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Abstract In this work we analyze the convergence of the high-order Enhanced
DtN-FEM algorithm, described in our previous work (Nicholls and Nigam,
J. Comput. Phys. 194:278–303, 2004), for solving exterior acoustic scattering
problems in R2. This algorithm consists of using an exact Dirichlet-to-Neumann
(DtN) map on a hypersurface enclosing the scatterer, where the hypersurface
is a perturbation of a circle, and, in practice, the perturbation can be very large.
Our theoretical work had shown the DtN map was analytic as a function of this
perturbation. In the present work, we carefully analyze the error introduced by
virtue of using this algorithm. Specifically, we give a full account of the error
introduced by truncating the DtN map at a finite order in the perturbation
expansion, and study the well-posedness of the associated formulation. During
computation, the Fourier series of the Dirichlet data on the artificial boundary
must be truncated. To deal with the ensuing loss of uniqueness of solutions,
we propose a modified DtN map, and prove well-posedness of the resulting
problem. We quantify the spectral error introduced due to this truncation of
the data. The key tools in the analysis include a new theorem on the analyticity
of the DtN map in a suitable Sobolev space, and another on the perturbation
of non-self-adjoint Fredholm operators.
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1 Introduction

The propagation of acoustic and electromagnetic waves arises in a wide variety
of applications, for example non-destructive testing, spectroscopy, remote sens-
ing, and radar imaging. In such settings, robust and high-accuracy numerical
approximation is an invaluable tool for design and simulation. A fundamental
aspect of many of these problems is that they are most naturally stated on an
unbounded domain, and conditions at spatial infinity must be imposed to specify
a unique solution [14]. Such domains and conditions pose severe challenges for
numerical simulations. For computational strategies involving volumetric dis-
cretizations the domain needs to be truncated to one of finite extent before
numerical simulation. Typically, finite elements are used to discretize the region
between the scatterer and an artificial boundary, and the question arises as to
what boundary conditions to prescribe at this artificial boundary. Clearly, to
have any hope of stating a well-posed problem, the solution on the exterior of
this boundary must be resolved to some extent. This can be achieved by several
means: Boundary element methods, infinite elements, absorbing boundary con-
ditions, or, as we advocate, transparent boundary conditions. An ideal condition
on this artificial surface will not only preserve the well-posedness of the original
problem, but will also be highly accurate and computationally efficient. In this
paper we present the rigorous error analysis of such a method, the “Enhanced
DtN-FE” method, which we proposed in [43]. The technique involves con-
structing efficient and exact boundary conditions in the frequency domain (i.e.,
for time-harmonic incident radiation). We note that our present analysis is
performed for the two-dimensional case, however, most of the mathematical
techniques can be extended to the three-dimensional situation (provided that
the artificial boundary is slightly smoother, see Sect. 3).

If the artificial boundary is denoted B, an exact (Neumann) boundary con-
dition on it can be specified via the Dirichlet-to-Neumann (DtN) map (see
Sect. 2 for more details). This is a map between the Dirichlet data on a given
surface to Neumann data, and is thus a natural candidate for a suitable bound-
ary condition. The map is well-studied, and is also referred to as the Dirich-
let–Neumann operator or the Stekhlov–Poincaré map. Such maps are defined
for quite general B, are non-local in nature, and lead to well-posed problems.
They can be coupled to different volumetric discretizations, including finite
difference and finite volume methods. The numerical implementation of these
maps presents an interesting algorithmic challenge, most notably in trying to
simultaneously achieve accuracy and efficiency of implementation. The explicit
form of the fundamental solution of the governing equations (the Helmholtz
equation) suggests a boundary integral approach and several have been imple-
mented [36,39,21,18,33]. We point out the recent developments of Bruno and
Kunyansky [10,11], and Ganesh and Graham [24] which have dealt with many of
the restrictions of these methods in three dimensions, particularly the treatment
of singular kernels and the lack of high-order quadrature rules.

On the other hand, if the surface B is such that its infinite complement is
separable (e.g., if B is circular or elliptical) then the DtN map can be computed
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explicitly using separation of variables [22,34,41]. This observation leads to the
DtN-FE method of Feng and Yu [22,50–53,49,54,38] (where it was called the
Natural Boundary Element-Finite Element (NBE-FE) or Natural Boundary
Reduction-Finite Element (NBR-FE) method), Han and Wu [34], Keller and
Givoli [41,27,28,26], and Keller and Grote [31] (please see [47] for a brief his-
tory of the DtN-FE method). However, this approach is limited in two ways:
The requirement that the artificial boundary be of a quite simple shape, and the
non-local nature of the DtN map. The latter shortcoming results in dense sub-
matrices being introduced into otherwise sparse linear systems. This concern
has been examined by several authors [19,6] (see also [26]), and many local
approximate boundary conditions have been devised, including the perfectly
matched layer [8,1,7]. Of course, as local approximations of global operators,
these boundary conditions have limitations, not the least of which result in
questions regarding their stability. The DtN-FE method, which makes no such
approximation avoids any spurious reflections which may arise from an artificial
boundary.

In a recent paper [43] we addressed the difficulty associated with the very
specific shape required of B. We described an algorithm for two-dimensional
time-harmonic scattering which permits quite general artificial boundaries of
the form

B = {r = a + δf (θ) | 0 ≤ θ < 2π},

which still utilize the exact DtN map. Considering the form of B given above,
a perturbative approach to evaluating the DtN map seems natural and is quite
powerful. The authors showed that not only is the DtN map analytic in the
parameter δ (if f is sufficiently smooth), but it can also be analytically con-
tinued to any real value of the parameter δ up to physical obstruction [43].
A numerical implementation of this “Enhanced DtN-FE” method validated
this theoretical work by preserving the order of convergence of the underly-
ing piecewise linear FE method. In addition, we demonstrated that numerical
analytic continuation (via Padé approximation) permitted the use of artificial
boundaries which were large departures from a circle.

