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Abstract For exterior scattering problems one of the chief difficulties arises from the un-
bounded nature of the problem domain. Inhomogeneous obstacles may require a volumetric
discretization, such as the Finite Element Method (FEM), and for this approach to be fea-
sible the exterior domain must be truncated and an appropriate condition enforced at the
far, artificial, boundary. An exact, non-reflecting boundary condition can be stated using
the classical DtN-FE method if the Artificial Boundary’s shape is quite specific: circular
or elliptical. Recently, this approach has been generalized to permit quite general Artifi-
cial Boundaries which are shaped as perturbations of a circle resulting in the “Enhanced
DtN-FE” method. In this paper we extend this method to a two-dimensional FEM featuring
high-order polynomials in order to realize a high rate of convergence. This is more involved
than simply specifying high-order test and trial functions as now the scatterer shape and
Artificial Boundary must be faithfully represented. This entails boundary elements which
conform (to high order) to the true boundary shapes. As we show, this can be accomplished
and we realize an arbitrary order FEM without spurious reflections.

Keywords Non-reflecting boundary conditions · hp-finite elements · Acoustic scattering ·
Dirichlet-to-Neumann maps · Geometric perturbation methods

1 Introduction

The scattering of time-harmonic linear acoustic waves from a bounded obstacle arises in a
wide array of applications of great importance to scientists and engineers. Such applications
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include remote sensing and non-destructive testing. Despite the linear nature of the govern-
ing partial differential equations, several inherent features of these applications give rise to
many difficult algorithmic and theoretical challenges. Among these is the fundamentally un-
bounded nature of the problem domain which presents a particular difficulty for numerical
simulations.

In many situations an integral equation method can be readily applied in the frequency
domain [8] which not only posits near-field unknowns, but also satisfies the far-field condi-
tion, the so-called Sommerfeld Radiation Condition, exactly via an astute choice of integral
kernel. However, some applications, such as an inhomogeneous obstacle with a discontin-
uous index of refraction, require a volumetric discretization; here Finite Element Methods
(FEM) are particularly appealing due to their geometric flexibility, reliability, and the wide-
spread availability of FEM software. In a volumetric discretization an Artificial Boundary
is typically introduced to the computational domain (exterior to the scatterer) to render it
bounded, and an approximation of the Sommerfeld Radiation Condition [8] is enforced
there. There is a large literature of such methods and we refer the interested reader to the
excellent survey book of Ihlenburg [19].

Of particular relevance to the present paper is the work in the frequency domain of
Feng [10], Han and Wu [16], and Keller and Givoli [11–14, 20] (please see [19] for a
complete literature survey). In these the shape of the Artificial Boundary must be chosen
to be quite simple: circular or elliptical (spherical or ellipsoidal in three dimensions), i.e. a
separable geometry. In this case the solution exterior to the Artificial Boundary can be writ-
ten exactly in terms of appropriate basis functions (e.g. Hankel functions), which can then
be used to readily compute the Dirichlet-to-Neumann map (DtN map) enabling a “Non-
Reflecting” (or “Transparent”) boundary condition to be posed at the Artificial Boundary.
An FEM linked to the Non-Reflecting boundary condition, featuring the DtN map, results
in the DtN-FE method. This method, however, suffers from two important flaws: The DtN
map is inherently non-local, and the Artificial Boundary has very specific shape require-
ments. The first results in the appearance of dense sub-blocks in the otherwise sparse linear
system of equations that must be solved. The second results in a needlessly large computa-
tional domain if the scatterer cannot be efficiently enclosed by a circle or ellipse.

In a sequence of recent papers, two of the authors have addressed the latter of these
concerns with a generalization of the DtN-FE method [28, 29]. This “Enhanced DtN-FE”
method permits Artificial Boundaries which are shaped as perturbations of a circle and is
based upon the fact that the DtN map depends analytically upon shape perturbation. With
the wide range of shapes that one can specify in this way, this generalization allows one to
fit the Artificial Boundary quite close to the surface of the scatterer. In [28] it was demon-
strated that this method can be implemented and coupled to a piecewise linear FEM while
not destroying its inherent convergence rate. In [29] it was shown that the resulting discrete
problem is well-posed provided that the DtN map is suitably modified (see [9, 15, 17]).
Moreover, this proof did not rely upon the piecewise linear nature of the underlying ba-
sis/test functions and thus can be applied equally well to other FEM. In this paper we extend
this method to a two-dimensional FEM featuring high-order polynomials in order to realize
a higher rate of convergence. This is more involved than simply specifying test and trial
functions of higher polynomial order as now the scatterer shapes and Artificial Boundary
must be faithfully represented, i.e. the boundary elements must conform (to high order) to
the true boundary shapes. However, as we shall see in the numerical results of Sect. 4, this
can be accomplished and we realize an arbitrary order FEM without spurious reflections.
Additionally, we present in Appendix new formulas for the rapid execution of one popular
algorithm for the approximation of DtN maps (the method of Operator Expansions) which
plays a crucial role in our method.
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The organization of the paper is as follows: In Sect. 2 we review the governing equations
of time-harmonic acoustic scattering by a bounded obstacle in the frequency domain, and
the hp-FEM we employ. In Sect. 3 we recall the considerations necessary to compute the
DtN map for use in our FEM scheme, and in Sect. 4 we present a representative set of
numerical examples which display the accuracy, flexibility, and robustness of our new high-
order, Enhanced DtN-FE method. Concluding remarks are given in Sect. 5.

2 Governing Equations

It is well-known [8] that if time-harmonic plane-wave acoustic radiation of the form

vi = eikα·x, |α| = 1, (1)

is incident upon a bounded, impenetrable obstacle � ⊂ R2 (with boundary �) then the
(reduced) scattered field v = v(r, θ) satisfies the scalar Helmholtz equation

�v + k2v = 0 in �∞ := Ext(�). (2)

Of course, to realize a unique solution one must specify, in addition to the periodicity in θ ,
boundary conditions at the scatterer and at infinity. For the former, we choose a Dirichlet
condition

v|� = − vi |� =: ξ(θ), (3)

which defines the generic Dirichlet data ξ (a Neumann condition can be treated in an anal-
ogous manner). For the latter, we have the Sommerfeld Radiation Condition [8] (in two
dimensions):

lim
r→∞ r1/2(∂rv − ikv) = 0. (4)

Gathering (2), (3), and (4) we have the equations governing the scattering of time-harmonic,
acoustic plane-waves from an irregular, impenetrable, two-dimensional obstacle:

�v + k2v = 0 in �∞ (5a)

v|� = ξ (5b)

lim
r→∞ r1/2(∂rv − ikv) = 0. (5c)

2.1 A Transparent Boundary Condition

One of the severe difficulties associated with the numerical simulation of the system (5) is
the unbounded nature of the computational domain �∞. In FEM discretizations (as with
other volumetric techniques) this problem is usually addressed with the introduction of an
“Artificial Boundary,” say B, which properly encloses the scatterer �, and the imposition
there of some boundary conditions motivated by the Sommerfeld Radiation Condition (4).
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Fig. 1 Depiction of a scatterer,
�, with boundary � and unit
exterior normal n enclosed within
the Artificial Boundary B with
normal NB . The region �(�, B)

is the intersection of the exterior
of � with the interior of B

We now describe a “transparent” or “non-reflecting” boundary condition which can be en-
forced on such an Artificial Boundary. For this, consider the augmented scattering problem

�v + k2v = 0 in � := �∞\Ext(B) (6a)

v = ξ at � (6b)

∂Nv = ∂Nw at B (6c)

v = w at B (6d)

�w + k2w = 0 in Ext(B) (6e)

lim
r→∞ r1/2(∂rw − ikw) = 0, (6f)

where N is a normal pointing into the interior of B; please see Fig. 1. The solutions of (5)
and (6) are identical in that the v match on �, and v = w on the exterior of B.

