ=ða� bÞ; h0Þ;
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and (19) into

D0uþ k2u ¼ F ðr0; h0; dÞ in Xa;b; ð20aÞ
uða; h0; dÞ ¼ nðh0Þ; ð20bÞ
or0uðb; h0; dÞ � Tuðb; h0; dÞ ¼ hðh0Þ; ð20cÞ

where

F ¼ 1

ða� bÞ2
or0F ð1Þ�

þ oh0F
ð2Þ þ F ð3Þ�;
F ð1Þ ¼ � ðdf Þðr0Þ2or0uþ ða� bÞbðdf Þr0or0u� ða� bÞðdf Þðr0Þ2or0u� ðdf Þ2ðr0Þ2or0uþ bðdf Þ2r0or0u
þ ða� bÞbðdf Þr0or0uþ bðdf Þ2r0or0u� b2ðdf Þ2or0u� ðdoh0f Þ2ðb� r0Þ2or0u
� ðdoh0f Þða� bÞðb� r0Þoh0u� ðdoh0f Þðdf Þðb� r0Þoh0u;
F ð2Þ ¼ �ðdoh0f Þða� bÞðb� r0Þor0u� ðdf Þoh0u� ðdf Þðdoh0f Þðb� r0Þor0u� ða� bÞðdf Þoh0u� ðdf Þ2oh0u;
F ð3Þ ¼ ðdoh0f Þ2ðb� r0Þor0uþ ðdoh0f Þða� bÞoh0uþ ðdoh0f Þðdf Þoh0u� 2k2ðdf Þða� bÞu� k2ðdf Þ2u

þ ðdf Þr0or0u� ða� bÞbðdf Þor0uþ ða� bÞðdf Þr0or0uþ ðdf Þ2r0or0u� bðdf Þ2or0u;

and

h ¼ d
f

a� b
Tu:

Upon dropping the primes, in these new coordinates the DNO becomes

ða� bþ df Þðaþ df ÞGðdf Þn ¼ �ða� bÞ ða
h

þ df Þ2 þ ðdohf Þ2
i
oruða; hÞ þ ða� bþ df Þðdohf Þohuða; hÞ:

We expand

uðr; h; dÞ ¼
X1
n¼0

unðr; hÞdn;

and derive the following equations for un

Dun þ k2un ¼ ð1� dn;0ÞFnðr; hÞ in Xa;b; ð21aÞ
unða; hÞ ¼ dn;0nðhÞ; ð21bÞ
oruðb; hÞ � Tuðb; hÞ ¼ ð1� dn;0ÞhnðhÞ; ð21cÞ

where

Fn ¼
1

ða� bÞ2
orF ð1Þ

n

�
þ ohF ð2Þ

n þ F ð3Þ
n

�
; ð22Þ
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F ð1Þ
n ¼ � fr2orun�1 þ ða� bÞbfrorun�1 � ða� bÞfr2orun�1 � f 2r2orun�2 þ bf 2rorun�2 þ ða� bÞbfrorun�1

þ bf 2rorun�2 � b2f 2orun�2 � ðohf Þ2ðb� rÞ2orun�2 � ðohf Þða� bÞðb� rÞohun�1

� ðohf Þf ðb� rÞohun�2;
F ð2Þ
n ¼ �ðoh0f Þða� bÞðb� rÞorun�1 � f ohun�1 � f ðohf Þðb� rÞorun�2 � ða� bÞf ohun�1 � f 2ohun�2;
F ð3Þ
n ¼ ðohf Þ2ðb� rÞorun�2 þ ðohf Þða� bÞohun�1 þ ðohf Þf ohun�2 � 2k2f ða� bÞun�1 � k2f 2un�2

þ frorun�1 � ða� bÞbf orun�1 þ ða� bÞfrorun�1 þ f 2rorun�2 � bf 2orun�2;

and

hn ¼
f

a� b
Tun�1:

Finally, the nth term in the expansion of the DNO, (11), can be expressed as

Gnðf Þn ¼ 1

aða� bÞ
�
� ða� bÞa2orunða; hÞ � 2aða� bÞf orun�1ða; hÞ

� ða� bÞðf 2 þ ðohf Þ2Þorun�2ða; hÞ þ ða� bÞðohf Þohun�1ða; hÞ þ f ðohf Þohun�2ða; hÞ
� ð2a� bÞfGn�1ðf Þn� f 2Gn�2ðf Þn