The objective of the current paper is to give a rigorous numerical analy-
sis of this method in the spirit of Harari and Hughes [35] and Demkowicz and
Ihlenburg [17] for the original DtN-FE method. We consider the effects of trun-
cating the perturbative approximation of the DtN map, and rigorously prove
well-posedness and convergence of the resulting formulations. We then exam-
ine the effect of truncating the Fourier series of the Dirichlet data on B. This
will clearly lead to stability problems. To alleviate these problems, we modify
our DtN map in a manner analogous to that described in [31]. The resulting
formulation is well-posed, as we shall show. Moreover, the modified DtN map
is exact for the untruncated modes, and we can precisely describe the error
introduced by the truncation procedure.

The organization of the paper is as follows: In Sect. 2 we review the governing
equations of bounded-obstacle scattering and show how the DtN map can be
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used to specify transparent boundary conditions at a general artificial boundary
B. In Sect. 3 we recall known analyticity properties of DtN maps, and in Sect. 3.1
we give a new theorem on analyticity of these maps for Dirichlet data in the
weak Sobolev class H1/2. This result is necessary to establish the well-posedness
of the variational formulations of Sect. 4; these results are proven in Sect. 5 for
the full problem (using an elementary argument), and in Sect. 6 for the prob-
lem where the Taylor series of the DtN map is truncated after a finite number
of terms. In Sect. 7 we introduce a modified DtN map suitable for use when
the Fourier series of the boundary data is truncated. We prove the variational
formulation involving this new DtN map is well-posed, and perform an error
analysis. We make some concluding remarks in Sect. 8.

2 Governing equations

As we mentioned in the Introduction, the topic of this paper is the scattering of
time-harmonic acoustic (or electromagnetic) radiation by a bounded obstacle.
It is well-known that in two-dimensional problems the incident, scattered, and
total acoustic (electromagnetic) fields all satisfy the Helmholtz equation [14].
Given the time-harmonic incident field

ṽi(x) = e−iωtvi(x),

the scattered field will also be time-harmonic, and we are interested in determin-
ing the (reduced) scattered field, v = vs. The physics of the obstacle, �, deter-
mines a condition on v at the boundary of the scatterer, � := ∂�, which need
only be Lipschitz. We select a sound-hard (perfectly conducting in TM polari-
zation in electromagnetics) obstacle for definiteness. However, other boundary
conditions can be accommodated in a straightforward manner. Finally, to spec-
ify a unique solution we impose the Sommerfeld radiation condition which
requires that scattered waves be outgoing. Together, these equations are

�v + k2v = 0, x ∈ R2 \ �̄ (1a)

∂nv = g, x ∈ � (1b)

lim
r→∞

√
r (∂rv − ikv) = 0, (1c)

where g := −∂nvi at �, and we use the standard notation for the Laplacian:

� := ∂2
r + 1

r
∂r + 1

r2 ∂
2
θ .

In addition, k2 = (2π/λ)2, λ is the wavelength of radiation, and n is the unit
normal pointing exterior to �.

Clearly, the problem (1) is not suitable for discretization by finite elements
until the infinite computational domain is truncated. For this we introduce an
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Fig. 1 � is the obstacle, B is the enclosing artificial boundary, and 
 is the “annulus” between
them

artificial boundary B properly enclosing �̄, and discretize the annular domain,

, between them, see Fig. 1. This introduces a natural domain decomposition
which leads to a system of equations which are coupled across B and are equiv-
alent to (1):

�u + k2u = 0, x ∈ 
 (2a)

∂nu = g x ∈ � (2b)

∂Nu = ∂Nw x ∈ B (2c)

u = w x ∈ B (2d)

�w + k2w = 0, x ∈ Ext(B) (2e)

lim
r→∞

√
r (∂rw − ikw) = 0, (2f)

where N is a normal vector to B directed towards � (see [43] for a particu-
lar choice and its importance). Gathering (2d)–(2f), we note that the resulting
problem

�w + k2w = 0, x ∈ Ext(B) (3a)

w = u x ∈ B (3b)

lim
r→∞

√
r (∂rw − ikw) = 0, (3c)
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is, given the trace of u on B, uniquely solvable. From this unique solution we
can produce Neumann data,

ν := ∇w|B · N,

and this procedure of producing Neumann data from Dirichlet data is known as
the Dirichlet-to-Neumann (DtN) map (or, alternatively, the Dirichlet–
Neumann operator or Steklov–Poincaré map). We introduce the notation

G(B)[u] := ∇w|B · N,

and note that G maps the Sobolev class Hs+1(B) to Hs(B), for any s ≥ 0 (see,
e.g., [44]). With this notation, (2a)–(2c) can be written as

�u + k2u = 0, x ∈ 
, (4a)

∂nu = g x ∈ �, (4b)

∂Nu = G(B)[u] x ∈ B, (4c)

which is completely equivalent to (1). The right-hand side of (4c) is meant to
be understood as the DtN map applied to the trace of u at the boundary.

For future reference we note that for scattering problems (unlike problems
from potential theory), the DtN map is not self-adjoint. This fact has real
consequences for the current study as it prevents us from using the classical
perturbation theory for self-adjoint operators on Banach spaces [40]. To realize
this property consider a general Fourier multiplier, m(D), defined by

m(D)[ξ ] :=
∞∑

p=−∞
m(p)ξ̂peipθ ,

where ξ̂p is the pth Fourier coefficient of ξ . The natural inner product for 2π -
periodic functions ξ and ψ is

(ξ ,ψ) =
2π∫

0

ξ(θ)ψ̄(θ) dθ ,

=
2π∫

0

∞∑

p=−∞
ξ̂peipθ

∞∑

q=−∞
¯̂
ψqe−iqθ dθ ,

= 2π
∞∑

p=−∞
ξ̂p

¯̂
ψp.
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We now compute

(m(D)[ξ ],ψ) = 2π
∞∑

p =−∞
m(p)ξ̂p

¯̂
ψp,

(ξ , m(D)[ψ]) = 2π
∞∑

p =−∞
m(p)ξ̂p

¯̂
ψp,

which clearly indicates that m(D) is self-adjoint only if m(p) is real-valued for
all integer p. We recall from [43] that the DtN map for scattering on a circular
boundary B = {r = a} is specified by the Fourier multiplier

m(p) = −k
dzH(1)

p (ka)

H(1)
p (ka)

, (5)

where H(1)
p is the pth Hankel function of the first kind, and dz denotes differen-

tiation with respect to the argument of the Hankel function. This is clearly not
real-valued and thus the DtN map is not self-adjoint even in this simple case.