To specify the transparent boundary condition on v at B consider (6d)–(6f):

�w + k2w = 0 in Ext(B) (7a)

w = ψ at B (7b)

lim
r→∞ r1/2(∂rw − ikw) = 0, (7c)

where ψ is meant to denote generic Dirichlet data at B. Provided that B is sufficiently regular
and ψ sits in an appropriate function space (see, e.g., [8]), this system of equations has a
unique solution. From this we can compute the quantity necessary to close (6a)–(6c), ∂Nw

at B, i.e. the “Dirichlet-to-Neumann map” (DtN map)

T (B)[ψ] := ∇w|B · N. (8)

Therefore, based upon the augmented system (6), we can equivalently restate (5) on the
bounded domain �

�v + k2v = 0 in � (9a)

v = ξ at � (9b)

∂Nv − T [v] = 0 at B, (9c)
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with the transparent boundary condition at B specified via the non-local DtN map, T . We
point out that this map is also known as the Dirichlet–Neumann operator and the Stekhlov–
Poincaré map. In Sect. 3 we will make a particular choice of N which gives T adjointness
properties (see Appendix) that allow it to be computed in an accelerated fashion via the
Operator Expansions algorithm (see Sect. 3.2).

2.2 An hp-Finite Element Method

In previous work [28], two of the authors investigated an algorithm which coupled an effi-
cient implementation of the DtN map, T , on quite general B to a volumetric Finite Element
discretization of (9) on �. In that work, we used piecewise linear basis and test functions on
triangles so that our approximate solution was a piecewise linear polynomial. The current
work extends this idea to couple the DtN map to high-order pseudo-spectral schemes on
unstructured nodal elements. In [34], Warburton, Pavarino, and Hesthaven demonstrated the
flexibility, robustness, and exponential accuracy of these schemes and here we show that our
DtN map fits seamlessly into this incarnation of the DtN-FE method. In brief, the method
of Warburton, Pavarino, and Hesthaven begins with the classic variational formulation of
(9) and a triangulation of � where, typically, the elements at the boundary must be curved.
The solution is represented in a compact, element based fashion via Lagrange interpolating
polynomials associated to carefully chosen nodes on each element. For the curved elements,
an isoparametric mapping and Hall blending are utilized. We refer the interested reader to
[34] for complete details. We note that this nodal pseudo-spectral scheme is able to realize
the optimal order of accuracy, (p + 1), in the absence of curved elements, however, this rate
drops to a suboptimal value, p, when curved elements are included.

An important issue in the numerical implementation of (9) is the well-posedness of the
resulting discrete problem. In [29] two of the authors took up this question and showed rig-
orously that if the DtN map, T , is suitably modified (see [9, 15, 17]) then the discrete system
is indeed well-posed. From a practical standpoint, however, we did not notice any instabil-
ities in our numerical simulations using the unmodified DtN map and thus we advocate its
use in generic computations.

3 The Dirichlet-to-Neumann Map

In order to completely specify the numerical method presented in the previous section we
must compute the DtN map, T , at the Artificial Boundary B. The case of a circular boundary

B = {r = b}
has been investigated by Feng [10], Han and Wu [16], and Keller and Givoli [11–14, 20]. In
this case the exact solution of (7) is

w(r, θ) =
∞∑

p=−∞

H(1)
p (kr)

H
(1)
p (kb)

ψ̂peipθ ,

where ψ̂p is the p-th Fourier coefficient of ψ and H(1)
p is the p-th Hankel function of the

first kind. From (8) the DtN map is

T (r = b)[ψ] = −
∞∑

p=−∞
bk

dzH
(1)
p (kb)

H
(1)
p (kb)

ψ̂peipθ = −kb
dzH

(1)
D (kb)

H
(1)
D (kb)

[ψ] (10)
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where dz is differentiation with respect the argument of the Hankel function, and we have
identified the Fourier multiplier

m(D)[ψ] :=
∞∑

p=−∞
m(p)ψ̂peipθ .

This method was significantly expanded in [28] to include Artificial Boundaries of the
form

B = {r = b + g(θ)}, (11)

i.e. perturbations of a circle. This generalization is significant as it allows the construction of
Artificial Boundaries which are close to the surface of the scatterer, resulting in a computa-
tional domain, �, with a modest number of elements. We will see evidence of this in Sect. 4
and show the remarkable gains that can be achieved over the original DtN-FE method with
an appropriate choice of B.

Of course the difficult task that remains is the computation of the DtN map on a domain
with the perturbed shape (11). In fact, the form of our new class of Artificial Boundaries
suggests that a perturbative method should be both convenient and highly accurate. To make
this clearer, if we specify g = εf , it can be shown [28] that both the field, w = w(x,y; ε),
and the DtN map, T = T (εf ), depend analytically upon ε and that the expansions

w(x,y; ε) =
∞∑

n=0

wn(x, y)εn, T (εf )[ψ] =
∞∑

n=0

Tn(f )[ψ]εn, (12)

are strongly convergent in an appropriate Sobolev space. Clearly, a truncation of the Taylor
series for the DtN map,

T N(εf )[ψ] :=
N∑

n=0

Tn(f )[ψ]εn (13)

should prove to be a highly accurate approximation to T and will be very convenient if a
good formula for the Tn can be identified. For this purpose several “Boundary Perturbation”
techniques have been developed, and in the following two sections we describe two methods
which are both fast and accurate.

3.1 Field Expansions

The method of “Field Expansions” (FE) for computational scattering can be traced back to
the pioneering work of Rayleigh [21] and Rice [33], and was extended to a reliable high-
order method by Bruno and Reitich [2–7]. This FE method is based upon the analyticity of
w and T , see (12), and recursion formulas for the wn and Tn which can be realized with the
following calculations for the case B = {r = b + εf }. We begin by inserting the expansion
for w, (12), into (7) and realizing that the wn must satisfy

�wn + k2wn = 0, r > b, (14a)

wn(b, θ) = δn,0ψ −
n−1∑

l=0

f n−l

(n − l)!∂
n−l
r wl(b, θ), (14b)

lim
r→∞ r1/2(∂rwn − ikwn) = 0, (14c)
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where δn,m is the Kronecker delta. The solution of (14a) and (14c) is

wn(r, θ) =
∞∑

p=−∞
dp,n

H (1)
p (kr)

H
(1)
p (kb)

eipθ .

Equation (14b) can be used to solve for dp,n:

dp,n = δn,0ψ̂p −
n−1∑

l=0

∞∑

q=−∞
Cp−q,n−l

dn−l
z H (1)

q (kb)

H
(1)
q (kb)

dq,l ,

where ψ̂p is the pth Fourier coefficient of ψ ,

Cl(θ) := klf l(θ)

l! , Cl(θ) =:
∞∑

p=−∞
Cl,peipθ .