�
: ð23Þ

To estimate the functions un we use the following inequalities [46]: For integer sP 0 and arbitrary e > 0,

fuk kHs 6Mðd; sÞ fj jCs uk kHs ;
glk kHsþ1=2 6Mðd; sÞ gj jCsþ1=2þe lk kHsþ1=2 ;

if f 2 Csð½0; 2p�Þ, u 2 HsðXa;bÞ, g 2 Csþ1=2þeð½0; 2p�Þ, l 2 Hsþ1=2ð½0; 2p�Þ, and Mðd; sÞ is a constant depending
on d and s. Our main result is

Theorem 3. Given an integer sP 0, if f 2 Csþ2ð½0; 2p�Þ and n 2 Hsþ3=2ð½0; 2p�Þ there exist constants C0 and K0

and a unique solution of (20) such that

unk kHsþ2 6K0 nk kHsþ3=2Bn ð24Þ

for any B > 2K0C0 fj jCsþ2 .

Clearly, once we have established Theorem 3, the analyticity result for the DNO (Theorem 1) follows

immediately from Eqs. (23) and (24). The proof of Theorem 3 proceeds by applying an elliptic estimate

(Lemma 4) to (21) and then using a recursive lemma (Lemma 5) to obtain the desired result. The elliptic

estimate involves the DNO at fr ¼ bg but is otherwise standard [21,31,38].

Lemma 4. For any integer sP 0, there exists a constant K0 such that for any F 2 Hs�1, n 2 Hsþ1=2, h 2 Hs�1=2,

the solution of

Dwðr; hÞ þ k2wðr; hÞ ¼ F ðr; hÞ in Xa;b; ð25aÞ
wða; hÞ ¼ nðhÞ; ð25bÞ
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orwðb; hÞ � Twðb; hÞ ¼ hðhÞ; ð25cÞ
wðr; hþ 2mpÞ ¼ wðr; hÞ 8m 2 Z ð25dÞ

satisfies

wk kHsþ1 6K0 Fk kHs�1

�
þ nk kHsþ1=2 þ hk kHs�1=2

�
: ð26Þ
Proof. As we have mentioned, the proof is standard, but we give the argument in the case s ¼ 0 to illustrate

the influence of the DNO. We begin by setting v ¼ w� N where

Nðr; hÞ ¼
X1
p¼�1

n̂p
H ð1Þ

p ðkrÞ
H ð1Þ

p ðkaÞ
eiph:

Note that N solves

DNðr; hÞ þ k2Nðr; hÞ ¼ 0 in Xa;b;
Nða; hÞ ¼ nðhÞ;
orNðb; hÞ � TNðb; hÞ ¼ 0;
Nðr; hþ 2mpÞ ¼ Nðr; hÞ 8m 2 Z;

so that v satisfies

Dvðr; hÞ þ k2vðr; hÞ ¼ F ðr; hÞ in Xa;b; ð27aÞ
vða; hÞ ¼ 0; ð27bÞ
orvðb; hÞ � Tvðb; hÞ ¼ hðhÞ; ð27cÞ
vðr; hþ 2mpÞ ¼ vðr; hÞ 8m 2 Z: ð27dÞ

Recalling that H 1ðXa;bÞ can be defined by the norm:

wk k2H1ðXa;bÞ ¼
X1
p¼�1

Z b

a
r hpi2 ŵpðyÞ

��� ���2�
þ oyŵpðyÞ
��� ���2	dr;

where

hpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
;

it can be shown, using the asymptotic properties of the Hankel function, that

wk kH1 6 vk kH1 þ Nk kH1 6 vk kH1 þ Ca nk kH1=2 :

Using Poincar�e�s inequality and the fact that v is zero at r ¼ a, we note that

vk k2H1 6CP

Z
Xa;b

rvj j2 dV ¼ CP vk k2H1
0
;
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and use the latter as our norm. Multiplying (27a) by �v, and integrating by parts yieldsZ
Xa;b

rvj j2 dV �
Z
Cb

�vbTvb dh ¼ k2
Z
Xa;b

vj j2 dV �
Z
Xa;b

�vF dV þ
Z
Cb

�vbhdh;

where vb is v evaluated at Cb. We note that

T̂ ðpÞ ¼ k
dzH ð1Þ

p ðkbÞ
H ð1Þ

p ðkbÞ
¼ � hpi

kb
þ R̂ðpÞ;

where the asymptotic behavior of H ð1Þ
p gives

R̂ðpÞ
��� ��� ¼ T̂ ðpÞ

���� þ hpi
kb

����6C:

Thus, we can writeZ
Xa;b

rvj j2 dV þ
Z
Cb

�vb
hDi
kb

vb dh ¼ k2
Z
Xa;b

vj j2 dV �
Z
Xa;b

�vF dV þ
Z
Cb

�vbhdhþ
Z
Cb

�vbRvb dh: ð28Þ

SinceZ
Xa;b

F �v
��� ���dV 6 Fk kH�1 vk kH1

0
6

1

2a
Fk k2H�1 þ

a
2

vk k2H1
0
;

for F 2 H�1ðXa;bÞ and v 2 H 1
0 ðXa;bÞ, andZ

Cb

h�vb
��� ���dh6 hk kH�1=2 vbk kH1=2 6

1

2a
hk k2H�1=2 þ

a
2

vbk k2H1=2 ;

for h 2 H�1=2ð½0; 2p�Þ and vb 2 H 1=2ð½0; 2p�Þ, we can use (28) to deduce that

vk k2H1
0
þ
Z
Cb

�vb
hDi
kb

vb dh6 k2 vk k2L2 þ
Z
Cb

�vbRvb
��� ���dhþ a

2
vk k2H1

0

�
þ vbk k2H1=2

�
þ 1

2a
Fk k2H�1

�
þ hk k2H�1=2

�
:

ð29Þ

Now if l ¼ lðhÞ thenZ
Cb

�l
hDi
kb

ldh ¼
Z
Cb

X1
p¼�1

�̂lp e
iph

" # X1
p¼�1

hpi
kb

l̂p e
iph

" #
dh ¼

Z
Cb

X1
p¼�1

X1
l¼�1

�̂lp�l
hli
kb

l̂l

" #
eiph dh

¼
X1
l¼�1

�̂l�l
hli
kb

l̂l ¼
X1
l¼�1

�̂ll
hli
kb

l̂l ¼ lk k2H1=2 P 0: ð30Þ

Also,Z
Cb

�lRldh ¼
X1
l¼�1

T̂ ðlÞ
�

þ hli
kb

�
l̂l

��� ���2 6 X1
l¼�1

C l̂l

��� ���2 6 X1
l¼�1

C
1

bhli

�
þ bhli

	
l̂l

��� ���2

6
C
b

lk k2H�1=2 þ Cb lk k2H1=2 : ð31Þ

Using Eqs. (30) and (31), and

vbk kHs�1=2ð½0;2p�Þ 6C vk kHsðXa;bÞ;
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we can use (29) to deduce that

1
�

� a
2
� Cb

�
vk k2H1

0
6 k2
�

þ C
b

	
vk k2L2 þ

1

2a
Fk k2H�1

�
þ hk k2H�1=2

�
: ð32Þ

The uniqueness of the solution implies that the term involving the L2 norm of vmay be dropped from the

right hand side (see [21], Section 6.2, Theorem 6), and the proof is complete once a and b are chosen

sufficiently small. �

The estimate which allows us to control the right hand side of (21) follows.

Lemma 5. Let sP 0 be an integer and let f 2 Csþ2ð½0; 2p�Þ. Assume that

unk kHsþ2ðXa;bÞ 6K1Bn ð33Þ

for all n < N and constants K1 and B. If

B > fj jCsþ2 ; ð34Þ

there exists a C0 such that

FNk kHsðXa;bÞ 6K1 fj jCsþ2C0BN�1; ð35aÞ

hNk kHsþ1=2ð½0;2p�Þ 6K1 fj jCsþ2C0BN�1: ð35bÞ

Proof. We begin with

FNk kHs 6 orF
ð1Þ
N

��� ���
Hs

þ ohF
ð2Þ
N

��� ���
Hs

þ F ð3Þ
N

��� ���
Hs

from (22) and, for conciseness, consider the second term only; the other cases follow in an identical manner.