The DtN map G incorporates information about the outgoing nature of the
solution w. If this map can be accurately computed, solving problem (4) pro-
vides the solution of the original problem (1) in the near field, in the sense that
v and u agree on 
. Therefore, we can simply solve (4) for u. If required, we
can then use the traces of u and its normal derivative ∂nu to compute v in the
unbounded complement of B, using a representation formula,

v(x) =
∫

B
u(y)(∂n(y)�(x, y))−�(x, y)(∂n(y)u(y))dy,

for x ∈ Ext(B). Here,

�(x, y) := i
4

H(1)
0 (k |x − y|)

is the fundamental solution for the Helmholtz equation.

3 Dirichlet-to-Neumann maps

As with all DtN-FE methods, the finite element approximation of solutions of
(4) is standard save the treatment of the non-local pseudodifferential operator,
G, appearing in (4c). In our paper [43], we showed how this operator could
be computed for quite general B (deformations of a circle) using a Boundary
Perturbation method. With this freedom one may fit the artificial boundary
much more closely to the scatterer than if B is required to be a circle (cf.
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[34,41,31,32]). The benefits of this are not only a smaller computational domain,
but also better uniqueness and stability properties (see [35]).

The Boundary Perturbation approach that we advocate for the computation
of the DtN map requires rigorous justification not only to give us confidence
that our method will converge rapidly, but also to permit the numerical analysis
which we provide in the ensuing sections. Such theories have been provided
by several authors beginning with the work of Coifman and Meyer [13], based
upon the results of Calderón [12], which state that, in a Cartesian geometry,
the DtN map for a two-dimensional domain is analytic with respect to bound-
ary deformations provided that the deformation is Lipschitz continuous. This
result was extended by Craig et al. [16] and Craig and Nicholls [15] for three
and general m dimensions, respectively, provided that the deformation is C1.
Using a completely different, and much more direct, technique Nicholls and
Reitich showed that, in m dimensions, the DtN map is analytic as a function of
boundary deformation provided that the profile is C3/2+α for any α > 0 [44],
and jointly analytic in both parametric and spatial variables provided that the
deformation itself is analytic [46]. While the results in [44] were not optimal in
terms of boundary smoothness, they did point the way to a new, stable, high-
order numerical scheme for the computation of DtN maps [45]. Subsequently,
Hu and Nicholls have shown how these Nicholls–Reitich recursions can be used
to realize analyticity within the class of Lipschitz perturbations [37], essentially
recovering the original result of Coifman and Meyer.

All of this work was conducted for geometries most conveniently expressed
in Cartesian coordinates. Moreover, since the wavenumber in these cases was
k = 0, difficulties involving eigenvalues or exceptional values were not an issue.
One component of our recent work [43] was to show that this analysis could be
extended to the case of polar coordinates and k > 0. In fact, we showed that if
G0 denotes the DtN map on a circle, and if

B := {(r, θ) | r = a + δf (θ)},

then G is an analytic perturbation of G0. More precisely,

Theorem 1 (Nicholls and Nigam [43]) Given an integer s ≥ 0, if f∈Cs+2([0, 2π ])
and ξ ∈ Hs+3/2([0, 2π ]) then the series

G(δf )[ξ ] =
∞∑

n=0

Gn(f )[ξ ] δn (6)

converges strongly as an operator from Hs+3/2([0, 2π ]) to Hs+1/2([0, 2π ]). In
other words there exist constants K̃1 and C, depending on the smoothness s, such
that

‖Gn(f )[ξ ]‖Hs+1/2 ≤ K̃1 ‖ξ‖Hs+3/2 B̃n

for any B̃ > C |f |Cs+2 .
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The main goal of this paper is to rigorously analyze the error introduced in the
Enhanced DtN-FE method by approximating the DtN map with a truncation
of the expansion (6) to a finite number of terms N, i.e.,

G(δf )[ξ ] ≈ GN(δf )[ξ ] :=
N∑

n=0

Gn(f )[ξ ] δn. (7)

We accomplish this by establishing the well-posedness of the weak formula-
tions of not only (4), but also (4) with G replaced by GN . Clearly, the correct
functional setting for this problem, particularly if the scatterer is only Lipschitz
continuous, is to seek solutions u in H1(
). This results in Dirichlet traces which
sit in the Sobolev space H1/2(B) and therefore the estimates given by Theo-
rem 1 are insufficient. However, a modification of the proof given in [43], which
we elucidate in the next subsection, allows us to prove the following theorem
which can be utilized.

Theorem 2 Given an integer s ≥ 0, if f ∈ Hs+5([0, 2π ]) and ξ ∈ Hs+1/2([0, 2π ])
then the series (6) converges strongly as an operator from Hs+1/2([0, 2π ]) to
Hs−1/2([0, 2π ]). In other words there exist constants C and K1 (depending on s)
such that

‖Gn(f )[ξ ]‖Hs−1/2 ≤ K1 ‖ξ‖Hs+1/2 Bn

for any B > C ‖f‖Hs+5 .

3.1 Analyticity of the DtN map for weak Dirichlet data

In this subsection we show how the analyticity proof for DtN maps given in [43]
can be extended to include quite rough Dirichlet data in the class Hs([0, 2π ]),
s ≥ 1/2. We note that the boundedness of the DtN map has been previously
established in such weak spaces, see e.g., [4,5]. The cost of this extension is
a stricter smoothness requirement on the boundary perturbation f (we will
require f ∈ H5 rather than f ∈ Lip when ξ ∈ H1([0, 2π ]), [13]). In fact, the
difference between the proof presented in [43] and the abridged one given
here is that the “algebra estimates” [44] of Lemma 3 are replaced by those of
Lemma 4 [23].