Given the dp,n we can now compute the nth term of the DtN map. At this point we define

Ng := (−(b + g), ∂θg)T

as our normal vector, which will produce a DtN map with advantageous adjointness proper-
ties (see Sect. 3.2 and Appendix). Recalling (8) and (12), and ∇ = (∂r , (1/r)∂θ )

T ,

T (εf )[ψ] = ∇w(b + εf (θ), θ) · Nεf

=
∞∑

n=0

∞∑

p=−∞

[
−k(b + εf )

dzH
(1)
p (k(b + εf ))

H
(1)
p (kb)

+ ε∂θf

(b + εf )
(ip)

H (1)
p (k(b + εf ))

H
(1)
p (kb)

]
dp,ne

ipθ εn.

A recursion for the Tn(f ) can be realized by multiplying by (b + εf ) (to remove quotients
involving ε), and expanding the DtN map in powers of ε:

Tn(f )[ψ] = −kb

n∑

l=0

∞∑

p=−∞

(kf )n−l

(n − l)!
dn+1−l

z H (1)
p (kb)

H
(1)
p (kb)

dp,le
ipθ

− f

b
Tn−1(f )[ψ]

− 2kf

n−1∑

l=0

∞∑

p=−∞

(kf )n−1−l

(n − 1 − l)!
dn−l

z H (1)
p (kb)

H
(1)
p (kb)

dp,le
ipθ

− k

b
f 2

n−2∑

l=0

∞∑

p=−∞

(kf )n−2−l

(n − 2 − l)!
dn−1−l

z H (1)
p (kb)

H
(1)
p (kb)

dp,le
ipθ

+ 1

b
(∂θf )

n−1∑

l=0

∞∑

p=−∞

(kf )n−1−l

(n − 1 − l)!
dn−1−l

z H (1)
p (kb)

H
(1)
p (kb)

(ip)dp,le
ipθ , (15)
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or,

Tn(f )[ψ] = −kb

n∑

l=0

Cn−l

dn+1−l
z H

(1)
D (kb)

H
(1)
D (kb)

Dl

− f

b
Tn−1(f )[ψ]

− 2kf

n−1∑

l=0

Cn−1−l

dn−l
z H

(1)
D (kb)

H
(1)
D (kb)

Dl

− k

b
f 2

n−2∑

l=0

Cn−2−l

dn−1−l
z H

(1)
D (kb)

H
(1)
p (kb)

Dl

+ 1

b
(∂θf )

n−1∑

l=0

Cn−1−l

dn−1−l
z H

(1)
D (kb)

H
(1)
D (kb)

∂θ Dl , (16)

where

Dl (θ) :=
∞∑

p=−∞
dp,le

ipθ .

Once these are computed, the approximation T N (c.f. (13)) of T can be implemented.

3.2 Operator Expansions

A second approach to the numerical simulation of DtN maps, in the setting of acoustic
scattering, is due to Milder [22–27]. In this “Operator Expansions” (OE) method one works
exclusively with the operator, T , and, using the analyticity properties of the DtN map and
the expansion (12), this method computes the Tn directly. We begin by noting that a solution
of (7a) and (7c) is

wp(r, θ) = H(1)
p (kr)eipθ .

Since

ψp(θ) = wp(b + εf, θ) = H(1)
p (k(b + εf ))eipθ

the definition of the DtN map, (8), yields

T (εf )
[
H(1)

p (k(b + εf ))eipθ
] = −(b + εf )∂r

(
H(1)

p (kr)eipθ
)∣∣

r=b+εf

+ ε∂θf

b + εf
∂θ

(
H(1)

p (kr)eipθ
)∣∣

r=b+εf
,

that is

T (εf )
[
H(1)

p (k(b + εf ))eipθ
] = −k(b + εf )dzH

(1)
p (k(b + εf ))eipθ

+ ε∂θf

b + εf
(ip)H (1)

p (k(b + εf ))eipθ . (17)
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Expanding in powers of ε and recognizing (b + εf )−1 as a geometric series,

( ∞∑

n=0

Tn(f ) εn

)[ ∞∑

n=0

dn
z H (1)

p (kb)
knf n

n! eipθ εn

]

= −kb

∞∑

n=0

dn+1
z H (1)

p (kb)
knf n

n! eipθ εn

− k(εf )

∞∑

n=0

dn+1
z H (1)

p (kb)
knf n

n! eipθ εn

+ ε(∂θf )

(
1

b

∞∑

n=0

(−f

b

)n

εn

)
(ip)

( ∞∑

n=0

dn
z H (1)

p (kb)
knf n

n! eipθ εn

)
. (18)

At order ε0 we find

T0[H(1)
p (kb)eipθ ] = −kb dzH

(1)
p (kb)eipθ ,

which simplifies to

T0[eipθ ] = −kb
dzH

(1)
p (kb)

H
(1)
p (kb)

eipθ .

Since any periodic function ψ(x) can be expressed as a linear combination of complex
exponentials exp(ipθ) through their Fourier series, we can conclude that

T0[ψ] = −kb
dzH

(1)
D (kb)

H
(1)
D (kb)

[ψ],

which, of course, coincides with (10).
At order n (18) yields, recalling that Cn = knf n/n!,

Tn(f )
[
eipθ

] = −kbCn

dn+1
z H (1)

p (kb)

H
(1)
p (kb)

eipθ − kf Cn−1

dn
z H (1)

p (kb)

H
(1)
p (kb)

eipθ

+ (∂θf )

n−1∑

l=0

Cl

1

b

(−f

b

)l

(ip)
dn−l−1

z H (1)
p (kb)

H
(1)
p (kb)

eipθ

−
n−1∑

l=0

Tl(f )

[
Cn−l

dn−l
z H (1)

p (kb)

H
(1)
p (kb)

eipθ

]
.

Again, recognizing ψ as a sum of Fourier modes, eipθ , and identifying factors such as (ip)

with operators ∂θ , we write

Tn(f )[ψ] = −bkCn

dn+1
z H

(1)
D (kb)

H
(1)
D (kb)

[ψ] − kf Cn−1
dn

z H
(1)
D (kb)

H
(1)
D (kb)

[ψ]



274 J Sci Comput (2009) 39: 265–292

+
n−1∑

l=0

Cn−1−l

(∂θf )(−1)lf l

bl+1
∂θ

dn−1−l
z H

(1)
D (kb)

H
(1)
D (kb)

[ψ]

−
n−1∑

l=0

Tl(f )

[
Cn−l

dn−l
z H

(1)
D (kb)

H
(1)
D (kb)

[ψ]
]

. (19)

At this point a careful accounting of the computational complexity of this OE algo-
rithm is in order. As a preliminary step, the powers of Cl = klf l/ l! can be computed in
O(lNx log(Nx)) if Nx Fourier coefficients for f are retained. However, an inspection of the
final term in (19) reveals that, given a fixed ψ , the cost of this algorithm grows factorially in
n as Tl must be recomputed on a different argument n-many times at each order. This clearly
compares very unfavorably with the O(n2Nx log(Nx)) cost of the FE algorithm. However,
we show in Appendix that the adjointness properties of T can be used to compute the term
Tn in O(nNx log(Nx)) yielding an overall cost identical to the FE method.