ohF
ð2Þ
N

��� ���
Hs
6 F ð2Þ

N

��� ���
Hsþ1

6 ðoh0f Þða
�� � bÞðb� rÞoruN�1

��
Hsþ1 þ f ohuN�1k kHsþ1

þ f ðohf Þðbk � rÞoruN�2kHsþ1 þ ðak � bÞf ohuN�1kHsþ1 þ f 2ohuN�2

�� ��
Hsþ1

6M aj � bjR fj jCsþ2 uN�1k kHsþ2 þM fj jCsþ1 uN�1k kHsþ2

þM2R fj jCsþ1 fj jCsþ2 uN�2k kHsþ2 þM aj � bj fj jCsþ1 uN�1k kHsþ2 þM2 fj j2Csþ1 uN�2k kHsþ2

6K1 fj jCsþ2ðC0=3ÞBN�1;

where we have used

ðbk � rÞukHs 6RðsÞ uk kHs ;

provided that

B > fj jCsþ2 :

The calculation for hN proceeds in a similar fashion.

hNk kHsþ1=2 6
f

a� b
TuN�1

����
����
Hsþ1=2

6
M

a� bj j fj jCsþ1=2þe TuN�1k kHsþ1=2 6
M

a� bj j fj jCsþ1=2þeCT uN�1k kHsþ3=2

6
MCT

a� bj j fj jCsþ1=2þeCt uN�1k kHsþ2ðXa;bÞ 6K1 fj jCsþ2C0BN�1;

where CT and Ct are bounding constants for the DNO and the trace operator respectively. �
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We are now in a position to prove Theorem 3.

Proof. (Theorem 3). The proof proceeds inductively and the case n ¼ 0 follows directly from Lemma 4 with

F0 � 0 and h0 � 0. We now assume that (24) holds for all n < N and apply Lemma 4 which implies that

uNk kHsþ2 6K0 FNk kHs

�
þ hNk kHsþ1=2

�
:

From Lemma 5, letting K1 ¼ K0 nk kHsþ3=2 , we obtain

uNk kHsþ2 6 2K0 K0 nk kHsþ3=2

� 
fj jCsþ2C0BN�1;

and (24) is established if B > 2K0C0 fj jCsþ2 . �

Remark 6. Based upon the result of Lemma 4 it would appear that the smoothness requirement of The-

orem 3 could be improved from Hsþ2 to Hsþ1 (sP 0). If we briefly entertain this possibility and attempt the

recursive proof outlined above we find that we must perform estimates (from F ð3Þ
N ) of the form:

ðak � bÞfroruN�1kHs�1 6 aj � bjRðsÞM fj jCs�1 uN�1k kHs ;

which is valid, for f continuous, only if sP 1. This prohibits our current approach from gaining any more

smoothness.

An important issue with regard to artificial boundary calculations is that of well-posedness. Grote and

Keller [28] investigated this issue for the DtN-FE method in the case of zero boundary deformation and

suggested a remedy: Replacing the non-local boundary condition at the artificial boundary with a com-

bination of the DtN map and a low-order boundary condition which preserves well-posedness. For the case
of the full DNO, Gðf Þ, the same remedy works; the precise nature of the low-order boundary condition

must be modified to accommodate the non-circular nature ofB. We note that our numerical simulations do

not suffer from these ‘‘spurious eigenvalues.’’
4. Numerical results

A number of problems of physical interest can be constructed to test the efficiency, accuracy, and ro-
bustness of the methods we propose. In this section we will focus on one such problem, computing the field

generated by a point source. At the end of the section we will briefly present results on scattering from a

star-shaped obstacle (see Fig. 8).

There are several parameters which characterize the calculations we have in mind. Our numerics were

carried out in MATLAB and the command ‘‘initmesh’’ was used with parameter hMax (an estimate of the

mesh parameter h, c.f. (7)) to triangulate the domain. We use piecewise linear basis functions in our FEM,

so in order to evaluate the matrix Q, (9c), we must apply the DNO to piecewise linear functions at the

boundary B. As we have seen from formulas (16) and (18), the Gn are most naturally computed for
functions expressed as Fourier series. While most of the boundary perturbations, f , we consider have only a
finite number of Fourier coefficients, the piecewise linear Dirichlet data, n, have an infinite number and

must be truncated; the parameter Nn expresses the number of Fourier coefficients we retain in n, i.e. we
approximate n by

nNn
ðhÞ ¼

XNn

p¼�Nn

n̂p e
iph ð36Þ
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where n̂p are the Fourier coefficients of n. In a similar fashion we approximate f by the finite Fourier series

fNf ðhÞ ¼
XNf

p¼�Nf

f̂p e
iph ð37Þ

where f̂p are the Fourier coefficients of f . As we mentioned above, often the f that we choose contain only a

finite number of non-zero Fourier coefficients so that if Nf is chosen large enough an exact representation is
achieved.