Lemma 3 For any integer s ≥ 0, any ε > 0, and any set U ⊂ Rm, if f , u, g,µ :
U → C, f ∈ Cs(U), u ∈ Hs(U), g ∈ Cs+1/2+ε(U), µ ∈ Hs+1/2(U), then

‖fu‖Hs ≤ M̃(m, s, U) |f |Cs ‖u‖Hs ,

‖gµ‖Hs+1/2 ≤ M̃(m, s, U) |g|Cs+1/2+ε ‖µ‖Hs+1/2 ,

for some constant M̃.
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Lemma 4 For any s ∈ R and any set U ⊂ Rm, ifϕ,ψ : U → C, ϕ ∈ H|s|+m+2(U),
and ψ ∈ Hs(U), then

‖ϕψ‖Hs ≤ M(m, s, U) ‖ϕ‖H|s|+m+2 ‖ψ‖Hs , (8)

for some constant M.

Remark 5 In fact, the result found in [23] (Proposition 6.16) states that, for any
s ∈ R,

‖ϕψ‖Hs ≤ |ϕ|L∞ ‖ψ‖Hs + C(m, s, U) ‖ϕ‖H|s|+m+2 ‖ψ‖Hs−1 . (9)

By Sobolev embedding results [2,25], if ϕ ∈ Ht and t > m/2 then ϕ ∈ L∞. In
this way (9) implies (8).

Recall that we have now specialized to the case of artificial boundaries of the
form

B = {(r, θ) | r = a + δf (θ)},

and that the Helmholtz problem which defines the DtN map, G[ξ ], is

�w + k2w = 0, r > a + δf

w(a + δf (θ), θ) = ξ(θ)

lim
r→∞

√
r (∂rw − ikw) = 0.

To simplify the analysis, in [43] we introduced a second, exterior artificial bound-
ary at r = b (b > a + δ |f |L∞), and a second transparent boundary condition via
the (DtN) operator T

T(b)[µ] := T(b)

⎡

⎣
∞∑

p=−∞
µ̂peipθ

⎤

⎦ =
∞∑

p=−∞
k

dzH(1)
p (kb)

H(1)
p (kb)

µ̂peipθ ,

cf. (5), with the orientation of the normal reversed. In the same way that we
restated (1) as (4), we can equivalently pose (3) as

�w + k2w = 0, in Aa+δf ,b (10a)

w(a + δf (θ), θ) = ξ(θ) (10b)

∂rw = Tw at r = b, (10c)

where Aa+δf ,b := {(r, θ) | a + δf (θ) < r < b}.
The Transformed Field Expansions (TFE) method [44–46] has proven quite

successful in establishing analyticity properties for boundary value and free
boundary problems, and we shall use it again in this setting. This TFE method



Error analysis of an enhanced DtN-FE method

proceeds by effecting a “domain flattening” change of variables which, in this
geometry, is

r′ = (a − b)r + δbf (θ)
a − b + δf (θ)

, θ ′ = θ . (11)

Notice that this transformation maps the perturbed annulus Aa+δf ,b to the
annulus Aa,b. Defining

U(r′, θ ′) = w
(
(a − b + δf (θ ′))r′ − δbf (θ ′)

a − b
, θ ′
)

,

the change of variables (11) transforms (10), upon dropping primes, into

�U + k2U = F(r, θ ; U, f ) in Aa,b (12a)

U(a, θ) = ξ(θ) (12b)

∂rU = TU + h(θ) at r = b. (12c)

The precise forms of F and h, both of which are O(δ), are given in [43]. Following
the TFE philosophy, we expand the transformed field in a Taylor series

U(r, θ , δ) =
∞∑

n=0

Un(r, θ) δn,

and derive equations for the Un:

�Un + k2Un = (1 − δn,0)Fn(r, θ ; Ul, f ) in Aa,b (13a)

Un(a, θ) = δn,0 ξ(θ) (13b)

∂rUn = TUn + (1 − δn,0)hn(θ) at r = b, (13c)

where δn,l is the Kronecker delta. Again, the precise form of Fn is given in [43],
however, let us point out that

Fn = 1
(a − b)2

[
∂rF(1)n + ∂θF(2)n + F(3)n

]
,

where no more than one derivative acts upon a Ul (0 ≤ l ≤ n − 1) appearing in
the F(j)n . A representative term is

F(1)n (r, θ) = −(∂θ f (θ))2(b − r)2∂rUn−2(r, θ)+ · · · , (14)

while the hn are simply

hn(θ) = f (θ)
a − b

(TUn−1)(b, θ). (15)
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In addition, the DtN map, G, must be stated in transformed coordinates and
then expanded in a Taylor series:

G(δf )[ξ ] =
∞∑

n=0

Gn(f )[ξ ] δn.

The Gn were fully derived in [43], where we showed that

Gn(f )[ξ ] = −1
a
(∂θ f (θ))2∂rUn−2(a, θ)+ · · · . (16)

Remark 6 As we shall see in the following calculations, we must estimate terms
of the form:

‖(∂θ f )V‖Hs(Aa,b)
, ‖(∂θ f )µ‖Hs−1/2([0,2π ]) ,

for integer s ≥ 0. To accomplish this we use Lemma 4 with U = Aa,b (m = 2)
and U = [0, 2π ] (m = 1), respectively. We can now bound these terms

‖(∂θ f )V‖Hs(Aa,b)
≤ M ‖(∂θ f )‖Hs+2+2(Aa,b)

‖V‖Hs(Aa,b)

≤ M ‖f‖Hs+5([0,2π ]) ‖V‖Hs(Aa,b)
,

‖(∂θ f )µ‖Hs−1/2([0,2π ]) ≤ M ‖(∂θ f )‖H|s−1/2|+1+2([0,2π ]) ‖µ‖Hs([0,2π ])
≤ M ‖f‖Hs+4([0,2π ]) ‖µ‖Hs([0,2π ]).