To conclude this section we mention that, in practice, there is rarely a reason to choose
either the FE or OE algorithm over the other. As we showed in [31, 32], the performance of
the algorithms is nearly identical over a wide range of problem configurations. However, it
was discovered in [31, 32] that the ill-conditioning which can hamper these algorithms for
very large and/or very rough deformations is a little stronger for the OE algorithm, and thus
the FE approach may be preferable (though the comparative results we report in Tables 19
and 21 which show no appreciable difference, were representative of the experiments in this
paper). Of course, in the case of very large and/or very rough boundaries a new approach
may be necessary and we refer the interested reader to [32] for several possibilities.

4 Numerical Results

In this section we present the results of some numerical experiments which illustrate the
flexibility and applicability of our new algorithm. Among the wide array of possible compu-
tations we could attempt, we have chosen three which are representative of the capabilities
of our approach: Scattering from a cylinder, scattering from an ellipse, and scattering from
a “star-shaped” obstacle. The first is chosen as we can appeal to an exact solution which
will validate our numerical simulations, the second is a non-trivial generalization of the
first, while the third demonstrates quite effectively how our new approach can enable huge
computational savings with a well-chosen Artificial Boundary.

To give an idea of the performance of the numerical scheme, we have selected, for all of
the simulations given below, two sample frequencies:

k1 = 60π/180 ≈ 1.04719, k2 = 600π/180 ≈ 10.4719.

These are simply two rather low-frequency values of k which avoid any numerical reso-
nances [29]. For convenience of presentation these are listed below as k ≈ 1 and k ≈ 10.

Before beginning we note that the coupling of our Non-Reflecting boundary condition
to this FEM necessitates numerical quadratures to deliver approximate Fourier coefficients
of basis functions to the DtN map T . These quadratures were computed with very high
accuracy and produce negligible errors compared to those incurred by the rest of the scheme.
Finally, for ease of comparison with our previous work [28], we again compute errors in the
L∞ norm which is justified since solutions of elliptic PDE on regular domains result in
smooth solutions.
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4.1 Scattering from a Cylinder

To begin we consider radiation incident upon a perfectly conducting scatterer shaped by a
circle of radius one so that

�c = {r < a}, �c = {r = a}, a = 1,

c.f. Sect. 2. This obstacle can be efficiently enclosed by a transparent boundary of circular
shape with radius b,

B = {r = b}.
With this choice, we recover the DtN-FE method of Feng [10], Han and Wu [16], and Keller
and Givoli [20]. However, in all of these implementations only a piecewise linear FEM
was utilized. For the first time we present numerical results of this DtN-FE method cou-
pled to a high-order hp-FEM. A convenient feature of this particular numerical example is
the existence of an exact solution [8] for this configuration which we utilize in simulations
presented below. The numerical parameters for the circular scatterer simulations are sum-
marized in Table 1 (b = 2) and Table 6 (b = 1.2). As there is no perturbation of the Artificial
Boundary we obtain an exact boundary condition at B with N = 0 terms in the expansion of
the DtN map; furthermore, both the OE and FE algorithms deliver the same expression.

In Tables 2–5 (b = 2) and 7–10 (b = 1.2) we present the results of our numerical simula-
tions as compared to the exact solution. In these, and all future numerical results, Nf is the
number of Fourier coefficients retained in the approximation of ξ (the Dirichlet data) and,
if necessary, f (the boundary perturbation). Additionally, Nel is the number of elements in
the triangulation of the domain, while N� and NB are the number of points on the scat-
terer and Artificial Boundary, respectively. In these tables we notice several things, first, our
new boundary condition never interferes with the performance of the underlying FEM. To

Table 1 Mesh data for the
circular scatterer (a = 1) with a
circular Artificial Boundary
(b = 2). h1 ≈ 0.25 and Nel is the
number of elements in the mesh.
N� and NB represent the
number of points on the scatterer
and Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

CC(1) 1 302 24 46

CC(2) 1/2 1208 48 92

CC(3) 1/4 4832 96 184

CC(4) 1/8 19328 192 368

CC(5) 1/16 77312 384 736

Table 2 Circular scatterer
(a = 1) with a far circular
Artificial Boundary (b = 2) and
scheme order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 12 3.74E−03 32 1.63E+00

1/2 12 1.04E−03 32 8.13E−01

1/4 12 3.00E−04 32 2.01E−01

1/8 12 9.53E−05 32 5.22E−02

1/16 12 3.00E−05 32 1.33E−02

q 1.74 1.78
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Table 3 Circular scatterer
(a = 1) with a far circular
Artificial Boundary (b = 2) and
scheme order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 12 3.64E−04 36 2.72E−01

1/2 12 5.32E−05 36 2.41E−02

1/4 12 7.28E−06 36 2.12E−03

1/8 12 9.68E−07 36 2.13E−04

1/16 14 1.24E−07 36 2.28E−05

q 2.88 3.39

Table 4 Circular scatterer
(a = 1) with a far circular
Artificial Boundary (b = 2) and
scheme order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 16 3.85E−05 36 2.30E−02

1/2 16 2.95E−06 36 1.59E−03

1/4 16 2.46E−07 36 9.84E−05

1/8 16 1.96E−08 38 6.36E−06

1/16 20 1.37E−09 40 4.01E−07

q 3.68 3.96

Table 5 Circular scatterer
(a = 1) with a far circular
Artificial Boundary (b = 2) and
scheme order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 16 3.12E−06 36 3.87E−03

1/2 16 1.38E−07 36 1.33E−04

1/4 18 4.79E−09 38 5.88E−06

1/8 18 1.63E−10 40 1.63E−07

1/16 20 5.29E−12 40 2.50E−08

q 4.81 4.42

Table 6 Mesh data for the
circular scatterer (a = 1) with a
circular Artificial Boundary
(b = 1.2). h1 ≈ 0.25 and Nel is
the number of elements in the
mesh. N� and NB represent the
number of points on the scatterer
and Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

CCC(1) 1 60 28 32

CCC(2) 1/2 240 56 64

CCC(3) 1/4 960 112 128

CCC(4) 1/8 3840 224 256

CCC(5) 1/16 15360 448 512

make this more precise we compute, via a least-squares fit of the logarithm of the data, an
approximation to q in the error relationship

e = Chq.
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Table 7 Circular scatterer
(a = 1) with a near circular
Artificial Boundary (b = 1.2) and
scheme order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 10 5.92E−03 28 4.90E−01

1/2 10 1.75E−03 28 1.47E−01

1/4 12 4.89E−04 30 4.29E−02

1/8 12 1.45E−04 32 1.36E−02

1/16 14 3.84E−05 32 3.88E−03

q 1.81 1.74

Table 8 Circular scatterer
(a = 1) with a near circular
Artificial Boundary (b = 1.2) and
scheme order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 12 5.32E−04 30 1.11E−01

1/2 12 5.40E−05 32 1.11E−02

1/4 14 7.13E−06 34 1.60E−03

1/8 16 9.27E−07 36 1.98E−04

1/16 16 1.39E−07 38 2.97E−05

q 2.97 2.95

Table 9 Circular scatterer
(a = 1) with a near circular
Artificial Boundary (b = 1.2) and
scheme order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 2.92E−05 34 1.35E−02

1/2 16 2.55E−06 36 1.19E−03

1/4 18 1.83E−07 38 8.50E−05

1/8 18 1.35E−08 42 5.18E−06

1/16 20 9.53E−10 44 3.80E−07

q 3.74 3.81

We find that it is always within a small tolerance of the expected value specified by FEM
theory.