We have found that it is crucial for optimal performance of our algorithm that the n̂p and f̂p be computed

accurately. In response to this we have programmed either the exact Fourier coefficients (when they are

convenient) or else used high-order quadratures to approximate them. In the case of the boundary ‘‘hat-

function’’ supported on ½a; b�
S
½b; c�,

nðhÞ ¼
ðh� aÞ=ðb� aÞ a6 h < b;
ðh� cÞ=ðb� cÞ b6 h < c;
0 else;

8<
:

these coefficients are

n̂p ¼
ðb� cÞe�iap þ ðc� aÞe�ibp þ ða� bÞe�icp

2pða� bÞðb� cÞp2 ;

for p 6¼ 0, and n̂0 ¼ ðc� aÞ=ð4pÞ. The performance of the OE and FE algorithms depend strongly on the

smoothness properties of both the boundary deformation f and the Dirichlet data n. As more terms are

used in the expansion of the DNO, convolution products cause information to move to higher and higher

wavenumbers, and, unless this information is retained, the errors due to aliasing and the ill-conditioning in

the OE and FE algorithms become overwhelming [46–48]. The vectors holding the Fourier coefficients of f
and n are taken to be of length Nh so that wavenumbers �Nh=2; . . . ;Nh=2� 1 can be represented. In order to

completely avoid aliasing effects at order j a quick inspection of the OE and FE formulas reveals that

Nh=2� 1P jNf þ Nn;

or

Nh P 2jNf þ 2Nn þ 2:

Finally, the parameter NDNO specifies the number of terms Gn retained in the Taylor expansion of the
DNO, and d measures the size of the perturbation from the canonical geometry.
4.1. Point source problem

An exact, point source solution of the two dimensional problem

Dvþ k2v ¼ �dðx� x0Þ in R2 ð38aÞ
lim
r!1

r1=2ðorv� ikvÞ ¼ 0; ð38bÞ

is given by [44]

vpsðxÞ ¼
i

4
H ð1Þ

0 ðk xj � x0jÞ ð39Þ
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for any x0 2 R2. Upon insertion of an artificial boundary B ¼ fr ¼ aþ df g, (38) is equivalent to

Dvþ k2v ¼ �dðx� x0Þ r < aþ df ð40aÞ
rv � Ndf ¼ Gðdf Þv at r ¼ aþ df : ð40bÞ

Therefore, a simple test of the utility of our approach is to compare the exact solution vps to the nu-

merical solution of (40) via the FEM on fr < aþ df g with the DNO implemented using the FE and OE

methods. Of course (40) and (5) are quite different problems so a modification of the FEM is required and,

rather than solving the linear system (8), we solve the modified system

ð�K þ k2M þ QÞ~v ¼ ~F

with K, M , and Q given in (9) (replace XðR;BÞ by fr < aþ df g), and

~Fk ¼ �
Z
r<aþdf

dðx� x0Þuk dV :

To illustrate the behavior of our method we have selected x0 ¼ ð0; 0Þ, a ¼ 1, k ¼ 11=8,

f ðhÞ ¼ cosð4hÞ;

and d ¼ 0; 1=100; 1=10. In each of these cases we display results of a sequence of simulations with hMax

ranging over two orders of magnitude:

hMax ¼ 10j j ¼ 0;�1=2;�1;�3=2;�2: ð41Þ

The relative L1 errors at the boundary, when compared with the solution (39), for our method with the

DNO implemented via OE and FE are computed. In addition we present results for a third method, the

‘‘control FEM,’’ which is the piecewise linear FEM applied to the problem

Dvþ k2v ¼ �dð xj jÞ r < aþ df ; ð42aÞ
vðaþ df ; hÞ ¼ H ð1Þ
0 k ajð þ df jÞ at r ¼ aþ df ; ð42bÞ

i.e. we have supplied the exact Dirichlet data at the outer boundary from the exact solution (39). While this

problem is unrealistic it is instructive to compare our method to an idealized one which contains errors due

to the FEM discretization alone.