Thus, if we require f ∈ Hs+5([0, 2π ]) all of these terms are bounded; in the
special case s = 0 (which we will consider exclusively in later sections) this, of
course, implies f ∈ H5. We note that if f ∈ H5([0, 2π ]) then f ∈ C4([0, 2π ]) by
standard Sobolev embeddings [2,25].

With our transformation and notation in place we can finally state our new
result which will establish Theorem 2.

Theorem 7 Given any integer s ≥ 0, if f ∈ Hs+5([0, 2π ]) and ξ ∈ Hs+1/2([0, 2π ])
there exist constants C0 and K0, and a unique solution Un ∈ Hs+1(Aa,b) of (13)
such that

‖Un‖Hs+1 ≤ K0 ‖ξ‖Hs+1/2 Bn (17)

for any B > 2K0C0 ‖f‖Hs+5

To prove this we inductively estimate the problem (13) using an elliptic lemma
(Lemma 8) and a recursive lemma (Lemma 9). To begin we state, without proof,
the following well-known elliptic estimate [25,42,43].
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Lemma 8 For any integer s ≥ 0 there exists a constant K0 such that for any
F ∈ Hs−1(Aa,b), ξ ∈ Hs+1/2([0, 2π ]), h ∈ Hs−1/2([0, 2π ]), the solution W ∈
Hs+1(Aa,b) of

�W + k2W = F(r, θ) in Aa,b

W(a, θ) = ξ(θ)

∂rW = TW + h(θ) at r = b

W(r, θ + 2jπ) = W(r, θ) ∀ j ∈ Z,

satisfies

‖W‖Hs+1 ≤ K0
[‖F‖Hs−1 + ‖ξ‖Hs+1/2 + ‖h‖Hs−1/2

]
.

To control the right-hand side of (13) we prove the following.

Lemma 9 Let s ≥ 0 be an integer and f ∈ Hs+5([0, 2π ]). Assume that, for
Un ∈ Hs+1(Aa,b),

‖Un‖Hs+1 ≤ K2Bn

for all n < N and constants K2 and B. If

B > ‖f‖Hs+5 ,

then FN ∈ Hs−1(Aa,b), hN ∈ Hs−1/2([0, 2π ]), and there exists a C0 such that

‖FN‖Hs−1 ≤ K2 ‖f‖Hs+5 C0BN−1,

‖hN‖Hs−1/2 ≤ K2 ‖f‖Hs+5 C0BN−1.

Proof Note that

‖FN‖Hs−1 ≤ 1
(a − b)2

{∥∥∥∂rF
(1)
N

∥∥∥
Hs−1

+
∥∥∥∂θF(2)N

∥∥∥
Hs−1

+
∥∥∥F(3)N

∥∥∥
Hs−1

}

≤ 1
(a − b)2

{∥∥∥F(1)N

∥∥∥
Hs

+
∥∥∥F(2)N

∥∥∥
Hs

+
∥∥∥F(3)N

∥∥∥
Hs

}
,

and consider the representative term (14)

∥∥∥F(1)N

∥∥∥
Hs

≤
∥∥∥−(∂θ f (θ))2(b − r)2∂rUN−2(r, θ)

∥∥∥
Hs

+ · · ·
≤ M2 ‖∂θ f‖2

Hs+4 R2 ‖UN−2‖Hs+1 + · · ·
≤ K2 ‖f‖Hs+5 (C0/3)BN−1
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for some C0, where we have used the inductive hypothesis, Lemma 4, and

‖(b − r)W‖Hs ≤ R(s) ‖W‖Hs

for some constant R = R(s). We are finished provided that B > ‖f‖Hs+5 .
Regarding hN we simply compute

‖hN‖Hs−1/2 ≤
∥∥∥∥

f
a − b

TUN−1

∥∥∥∥
Hs−1/2

≤ M
|a − b| ‖f‖H|s−1/2|+3

∥∥TUN−1
∥∥

Hs−1/2

≤ M
|a − b| ‖f‖H|s−1/2|+3 CT

∥∥UN−1
∥∥

Hs+1/2

≤ MCT

|a − b| ‖f‖H|s−1/2|+3 Ctr
∥∥UN−1

∥∥
Hs+1(Aa,b)

≤ K2 ‖f‖H|s−1/2|+3 C0BN−1 ≤ K2 ‖f‖Hs+5 C0BN−1,

where CT and Ctr are bounding constants for the DtN map T and trace operator,
respectively.

We can now present the proof of Theorem 7.

Proof (Theorem 7) The estimate on U0 follows directly from Lemma 8 with
F and h identically zero. Letting K2 := K0 ‖ξ‖Hs+1/2 we now assume that (17)
holds for all n < N. Applying Lemma 8 implies that

‖UN‖Hs+1 ≤ K0
[‖FN‖Hs−1 + ‖hN‖Hs−1/2

]
.

Lemma 9 implies that

‖UN‖Hs+1 ≤ K2
(
2K0C0 ‖f‖Hs+5

)
BN−1,

and (17) is verified provided B > 2K0C0 ‖f‖Hs+5 .

Finally, we establish Theorem 2.

Proof (Theorem 2) We merely consider the representative term (16)

‖Gn(f )[ξ ]‖Hs−1/2 ≤
∥∥∥∥−

1
a
(∂θ f )2∂rUn−2(a, θ)

∥∥∥∥
Hs−1/2

+ · · ·

≤ M2

a
‖∂θ f‖2

H|s−1/2|+3 ‖∂rUn−2(a, θ)‖Hs−1/2 + · · ·

≤ M2

a
‖f‖2

H|s−1/2|+4 Ctr ‖Un−2‖Hs+1(Aa,b)
+ · · ·

≤ M2

a
‖f‖2

Hs+4 CtrK0 ‖ξ‖Hs+1/2 Bn−2 + · · ·
≤ K1 ‖ξ‖Hs+1/2 Bn,
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where we have used B > 2K0C0 ‖f‖Hs+5 and chosen K1 to be a constant
depending on M, a, Ctr, K0, and C0, but not ξ or f .