The second thing to notice is that, in any of these experiments, with a fixed element
size one can always realize a comparable approximation with far fewer elements (giving
enormous computational savings) by choosing b closer to a (b = 1.2 versus b = 2), see
Fig. 2. While this may, on the surface, seem to be obvious from the outset, it is noteworthy
that the transparent boundary condition is unaffected by the complicated structure of the
solution so near to the scattering surface.

4.2 Scattering from an Ellipse

We now consider a perfectly conducting scatterer shaped by an ellipse

x = a1 cos(θ), y = a2 sin(θ),
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Table 10 Circular scatterer
(a = 1) with a near circular
Artificial Boundary (b = 1.2) and
scheme order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 16 2.13E−06 38 2.40E−03

1/2 18 7.76E−08 40 1.01E−04

1/4 20 2.99E−09 44 3.17E−06

1/8 20 1.03E−10 46 1.04E−07

1/16 22 3.88E−12 50 3.29E−09

q 4.77 4.89

Fig. 2 Computational meshes at refinement level h/h1 = 1/2 (h1 ≈ 0.25) for scattering from a circle with
circular Artificial Boundaries. Left: b = 2. Right: b = 1.2

or, in polar coordinates,

r = a1

√
1 − e2 sin2(θ),

where e =
√

1 − a2
2/a

2
1 is the eccentricity. In this case

�e =
{
r < a1

√
1 − e2 sin2(θ)

}
, �e =

{
r = a1

√
1 − e2 sin2(θ)

}
.

For this scatterer we display two sets of results, one where we enclose it with a circular
Artificial Boundary,

B = {r = b1}
and a second where the ellipse is enclosed by another ellipse,

B =
{
r = b1

√
1 − ē2 sin2(θ)

}
,
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Fig. 3 Computational meshes at refinement level h/h1 = 1/2 (h1 ≈ 0.25) for scattering from an ellipse.
Left: Circular Artificial Boundary. Right: Elliptical Artificial Boundary

and ē =
√

1 − b2
2/b

2
1; see Fig. 3.

The numerical parameters for these experiments are listed in Tables 11 and 16, and we
point out that, in the latter case, an exact boundary condition at the Artificial Boundary, B,
would require an infinite number of terms in the expansion of the DtN map, (12). As we
mentioned before, we approximate this infinite expansion with a truncated Taylor series,
(13), where we have chosen N = 8. An additional consideration in this case is how the
partial sum (13) is to be computed. A strong case has been made in previous literature (see,
e.g., [3, 7, 30, 32]) for using Padé approximation [1] as it not only enhances convergence
within the disk of analyticity of (12), but also allows for the summation of the series outside
this disk. For the remainder of the experiments which require N > 0 (i.e., B non-circular)
we use Padé summation. Finally, in all of the results presented in this section, save the last
(Table 21), we have used the OE recursions. In this final simulation we use the FE formulas
with Padé summation to show that the results are nearly identical (compare Table 19 with
Table 21).

The results for the elliptical scatterer and circular Artificial Boundary are displayed in
Tables 12–15, for polynomial orders p = 1,2,3,4, respectively. Here, as there is no conve-
nient exact solution, we measure the convergence of our solution via the Cauchy error:

∣∣uhn − uhn−1

∣∣
L∞ .

(Note that we cannot compute this quantity for n = 1.) Again, we make a least-squares fit of
the error data to the relationship e = Chq and, again, we see the order of accuracy that one
expects from each polynomial order. Thus we conclude that the inclusion of the DtN map
has no effect on the performance of our underlying FEM.

We remark briefly that measuring the Cauchy convergence of our numerical algorithm
suffices for verification purposes as we have already presented thorough convergence tests
of this method in [28]. Here the algorithm was not only tested (in the piecewise linear case,
p = 1) versus an exact “point-source” solution, but also compared against a highly resolved
DtN-FE solution on a much larger domain. We direct the interested reader to Sect. 4.1 (par-
ticularly Table 1) and Sect. 4.2 of [28] for discussion and complete results.
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Table 11 Mesh data for the
elliptical scatterer with a1 = 1,
a2 = 0.8 and circular Artificial
Boundary b1 = 1.1. h1 ≈ 0.25
and Nel is the number of
elements in the mesh. N� and
NB represent the number of
points on the scatterer and
Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

EC(1) 1 234 52 62

EC(2) 1/2 936 104 124

EC(3) 1/4 3744 208 248

EC(4) 1/8 14976 416 496

EC(5) 1/16 59904 832 992

Table 12 Elliptical scatterer
(a1 = 1, a2 = 0.8) with a circular
Artificial Boundary (b1 = 1.1)
and scheme order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 24 –

1/2 4 5.42E−03 24 2.16E−01

1/4 4 1.68E−03 24 8.10E−02

1/8 4 4.05E−04 24 1.92E−02

1/16 4 1.13E−04 24 6.51E−03

q 1.88 1.72

Table 13 Elliptical scatterer
(a1 = 1, a2 = 0.8) with a circular
Artificial Boundary (b1 = 1.1)
and scheme order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 24 –

1/2 4 3.07E−04 24 4.77E−02

1/4 4 5.05E−05 24 6.25E−03

1/8 4 6.95E−06 24 8.59E−04

1/16 4 9.51E−07 24 1.03E−04

q 2.79 2.94

Table 14 Elliptical scatterer
(a1 = 1, a2 = 0.8) with a circular
Artificial Boundary (b1 = 1.1)
and scheme order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 24 –

1/2 4 1.48E−05 24 1.86E−03

1/4 4 1.38E−06 24 2.36E−04

1/8 4 8.62E−08 24 1.35E−05

1/16 4 6.23E−09 24 9.97E−07

q 3.76 3.67

The results for the elliptical scatterer and elliptical Artificial Boundary are displayed in
Tables 17–20, for polynomial orders p = 1,2,3,4, respectively. Again, the order of accu-
racy that one would expect from each polynomial order is realized, however, we point out
that accuracies quite comparable to the circular Artificial Boundary can be realized with the
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Table 15 Elliptical scatterer
(a1 = 1, a2 = 0.8) with a circular
Artificial Boundary (b1 = 1.1)
and scheme order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 24 –

1/2 4 8.45E−07 24 5.26E−04

1/4 4 4.35E−08 24 1.58E−05

1/8 4 1.57E−09 24 5.54E−07

1/16 4 5.05E−11 24 1.69E−08

q 4.69 4.96

Table 16 Mesh data for the
elliptical scatterer with a1 = 1.0,
a2 = 0.8 and elliptical Artificial
Boundary b1 = 1.1, b2 = 0.9.
h1 ≈ 0.25 and Nel is the number
of elements in the mesh. N� and
NB represent the number of
points on the scatterer and
Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

EE(1) 1 94 43 51

EE(2) 1/2 376 86 102

EE(3) 1/4 1504 172 204

EE(4) 1/8 6016 344 408

EE(5) 1/16 24064 688 816

Table 17 Elliptical scatterer
(a1 = 1, a2 = 0.8) with an
elliptical Artificial Boundary
(b1 = 1.1, b2 = 0.9) and scheme
order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 – 26 –