We begin with the case d ¼ 0 which corresponds to the method of Keller et al. (Gðf Þ ¼ G0 and Gnðf Þ ¼ 0

for n > 0). In Fig. 2(a) we show the triangulation of the computational domain when hMax ¼ 1=10, and in
Fig. 2(b) we display the errors when computing with the control FEM, OE, and FE methods with d ¼ 0,

NDNO ¼ 0, Nh ¼ 4, Nn ¼ 1, and Nf ¼ 4.

In our next experiment we investigate the behavior of our method for a perturbation of small size,

d ¼ 1=100. In Fig. 3(a) we show the triangulation of the computational domain when hMax ¼ 1=10, and in

Fig. 3(b) we display the errors when computing with the control FEM, OE, and FE methods with

d ¼ 1=100, NDNO ¼ 2, Nh ¼ 16, Nn ¼ 4, and Nf ¼ 4.

We now consider a perturbation of moderate size, d ¼ 1=10. In Fig. 4(a) we show the triangulation of the

computational domain when hMax ¼ 1=10, and in Fig. 4(b) we display the errors when computing with the
control FEM, OE, and FE methods with d ¼ 1=10, NDNO ¼ 8, Nh ¼ 64, Nn ¼ 8, and Nf ¼ 4.

Finally, for each of the problems, the error data was fit using least-squares, to a power law,

e ¼ CðhMaxÞp; ð43Þ
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Fig. 2. Plots of computational domain and L1 error versus h for zero perturbation, d ¼ 0; NDNO ¼ 0, Nh ¼ 4, Nn ¼ 1, and Nf ¼ 4. (a)

Domain triangulation (d ¼ 0); (b) Plot of L1 error versus h.
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Fig. 3. Plots of computational domain and L1 error versus h for small perturbation, d ¼ 1=100; NDNO ¼ 2, Nh ¼ 16, Nn ¼ 4, and

Nf ¼ 4. (a) Domain triangulation (d ¼ 1=100); (b) Plot of L1 error versus h.
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where p should be roughly two for errors due solely to the piecewise linear finite element discretization. The

results are summarized in Table 1 for all three experiments discussed above. We note that for a deformation

of size zero the solution�s angular homogeneity indicates that a small number of Fourier coefficients, Nn and
Nh, are necessary while, of course, NDNO may be set to zero. For d > 0 this homogeneity is broken so more

Fourier coefficients are necessary to accurately represent n, while increasing d requires more terms NDNO in

the series for the DNO. For instance, the results for d ¼ 1=10 were significantly worse if NDNO were set to 4

or 6.
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Fig. 4. Plots of computational domain and L1 error versus h for moderate perturbation, d ¼ 1=10; NDNO ¼ 8, Nh ¼ 64, Nn ¼ 8, and

Nf ¼ 4. (a) Domain triangulation (d ¼ 1=10); (b) Plot of L1 error versus h.

Table 1

Point source: rate of convergence exponents p (see (43)) for control FEM, OE, and FE

d NDNO Nh Nn Nf Control FEM OE FE

0 0 4 1 4 1.84 1.88 1.88

1/100 2 16 4 4 1.77 1.83 1.83

1/10 8 64 8 4 1.90 1.90 1.90
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To consider deformations of large size we have found it necessary to incorporate techniques of analytic

continuation in the computation of the DNO which are justified in Theorem 2. The technique we choose,

based upon the success in [48], is Pad�e approximation and it is implemented in the following way: Both the
OE and FE methods for approximating the DNO to order NDNO can be expressed as

GNDNOðdf Þn ¼
XNDNO

n¼0

ðGnðf ÞnÞdn ¼
XNDNO

n¼0

X1
p¼�1

an;p eiph
 !

dn ¼
X1
p¼�1

XNDNO

n¼0

an;pd
n

 !
eiph

¼
X1
p¼�1

SNDNO
p ðdÞeiph; ð44Þ

where SNDNO
p is a polynomial of degree NDNO in d. We approximate SNDNO

p by the unique rational function

(Pad�e approximant) of degree L over M accurate to order LþM þ 1 [2]. In all experiments conducted NDNO

was even so only diagonal approximants were considered, i.e. L ¼ M ¼ NDNO=2. Pad�e approximants have

some amazing properties of approximation of (a large subclass of) analytic functions from their Taylor series
for points far outside their radii of convergence, see e.g. [2]. A linear set of equations for the denominator

coefficients, and simple formulas for the numerator coefficients allow for their straightforward calculation.