4 Variational formulation

We are now in a position to examine the effect of using the truncated DtN
map GN in place of G. To facilitate our analysis we gather here some conve-
nient notation that occurs frequently. We denote by V the Hilbert space H1(
),
equipped with the usual norm:

V := {u ∈ L2(
) | ∇u ∈ L2(
)}, ‖u‖2
V :=

∫




|u|2 + |∇u|2 dV.

We denote by V′ the dual space of V, and use 〈〈·, ·〉〉 for the L2-duality pairing
between V and V′. The norm ‖·‖L(V,V′) describes the operator norm for linear
operators between V and V′.

The underlying assumption on
 is that it has a boundary smooth enough so
that the trace operator [·] : V → H1/2(B) is well-defined for elements of V. We
are thus able to define the Sobolev space

H1/2(B) :=
{
µ ∈ L2(B) | ∃ v ∈ V such that [v] = µ on �

}
.

We denote by 〈·, ·〉 the L2-duality pairing between H1/2(B) and H−1/2(B), and
we reserve (·, ·) for the L2(
) inner product,

(u, v) :=
∫




u v̄dV.

The notation A(·, ·) (sometimes with subscripts) is used for the sesquilinear
form A on V × V defined by

A(w, v) :=
∫




∇w · ∇v̄ − k2w v̄dV + 〈G[w], v〉 .

Given this notation we now give three variational problems which approx-
imate our original problem (4) to varying degrees, and lead us to the total
error of our numerical procedure. The first is the weak formulation of the full
problem (4):

Find u ∈ V such that for all v ∈ V,

A(u, v) =
∫

�

g v̄ds. (18)
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The well-posedness of Eq. (18) will be studied in Sect. 5. The second variational
problem, which we analyze in Sect. 6, is the weak formulation of (4) where the
DtN map G is replaced by the truncation GN , (7):

Find uN ∈ V such that for all v ∈ V,

AN(uN , v) =
∫

�

g v̄ds, (19)

where

AN(w, v) :=
∫




∇w · ∇v̄ − k2w v̄dV +
〈
GN[w], v

〉
.

To motivate the final formulation, we recall that it is most convenient in com-
putations of the DtN map to utilize the Fourier series representation of the
boundary trace ξ of the scattered field u at B, [43]. Of course this Fourier series
will also be truncated after a finite number of terms, say m, and we represent
this procedure by the operator

GN,m[ξ ] = GN,m(δf )[ξ ] :=
N∑

n=0

Gn(f )

⎡

⎣
m∑

p=−m

ξ̂peipθ

⎤

⎦ δn.

Also useful in this formulation is the space of all functions in V which have
Dirichlet trace at B with only (2m + 1) Fourier coefficients,

Bm :=
⎧
⎨

⎩v ∈ V

∣∣∣∣∣∣
v|B ∈ H1/2(B), v|B =

m∑

p=−m

ξ̂peipθ , 0 ≤ θ < 2π .

⎫
⎬

⎭ . (20)

In Sect. 7 we consider the variational formulation:

Find uN,m ∈ Bm such that for all v ∈ V,

AN,m(uN,m, v) =
∫

�

g v̄ds, (21)

where

AN,m(w, v) :=
∫




∇w · ∇v̄ − k2w v̄dV +
〈
GN,m[w], v

〉
.

As noted by several authors, (e.g., [31,35]), when the artificial boundary is a
circle, the truncation in Fourier space leads to a loss of uniqueness. To deal with
this, Grote and Keller proposed a modification to the DtN map which remains
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exact for the first m modes, but stabilizes the formulation. We shall introduce
and analyze a similar modification in Sect. 7.

If uN,m,h is the finite element solution of (21) then the total error for our
scheme is

∥∥∥u − uN,m,h
∥∥∥

V
≤
∥∥∥u − uN

∥∥∥
V

+
∥∥∥uN − uN,m

∥∥∥
V

+
∥∥∥uN,m − uN,m,h

∥∥∥
V

. (22)

This error is composed of a consistency error, a spectral approximation error,
and a finite element approximation error. In Sect. 5 we show that the full var-
iational problem (18) is indeed well-posed, and subsequently in Sect. 6, we
estimate the consistency error

∥∥u − uN
∥∥

V introduced by using a finite number
of terms in the power series of the DtN map. In order to achieve this esti-
mate we first need to show that AN satisfies a discrete inf-sup condition, which,
in turn, requires information concerning the well-posedness of the variational
problem (19). Thereafter in Sect. 7 we study the spectral approximation error∥∥uN − uN,m

∥∥
V induced by truncating the Fourier series of the boundary trace in

DtN map computations (and using a modified DtN map). The final, finite ele-
ment approximation error

∥∥uN,m − uN,m,h
∥∥

V can be estimated using standard
techniques.

5 Well-posedness of the full variational problem

To begin our analysis of the full variational problem, (18), we recall the results
of Demkowicz and Ihlenburg [17], and Harari and Hughes [35] in the case
B = {r = a}. Defining the linear operator B0 via

〈〈B0u, v〉〉0 :=
∫


0

∇u · ∇v̄ − k2u v̄dV +
∫

r=a

G0[u] v̄ds,

where
0 is the annulus between� and {r = a}, they showed that the variational
problem:

〈〈B0u, v〉〉0 =
∫

�

g v̄dV ∀v ∈ H1(
0)

is well-posed. Here G0 = G({r = a}) is the DtN map associated with a circu-
lar artificial boundary. They showed that the linear operator B0 : H1(
0) →
(H1(
0))

′ was Fredholm, and that the variational problem had a unique solution
in H1(
0). (We have denoted by 〈〈·, ·〉〉0 the duality pairing between H1(
0) and
its dual.) The proof relies on the spectral characterization of G0. In particular,
one can write
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〈G0[ξ ], v〉0 :=
∫

r=a

G0[ξ ] v̄ds =
2π∫

0

G0[ξ ] v̄ a dθ =
∞∑

p=−∞
aλpξ̂p ˆ̄vp, (23a)

λp = −k
dzH(1)

p (ka)

H(1)
p (ka)

. (23b)

Well-posedness follows by showing that the Im
{
λp
}
< 0 are bounded, and that

Re
{
λp
} ≥ 1/a > 0.