1/2 14 4.06E−03 26 2.64E−01

1/4 14 1.07E−03 26 8.72E−02

1/8 14 2.98E−04 26 2.47E−02

1/16 14 7.06E−05 26 6.32E−03

q 1.94 1.80

Table 18 Elliptical scatterer
(a1 = 1, a2 = 0.8) with an
elliptical Artificial Boundary
(b1 = 1.1, b2 = 0.9) and scheme
order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 – 26 –

1/2 14 2.90E−04 26 2.75E−02

1/4 14 4.47E−05 26 3.76E−03

1/8 14 6.66E−06 26 4.77E−04

1/16 14 8.55E−07 26 6.13E−05

q 2.80 2.94

elliptical B with the same element size but one half to one third the number of elements (see
Tables 11 and 16). Again, we see the enormous computational savings that can be realized
with our new approach.
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Table 19 Elliptical scatterer
(a1 = 1, a2 = 0.8) with an
elliptical Artificial Boundary
(b1 = 1.1, b2 = 0.9) and scheme
order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 – 26 –

1/2 14 1.47E−05 26 3.28E−03

1/4 14 9.45E−07 26 2.45E−04

1/8 14 6.47E−08 26 1.29E−05

1/16 14 4.72E−09 26 8.56E−07

q 3.87 4.00

Table 20 Elliptical scatterer
(a1 = 1, a2 = 0.8) with an
elliptical Artificial Boundary
(b1 = 1.1, b2 = 0.9) and scheme
order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 – 26 –

1/2 14 1.39E−06 26 2.18E−04

1/4 14 1.85E−07 26 6.29E−06

1/8 14 1.83E−09 26 2.20E−07

1/16 14 2.32E−10 26 7.36E−09

q 4.43 4.94

Table 21 Elliptical scatterer
(a1 = 1, a2 = 0.8) with an
elliptical Artificial Boundary
(b1 = 1.1, b2 = 0.9) and scheme
order p = 3. FE recursions are
used to compute DtN map terms
Tn (c.f. Table 19)

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 14 – 26 –

1/2 14 1.47E−05 26 3.28E−03

1/4 14 9.45E−07 26 2.45E−04

1/8 14 6.47E−08 26 1.29E−05

1/16 14 4.72E−09 26 8.56E−07

q 3.87 4.00

An important point to make regarding these simulations is that since an ellipse is a “sep-
arable” geometry one could implement a DtN map of the form (10) based upon the appro-
priate eigenfunctions for this geometry (in two dimensions the Mathieu functions [15]). Our
new approach presents a significant improvement upon this idea since no additional coding
is required: An ellipse is easily expressed as an analytic perturbation of a circle for which
our DtN map, T (ε), will converge extremely rapidly.

To close, we revisit the experiment presented in Table 19, i.e. scattering from an ellipse
enclosed by an elliptical Artificial Boundary with polynomial order p = 3. However, we
now choose to compute the terms Tn in the DtN map via the FE algorithm. As we can
see from Table 21, the results are identical up to the accuracy of our tables. Indeed, this
has been our general experience and we can advocate the use of either OE or FE for these
low-frequency applications.
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4.3 Scattering from a Star-Shaped Obstacle

We now consider a scatterer shaped by a perturbation of a circle of radius one

�s = {r < a + δ cos(4θ)}, �s = {r = a + δ cos(4θ)}, a = 1, δ = 0.4,

which we term “star-shaped.” In our first set of experiments with this geometry we consider
the DtN-FE method which encloses �s with a circular Artificial Boundary

B = {r = b}

where we have chosen b = 1.5; see Fig. 4(a).
The numerical parameters for these simulations are given in Table 22, and the results

of our experiments are summarized in Tables 23–26, for polynomial orders p = 1,2,3,4,
respectively. We note that the final refinements in Tables 25 and 26 are missing. This is due
to the enormous size of these computations which necessitate the use of an iterative linear
solver. With a desire to exclude the added considerations one must make for the convergence
properties of such a scheme, and since these final data points are very unlikely to change our
overall conclusions, we have omitted them.

Fig. 4 Computational meshes at refinement level h/h1 = 1/2 (h1 ≈ 0.25) for scattering from a star-shaped
obstacle. Left: Circular Artificial Boundary. Right: Star-Shaped Artificial Boundary

Table 22 Mesh data for the
star-shaped scatterer (a = 1,
δ = 0.4) with a circular Artificial
Boundary (b = 1.5). h1 ≈ 0.25
and Nel is the number of
elements in the mesh. N� and
NB represent the number of
points on the scatterer and
Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

SC(1) 1 717 89 88

SC(2) 1/2 2868 178 176

SC(3) 1/4 11472 356 352

SC(4) 1/8 45888 712 704

SC(5) 1/16 183552 1424 1408
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Table 23 Star-shaped scatterer
(a = 1, δ = 0.4) with a circular
Artificial Boundary (b = 1.5) and
scheme order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 32 –

1/2 4 9.57E−03 32 3.47E−01

1/4 4 2.10E−03 32 1.14E−01

1/8 4 5.74E−04 32 2.97E−02

1/16 4 1.44E−04 32 7.30E−03

q 2.00 1.87

Table 24 Star-shaped scatterer
(a = 1, δ = 0.4) with a circular
Artificial Boundary (b = 1.5) and
scheme order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 32 –

1/2 4 5.66E−04 32 2.25E−02

1/4 4 9.59E−05 32 2.86E−03

1/8 4 1.36E−05 32 3.53E−04

1/16 4 1.90E−06 32 4.29E−05

q 2.75 3.01

Table 25 Star-shaped scatterer
(a = 1, δ = 0.4) with a circular
Artificial Boundary (b = 1.5) and
scheme order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 32 –

1/2 4 5.65E−05 32 2.18E−03

1/4 4 4.52E−06 32 1.61E−04

1/8 4 2.32E−07 32 1.01E−05

q 3.96 3.88

Table 26 Star-shaped scatterer
(a = 1, δ = 0.4) with a circular
Artificial Boundary (b = 1.5) and
scheme order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 4 – 32 –

1/2 4 4.44E−06 32 2.26E−04

1/4 4 2.59E−07 32 1.01E−05

1/8 4 7.33E−09 32 2.87E−07

q 4.62 4.81

Next, we consider our new method with an Artificial Boundary shaped to mimic that of
the scatterer, i.e.

B = {r < b + δb cos(4θ)}, b = 1.2, δb = 0.3;
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Table 27 Mesh data for the
star-shaped scatterer (a = 1,
δ = 0.4) with a star-shaped
Artificial Boundary (a = 1.2,
δb = 0.3). h1 ≈ 0.25 and Nel is
the number of elements in the
mesh. N� and NB represent the
number of points on the scatterer
and Artificial Boundaries,
respectively

Experiment h/h1 Nel N� NB

SS(1) 1 189 78 75

SS(2) 1/2 756 156 150

SS(3) 1/4 3024 312 300

SS(4) 1/8 12096 624 600

SS(5) 1/16 48384 1248 1200

Table 28 Star-shaped scatterer
(a = 1, δ = 0.4) with a
star-shaped Artificial Boundary
(b = 1.2, δb = 0.3) and scheme
order p = 1

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 60 – 84 –

1/2 60 1.12E−02 84 4.18E−01

1/4 60 3.27E−03 84 1.10E−01

1/8 60 8.82E−04 84 3.19E−02

1/16 60 2.31E−04 84 8.09E−03

q 1.87 1.89

Table 29 Star-shaped scatterer
(a = 1, δ = 0.4) with a
star-shaped Artificial Boundary
(b = 1.2, δb = 0.3) and scheme
order p = 2