With this technique in place, we now pursue a large deformation of the base (circular) geometry cor-

responding to d ¼ 1=3. In Fig. 5(a) we show the triangulation of the computational domain when
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Fig. 5. Plots of computational domain and L1 error versus h for large perturbation, d ¼ 1=3; NDNO ¼ 16, Nh ¼ 128, Nn ¼ 8, and
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hMax ¼ 1=10, and in Fig. 5(b) we display the errors when computing with the control FEM, OE (Pad�e), and
FE (Pad�e) methods with d ¼ 1=3, NDNO ¼ 16, Nh ¼ 128, Nn ¼ 8, and Nf ¼ 4.

In this set of runs the set of hMax was restricted to one and a half orders of magnitude,

hMax ¼ 10j j ¼ 0;�1=2;�1;�3=2:

We found that the results for hMax ¼ 1=100, while continuing to provide increased accuracy, did not

provide an order two improvement. We suspect, based upon preliminary investigations left for future work,

that the matrix Q becomes ill-conditioned at a somewhat faster rate than K or M as h is refined for NDNO

large. Despite this, note that while the OE and FE methods provide inaccurate answers throughout all
orders of hMax, if Pad�e approximation is added to the algorithm, orders of accuracy pOE ¼ 1:67 and

pFE ¼ 1:65, as compared to pFEM ¼ 1:76, can be achieved. This clearly demonstrates the fact d ¼ 1=3 is

outside the disk of convergence of the DNO assured by Theorem 1 while being inside the region of extended

analyticity guaranteed by Theorem 2. Furthermore, only through techniques of analytic continuation, such

as Pad�e approximation, can these regions of extended analyticity be accessed.

As a final pair of tests within the point source context we would like to display how two other important

artificial boundary shapes can be easily implemented within our framework. We consider boundaries

shaped as an ellipse with major and minor axes a and b,

qeðhÞ ¼
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 cos2ðhÞ þ a2 sin2ðhÞ
q ;

and a rectangle of side lengths 2a and 2b,

qrðhÞ ¼

a= cosðhÞ 06 h < h�

b= sinðhÞ h� 6 h < p� h�

a= cosðhÞ p� h� 6 h < pþ h�

b= sinðhÞ pþ h� 6 h < 2p� h�

a= cosðhÞ 2p� h� 6 h < 2p;

8>>>><
>>>>:
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where h� ¼ a tan�1ðb=aÞ. It should be noted that since these shapes each possess an infinite number of non-

zero Fourier coefficients, when we truncate their Fourier series representations at wavenumber Nf the re-

sulting shapes will be only approximate ellipses and rectangles. Of course, we may make them as close as we
like to ellipses and rectangles, respectively, by increasing Nf .

For the elliptically shaped boundary we selected a ¼ 1:25 and b ¼ 1=1:25, and discovered that with

NDNO ¼ 8, Nh ¼ 128, Nn ¼ 8 and Nf ¼ 8 we could, without Pad�e enhancement, achieve rates of convergence

pOE ¼ 1:81 and pFE ¼ 1:81 while pFEM ¼ 1:98. A picture of the triangulation of the computational domain

when hMax ¼ 1=10 is given in Fig. 6(a), while Fig. 6(b) displays the errors when computing with the control

FEM, OE, and FE methods.

For the rectangular shaped boundary we selected a ¼ 1:1 and b ¼ 1=1:1, and we discovered that with

NDNO ¼ 12, Nh ¼ 256, Nn ¼ 16 and Nf ¼ 16 we could, with Pad�e enhancement, achieve rates of convergence
pOE ¼ 1:80 and pFE ¼ 1:83 while pFEM ¼ 1:92. A picture of the triangulation of the computational domain

when hMax ¼ 1=10 is given in Fig. 7(a), while Fig. 7(b) displays the errors when computing with the control

FEM, OE, and FE methods.