Of course, since the problem (18) is completely equivalent to the variational
form of the full exterior scattering problem we could appeal to classical results
(see e.g., [14]) to deduce existence and uniqueness of solutions. However, as no
such analogy is available for the truncated problem (19) a much more direct
method is required to establish well-posedness of (19). To accomplish this we
give a complete proof of the well-posedness of (18), closely following that of
Demkowicz and Ihlenburg [17] and Harari and Hughes [35], where the DtN
map appears explicitly. By doing this we are able to determine necessary mod-
ifications which deliver a well-posedness proof for (19). Furthermore, we point
out that due to the non-self-adjoint nature of the DtN map (see Sect. 2) we can-
not appeal to the classical perturbation theory for self-adjoint operators [40].
Indeed, we have found the following, rather explicit, method of proof attractive
in its simplicity.

The argument will proceed as follows: We first show that (18) has at most one
solution (see Theorem 10) which follows closely the arguments in [17]. Defining
the linear operators SN : V → V′ and S : V → V′ via

〈〈
SNw, v

〉〉
:= AN(w, v), 〈〈Sw, v〉〉 := A(w, v), (24)

we next show that the linear operator S0 : V → V′ is a Fredholm operator (see
Theorem 12). We then compare the operator S to S0, and use a perturbation
argument to show that S is also Fredholm. This, along with the uniqueness
result, provides the required existence result.

Theorem 10 If f ∈ H5([0, 2π ]) the variational problem (18) has at most one
solution.

Proof Regarding the smoothness of f , for future use we choose it to fit into
the analyticity theory of the DtN map; see Remark 6. The proof follows an
argument similar to the one in [35], where B was taken to be a circle. Suppose
e ∈ V satisfies the homogeneous problem, then Im {A(e, e)} = 0. Since k is real,
this means there is zero energy flux through B:

0 =
∫

B
Im {G[e] ē} ds = 1

2i

∫

B
(∂ne) ē − e (∂nē)ds.
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We now consider the region between B and a large circle of radius R, BR,
containing Int(B) to obtain (in the limit as R → 0)

0 =
∫

B
(∂ne) ē − e (∂nē)ds

=
∫

Ann(B,BR)

(�e) ē − e (�ē)dV − lim
R→0

∫

∂BR

(∂re) ē − e (∂rē)ds.

Since both e and ē solve the Helmholtz equation in the exterior of B, we obtain

0 = lim
R→0

∫

∂BR

(∂re) ē − e (∂rē)ds.

We use the radiation condition and Rellich’s Lemma (see e.g., [48]) to conclude
that e = 0 in the exterior of B. By continuity, both e and ∂ne = ∂Ne = G[e]
vanish on B.

It remains to show that e = 0 in the interior of B; to this end define

B̃ := {(r, θ) | r = a + δ |f |L∞},

a circle slightly bigger than B. We have just shown that e and ∂ne are zero on
B, and, by analytic continuation (valid since f is assumed to be in H5([0, 2π ])),
we can assume they vanish on B. The eigenvalue problem for the Laplacian in
the ball contained within B̃ with zero Dirichlet and Neumann data has no finite
eigenvalues. Since reducing the region to the interior of B would only increase
such eigenvalues, we can conclude that there are no non-trivial solutions of the
homogeneous problem, establishing uniqueness.

Remark 11 Note that the theorem remains true even if we prescribe Dirichlet
data on �, since such data would only modify the eigenvalues obtained in the
Neumann case.

To build a perturbation argument for the well-posedness of (18) we now
carefully examine the variational problem with truncated DtN map character-
ized by the operator S0. At this juncture we will use the analyticity properties of
G and consequently we specialize to boundary perturbations f smooth enough
to satisfy the hypotheses of Theorem 2, i.e., for ξ ∈ H1/2 we need f ∈ H5.

Theorem 12 If f ∈ H5([0, 2π ]) then there exists a δ0 > 0 such that if 0 < δ < δ0
then S0 = A + C where the linear operators A and C are respectively invertible
and compact as maps from V to V′. Hence, S0 is a Fredholm operator.
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Proof It is clear that A0(u, v) is a continuous sesquilinear form on V × V. We
now define the sesquilinear forms a, d on V × V

a(u, v) :=
∫




∇u · ∇v̄ + u v̄dV + Re

⎧
⎨

⎩

∫

B
G0[u] v̄ds

⎫
⎬

⎭ , (25a)

and

d(u, v) := −
∫




(k2 + 1)u v̄dV + Im

⎧
⎨

⎩

∫

B
G0[u] v̄ds

⎫
⎬

⎭ ; (25b)

clearly A0(u, v) = a(u, v)+ d(u, v).
By inspection a is continuous; for coercivity we note that

a(u, u) = ‖u‖2
V + Re

⎧
⎨

⎩

∫

B
G0[u] ūds

⎫
⎬

⎭ .