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 60 – 84 –

1/2 60 1.74E−03 84 3.37E−02

1/4 60 2.64E−04 84 4.55E−03

1/8 60 4.22E−05 84 5.40E−04

1/16 60 4.86E−06 84 7.23E−05

q 2.81 2.97

see Fig. 4(b). For this geometry, the numerical parameters are given in Table 27. As in
the case of the elliptical Artificial Boundary in Sect. 4.2, we must use the approximation
(13) of the full DtN map to enforce our boundary condition. For this we use N = 8, Padé
summation, and the OE algorithm. The results with this star-shaped Artificial Boundary are
summarized in Tables 28–31, for polynomial orders p = 1,2,3,4, respectively. We again
notice the negligible impact that our Enhanced DtN-FE algorithm has on the convergence of
the underlying FEM. An inspection of Tables 23–26 and Tables 28–31 once again indicates
that the transparent boundary condition has no affect on the rate of convergence of the FEM,
for any polynomial order.

4.4 Computational Savings

To conclude this section on numerical results, we would like to point out, quite explicitly,
the enormous computational savings that can be realized by our methods. As with other im-
plementations of the DtN-FE method, the total cost of a simulation is broken up into two
parts: matrix assembly and the linear solve. The size of the relevant system is O(Nel) with a
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Table 30 Star-shaped scatterer
(a = 1, δ = 0.4) with a
star-shaped Artificial Boundary
(b = 1.2, δb = 0.3) and scheme
order p = 3

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 60 – 84 –

1/2 60 1.81E−04 84 3.58E−03

1/4 60 1.36E−05 84 2.30E−04

1/8 60 8.66E−07 84 1.64E−05

1/16 60 5.54E−08 84 8.98E−07

q 3.90 3.97

Table 31 Star-shaped scatterer
(a = 1, δ = 0.4) with a
star-shaped Artificial Boundary
(b = 1.2, δb = 0.3) and scheme
order p = 4

h/h1 k ≈ 1 k ≈ 10

Nf L∞-error Nf L∞-error

1 60 – 88 –

1/2 60 2.19E−05 88 4.11E−04

1/4 60 1.21E−06 88 1.94E−05

1/8 60 3.50E−08 88 6.57E−07

1/16 60 1.18E−09 88 2.05E−08

q 4.77 4.78

dense sub-block of size O(NB). For the classical DtN-FE method, the sub-block can be as-
sembled in time O(NBNf log(Nf )), while our new algorithm requires O(NBNf log(Nf )N)

where N ≈ 8. While this may appear to be a substantial increase in computational effort we
note two things: first of all, this is a preprocessing step and only needs to be completed once
if multiple simulations are desired and/or an iterative method is used. Second, it is typically
the case that NB/Nel is in the range 1/50 to 1/100 so that even an eight-fold increase in
the cost of the assembly of this sub-block will be negligible when compared to the total
assembly cost.

More importantly to the total cost of the algorithm, once the matrix has been formed the
cost of a direct linear solve (which we were able to use for all of the computations presented
above) is O(N3

el), which, for large Nel , will dominate the computational complexity. To
quantify the savings that our new method enables, we consider the best error realized (for
the case k ≈ 10) by the classical DtN-FE method for scattering by the star-shaped obstacle.
This best error is 2.87 × 10−7, see Table 26, with p = 4 and h/h1 = 1/8 implying, from
Table 22, that Nel = 45,888 and NB = 704. By contrast, with our new Enhanced DtN-FE
method (where the star-shaped scatterer is enclosed by a star-shaped Artificial Boundary)
we can realize a comparable error of 6.57 × 10−7, see Table 31, with p = 4 and h/h1 = 1/8
which, from Table 27, used Nel = 12,096 and NB = 600. While the number of boundary
points remains roughly constant, indicating an eight-fold increase in assembly time for the
dense sub-block (but not the entire matrix), the number of elements can be reduced by a
factor of 45,888/12,096 ≈ 3.79 which indicates a speed-up in the linear solve by a factor of
3.793 ≈ 54.44. We find this to be particularly compelling evidence for the utility of our new
approach.

Remark 4.1 At this point one can ask what, if any, limitations there are to our approach.
A careful inspection of our formulation, (9), reveals that the only true difficulty lies with the
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computation of the DtN map, T (B). In this paper we have outlined a Boundary Perturbation
(BP) approach to simulating the DtN map which has its shortcomings (given subsequently),
however, this is not the only avenue that one may pursue and another method (e.g., one based
upon Integral Equations) may yield much better results. Regarding our BP methodology,
the first restriction is that the transparent boundary be expressible as r = b + g(θ), i.e. the
graph of a function in the θ variable. As we have seen, this does not mandate that the
truncated domain, �, be convex, however, it does impose some restrictions. Additionally,
the analyticity theorem for the DtN map [28] states that the boundary perturbation, f , be
sufficiently smooth, and that the perturbation size, ε, be sufficiently small. In theory this not
very restrictive: f Lipschitz can be accommodated [18] and ε can be any real number (up
to physical obstruction, e.g. ε < b in this configuration). However, in practice, to realize a
well-resolved solution for a large and/or irregular obstacle, one is typically forced to choose
a large number N of terms in the Taylor series expansion of the DtN map. In this paper we
have striven to choose boundaries which give rise to numerical simulations where N may
be chosen fairly small (N = 8). However, if one is willing to utilize 20, 30, or more terms
then much more irregular artificial boundaries can be used.

5 Conclusions

In this paper we have demonstrated not only how the DtN-FE method can be correctly
combined with a high-order hp-FEM to yield numerical results which do not degrade the
performance of the underlying FEM, but also how the fundamental Artificial Boundary
shape requirement can be relaxed to allow for quite general shapes. This “Enhanced DtN-FE
Method” has been shown to be quite robust and flexible, and, with a suitably chosen Artifi-
cial Boundary, can deliver accurate answers with one half to one quarter the number of finite
elements required by the DtN-FE method.

Acknowledgements DPN gratefully acknowledges support from the NSF through grant No. DMS-
0537511.

Appendix: Adjointness of the Dirichlet-to-Neumann Map

In this appendix we describe the adjointness properties of the DtN map, T , which enable its
rapid evaluation in the “Operator Expansions” (OE) methodology (see Sect. 3.2). To begin,
let us study the adjointness of Fourier multipliers with the following Lemma.

Lemma A.1 If the Fourier multiplier m(D) has symbol m(p) then its adjoint n(D) :=
m∗(D) has symbol n(p) = m(p).

Proof We begin by recalling that the L2-inner product for complex-valued, 2π -periodic
functions ξ and ψ satisfies

〈ξ,ψ〉 =
∫ 2π

0
ξ(θ)ψ(θ) dθ =

∫ 2π

0

( ∞∑

p=−∞
ξ̂peipθ

)( ∞∑

p=−∞
ψ̂peipθ

)
dθ

=
∞∑

p=−∞

∞∑

q=−∞
ξ̂pψ̂q

∫ 2π

0
ei(p−q)θ dθ = 2π

∞∑

p=−∞
ξ̂pψ̂p.
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With this calculation in mind we can now compute:

〈m(D)ξ,ψ〉 = 2π

∞∑

p=−∞
m(p)ξ̂p ψ̂p = 2π

∞∑

p=−∞
ξ̂p m(p)ψ̂p

= 2π

∞∑

p=−∞
ξ̂p n(p)ψ̂p = 〈ξ, n(D)ψ〉 ,

so that m∗ = n where n(p) = m(p).
With Lemma A.1 in mind it is easy to show that, for the DtN map in the simple case of

zero boundary perturbation, i.e.