4.2. Irregular obstacle scattering

We conclude our experiments by returning to the obstacle scattering problem (5) with a star-shaped

scatterer (see Fig. 8) which we specify by the equation

R ¼ fðr; hÞjr6 1þ 0:4 cosð4hÞg:

We enclose this with an artificial boundary B of the form fr ¼ aþ d cosð4hÞg and report results for

a ¼ 1:5 and d ¼ 0:3 (see Fig. 8(a)), which represents a large (20%) deformation of the base (circular) ge-

ometry. Of course an analytical solution is no longer available so we compare our results with a highly

resolved zero-deformation DtN-FE computation [37] with artificial boundary at the circle, r ¼ 1:8. This
radius is chosen as it both encloses the obstacle, and maintains the same minimum distance to the scatterer

as our new approach (see Fig. 8(b)).

We now present a comparison, in the L1 norm at the surface of the scatterer CR, of the (scattered) field
computed via our method (OE implementation with Pad�e summation) with the highly resolved zero-

deformation DtN-FE computation. The domain is depicted in Fig. 9(a) and the error (in L1 norm at the

boundary) as hMax is refined is displayed in Fig. 9(b). These numerical runs were conducted with the
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Fig. 6. Plots of computational domain and L1 error versus h for elliptical boundary; NDNO ¼ 8, Nh ¼ 128, Nn ¼ 8, and Nf ¼ 8. (a)

Domain triangulation (ellipse); (b) Plot of L1 error versus h.
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parameter values NDNO ¼ 8, Nh ¼ 84, Nn ¼ 8, and Nf ¼ 4. The convergence results are also summarized in

Table 2 and a least squares fit to the power law (43) reveals a rate of convergence p ¼ 1:77 indicating that
the errors are dominated by those of the underlying FEM.

This computation shows that our new method can be used to advantage in realistic scattering compu-

tations. Clearly, the simulation using the perturbative DNO converges stably to the zero-deformation DtN-

FE calculation, while using far fewer elements. In particular, at each refinement level the number of tri-

angles, Nt (star), in the star-shaped geometry is roughly 3/4 that of the number, Nt (zero), required by a

circular geometry of radius 1.8; see Fig. 8. We note that for the star-shaped scatterer chosen for this

computation an ellipsoidal artificial boundary would provide no computational advantage (in terms of

number of triangles required) over the circular boundary; a perturbation of general form is required for
significant computational savings.

The convergence study above confirms that our method converges to the true solution, however, in a

realistic scattering computation the strategy is to implement one algorithm on a sequence of refined meshes,
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Table 2

Star-shaped scatterer: L1 errors for DtN-FE method with star-shaped boundary on scatterer surface, compared to highly resolved

computation using circular (zero-deformation) boundary

Refinement level hMax Nt (star) Nt (zero) L1 error

0 0.3791 128 168 3:25� 10�3

1 0.1911 512 672 1:13� 10�3

2 0.0991 2048 2688 3:01� 10�4

3 0.0505 8192 10,752 7:93� 10�5

4 0.0255 32,768 43,008 2:38� 10�5

5 0.0128 131,072 172,032 1:00� 10�5

Also listed are the number of triangles, Nt (star), at each level of refinement and, for comparison, the number of triangles, Nt (zero),

which a zero-deformation computation would require.

Table 3

Star-shaped scatterer: L2 errors for DtN-FE method with star-shaped boundary on scatterer surface, compared to highly resolved

computation

Refinement level hMax Nt (star) L2 error

0 0.3791 128 5:46� 10�2

1 0.1911 512 1:72� 10�2

2 0.0991 2048 4:68� 10�3

3 0.0505 8192 1:17� 10�3

4 0.0255 32,768 2:46� 10�4
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and compare (in the L2 norm) the solution at each level of refinement with the finest-mesh calculation. We

present such an error analysis with the parameter values as above (NDNO ¼ 8, Nh ¼ 84, Nn ¼ 8, and Nf ¼ 4)

and the DNO implemented via the OE algorithm with Pad�e summation. The computational region is

XðR;BÞ (see Fig. 9(a)), and the errors are reported in the L2 norm over this region, with reference to the

fine-grid computation. The convergence results are summarized in Table 3. A least squares fit to the power

law (43) reveals a rate of convergence p ¼ 2:02, in accordance with that expected for ordinary FEM.
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In future research we aim to extend this method to the three dimensional Helmholtz problem (acoustic

scattering) and the full set of three dimensional Maxwell�s equations. While the implementation details of

the DNO in this setting will be somewhat different (complex exponentials and Hankel functions must be
replaced by spherical harmonics and spherical Hankel functions), the FEM framework will be largely the

same.
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