T0[ψ] = −kb
dzH

(1)
D (kb)

H
(1)
D (kb)

[ψ],

c.f. (10), the adjoint is

T ∗
0 = −kb

dzH
(1)
D (kb)

H
(1)
D (kb)

= −kb
dzH

(2)
D (kb)

H
(2)
D (kb)

=: S0.

Of course, S∗
0 = T0 as well, a fact that we will use later.

The goal of this section is to find a rapid OE formula for the evaluation of the DtN
map. In the case of solving Laplace’s equation (k = 0 in (2)) one can take advantage of the
fact that the DtN map is self-adjoint to take the adjoint of (19) and reverse the order of the
operators. At first this would not appear to accelerate the procedure, but a careful inspection
of (19) reveals that if the operator Tl were applied to the same function ψ at every order
(rather than different ones) then these could be saved from one order to the next, resulting
in an algorithm with the same computational complexity as the FE algorithm.

Of course S0 
= T0 for k 
= 0 so this idea will not work directly for the DtN map asso-
ciated to the Helmholtz equation. However, a modification of this idea will produce a fast
algorithm. If S is the adjoint of T then, of course, T is the adjoint of S. If we can find an
algorithm analogous to (19) for S, then we could take the adjoint of Sn (reversing the order
of the operators) to find a fast algorithm for Tn. With this in mind we now have three tasks:
Find the problem for S, find the OE method for S, and conjugate this OE method.

For the first let us consider (7) and (8) and identify the adjoint of T . To begin, define
another transparent boundary at r = c which is exterior to B. Following the development of
Sect. 2.1 it is easy to see that (7) can be equivalently stated as

�w + k2w = 0 in AB,c := Ext(B) ∩ {r < c} (20a)

w = ψ at B (20b)

∂rw − Jw = 0 at r = c, (20c)

where

J := ck
dzH

(1)
D (kc)

H
(1)
D (kc)

.
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Note the opposite sign of J as compared to T since the outward direction is now the positive
radial direction. We propose the “adjoint problem”

�u + k2u = 0 in AB,c (21a)

u = η at B (21b)

∂ru − Ku = 0 at r = c, (21c)

where K is to be determined, which defines the “adjoint” of the DtN map, T ,

S[η] := ∇u|B · N. (22)

We will now make the notion of (21)–(22) as adjoint of (7)–(8) more precise. We begin with
the calculation

〈T [ψ], η〉 =
∫ 2π

0
T [ψ]η dθ =

∫ 2π

0
(∂nw) |N |u dθ =

∫

B
(∂nw)u ds,

where n is the unit normal. It is here that we see how the particular choice of normal, N , is
crucial to our adjointness arguments. Continuing via the divergence theorem (applied to the
bounded domain AB,c):

〈T [ψ], η〉 =
∫

A B,c

div [∇wu] dV −
∫

r=c

(∂rw)u ds

=
∫

A B,c

�wu dV +
∫

A B,c

∇w · ∇u dV −
∫

r=c

(∂rw)u ds

=
∫

A B,c

−k2wu dV +
∫

A B,c

div
[
w∇u

]
dV

−
∫

A B,c

w�u dV −
∫

r=c

(∂rw)u ds,

where we have used the fact that w satisfies the Helmholtz equation. Using the reality of k,
the fact that u satisfies the Helmholtz equation, and, again, the divergence theorem:

〈T [ψ], η〉 =
∫

A B,c

−k2wu dV +
∫

B
w∂nu ds +

∫

r=c

w∂ru dV

−
∫

A B,c

w(−k2)u dV −
∫

r=c

(∂rw)u ds.

The first and fourth term cancel leaving:

〈T [ψ], η〉 = 〈ψ,S[η]〉 + 〈w|r=c ,K[u|r=c]〉 − 〈J [w|r=c], u|r=c〉 .

Clearly, S is the adjoint of T provided that K is the adjoint of J which implies

K := ck
dzH

(2)
D (kc)

H
(2)
D (kc)

,

from Lemma A.1.
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Following the development of Sect. 3.2 it is easy to find OE recursions for the adjoint
operator S. We begin with

up(r, θ) = H(2)
p (kr)eipθ ,

which satisfies the Helmholtz equation and the condition at r = c, and insert this into the
definition of S yielding

S(εf )
[
H(2)

p (k(b + εf ))eipθ
] = −(b + εf )∂r

(
H(2)

p (kr)eipθ
)∣∣

r=b+εf

+ ε∂θf

b + εf
∂θ

(
H(2)

p (kr)eipθ
)∣∣

r=b+εf
.

For the expansion S(εf ) = ∑∞
n=0 Sn(f )εn, we have

S0[η] = −bk
dzH

(2)
D (kb)

H
(2)
D (kb)

[η], (23)

and, using ∂∗
θ = −∂θ ,

Sn(f )[η] = −bkCn

dn+1
z H

(2)
D (kb)

H
(2)
D (kb)

[η] − kf Cn−1
dn

z H
(2)
D (kb)

H
(2)
D (kb)

[η]

+
n−1∑

l=0

Cn−1−l

(∂θf )(−1)lf l

bl+1
∂θ

dn−1−l
z H

(2)
D (kb)

H
(2)
D (kb)

[η]

−
n−1∑

l=0

Sl(f )

[
Cn−l

dn−l
z H

(2)
D (kb)

H
(2)
D (kb)

[η]
]

. (24)

Defining

Mn(D) := dn
z H

(2)
D (kb)

H
(2)
D (kb)

,

and taking the adjoint, we find

S∗
0 [η] = −bk

dzH
(1)
D (kb)

H
(1)
D (kb)

[η] = T0[η], (25)

and

S∗
n(f )[η] = −bkM∗

n+1[Cnη] − kM∗
n [f Cn−1η]

−
n−1∑

l=0

M∗
n−1−l∂θ

[
Cn−1−l

(∂θf )(−1)lf l

bl+1
η

]

−
n−1∑

l=0

M∗
n−l

[
Cn−lS

∗
l (f )[η]] .
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Since S∗
n = Tn and

M∗
n = dn

z H
(1)
D (kb)

H
(1)
D (kb)

,

this provides a rapid formula for the computation of the Tn:

Tn(f )[ψ] = −bk
dn+1

z H
(1)
D (kb)

H
(1)
D (kb)

[Cnψ] − k
dn

z H
(1)
D (kb)

H
(1)
D (kb)

[f Cn−1ψ]

−
n−1∑

l=0

dn−1−l
z H

(1)
D (kb)

H
(1)
D (kb)

∂θ

[
Cn−1−l

(∂θf )(−1)lf l

bl+1
ψ

]

−
n−1∑

l=0

dn−l
z H

(1)
D (kb)

H
(1)
D (kb)

[
Cn−lTl(f )[ψ]] ,

as the operators Tl are now applied solely to the function ψ and may be stored at every
order. �
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