If we can show Re
{∫

B G0[ξ ] ξ̄ ds
} ≥ 0 for all ξ ∈ H1/2(B), the coercivity of

a(u, v) is established, since the trace of u ∈ V lies in H1/2(B). We describe the
arc-length parameter ds on B as

(ds)2 =
[
(a + δf )2 + (δf ′)2

]
(dθ)2,

so that

Re

⎧
⎨

⎩

∫

B
G0[ξ ] ξ̄ ds

⎫
⎬

⎭ = Re

⎧
⎨

⎩

2π∫

0

G0[ξ ] ξ̄
[
(a + δf )2 + (δf ′)2

]1/2
dθ

⎫
⎬

⎭

= Re

⎧
⎨

⎩

2π∫

0

G0[ξ ] ξ̄ a dθ

⎫
⎬

⎭+ Re

⎧
⎨

⎩

2π∫

0

G0[ξ ] ξ̄

×
([
(a + δf )2 + (δf ′)2

]1/2 − a
)

dθ
}

≥ (1 − c̄(δ))Re

⎧
⎨

⎩

2π∫

0

G0[ξ ] ξ̄ a dθ

⎫
⎬

⎭

= (1 − c̄(δ))
∞∑

p=−∞
Re

{
λp
} ∣∣∣ξ̂p

∣∣∣
2 ≥ 0 (26)
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for δ sufficiently small, where we used Re
{
λp
} ≥ 0, from (23). Here

(1 − c̄(δ)) = 1 − max
θ∈[0,2π ]

∣∣∣∣∣∣

[(
1 + δ

f (θ)
a

)2

+ δ2 f ′(θ)2

a2

]1/2

− 1

∣∣∣∣∣∣
≥ 0,

provided δ is chosen small enough; let δ0 be the largest such perturbation. The
relation (26) establishes the coercivity of the sesquilinear form a(u, v), which in
turn can be used to define an invertible operator A : V → V′:

〈〈Au, v〉〉 := a(u, v) ∀u, v ∈ V.

We now turn our attention to d(u, v); the continuity of the first term in (25b)
is clear, while the continuity of the second follows by the calculation:

Im

⎧
⎨

⎩

2π∫

0

G0[ξ ] σ̄ adθ

⎫
⎬

⎭ =
∞∑

p=−∞
Im

{
λp
}
ξ̂p

¯̂σp.

This defines a continuous sesquilinear map on L2([0, 2π ]) × L2([0, 2π ]), since
the Im

{
λp
}

are bounded for all p, see (23). Therefore,

∣∣∣∣∣∣
Im

⎧
⎨

⎩

∫

B
G0[ξ ] σ̄ds

⎫
⎬

⎭

∣∣∣∣∣∣
=
∣∣∣∣∣∣
Im

⎧
⎨

⎩

2π∫

0

G0[ξ ] σ̄
[
(a + δf )2

+(δf ′)2
]1/2

dθ

⎫
⎬

⎭

∣∣∣∣∣∣

≤ C̄(δ)

∣∣∣∣∣∣
Im

⎧
⎨

⎩

2π∫

0

G0[ξ ] σ̄ a dθ

⎫
⎬

⎭

∣∣∣∣∣∣

for

C̄(δ) = max
θ∈[0,2π ]

{(
1 + δ

f (θ)
a

)2

+ δ2 f ′(θ)2

a2

}
,

and hence, d is a continuous map. The embeddings of H1(
) in L2(
), and
H1/2(B) in L2(B) are compact, and therefore the sesquilinear form d(u, v) can
be used to define a compact operator C : V → V′. Consequently, the variational
problem (Eq. (19) with N = 0)
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Find u0 ∈ V such that for all v ∈ V,

A0(u0, v) =
∫

�

g v̄ds,

can then be written in operator notation as (A + C)u0 = F, for some F ∈ V′,
or (I + A−1C)u0 = A−1F, where A−1C is a compact map from V → V. This
proves the assertion that S0 is a Fredholm operator.

We are now in a position to investigate the well-posedness of (18) (involv-
ing the full DtN map) by comparing its induced linear operator S to S0 via a
perturbation argument.

Theorem 13 If f ∈ H5([0, 2π ]) then, for a given fixed perturbation δ > 0, S has
a bounded inverse on V′ provided 0 < δ < δ0 is sufficiently small. Further, there
exists an inf-sup constant γ > 0 for the sesquilinear form A(·, ·):

γ ‖u‖V ≤ sup
v∈V\{0}

|A(u, v)|
‖v‖V

∀u ∈ V.

Proof We proceed by showing that S is a Fredholm operator. Then, using the
uniqueness result in Theorem 10, we will have obtained the desired invertibil-
ity result and, consequently, the inf-sup constant γ . Now, for all u, v in V, the
difference between the operators S and S0 is given by

〈〈
(S − S0)u, v

〉〉
=
∫

B
(G − G0)[u] v̄ds.

We can estimate this difference in operator norm
∥∥S − S0

∥∥
L(V,V′) in terms of

‖G − G0‖L(H1/2(B),H−1/2(B)), which can be made small by Theorem 2. Using
a perturbation argument (see, e.g., [3]), we obtain that S is also a Fredholm
operator.

6 Well-posedness of the truncated variational problem

The well-posedness of the full problem, (18), discussed in the previous section,
provides the basis for the study of the well-posedness of (19) where the DtN
map is truncated to a finite number of terms. In other words, we wish to examine
the well-posedness of the weak form, (19), of the problem

�uN + k2uN = 0, x ∈ 
, (27a)

∂nuN = g, x ∈ �, (27b)

∂NuN = GN[uN], x ∈ B. (27c)
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The study of well-posedness for the weak form of problem (27) proceeds by
showing the associated linear operators are close (in some suitable norm) to
those obtained in the previous section. We shall then use a perturbation argu-
ment. This leads us to conclude the existence of inf-sup constants γN associated
with the variational problems (19). We then show that these inf-sup constants
are bounded away from 0, enabling us to estimate the error term

∥∥u − uN
∥∥

V
in (22).

Theorem 14 If f ∈ H5([0, 2π ]) then for a fixed δ, 0 < δ < δ0, there exists
a positive integer N0 = N0(δ) such that SN has a bounded inverse on V′ for
all N > N0. Furthermore, for each of these N there exists a positive inf-sup
constant γN:

γN ‖u‖V ≤ sup
v∈V\{0}

∣∣AN(u, v)
∣∣

‖v‖V
∀u ∈ V.

Proof From the previous theorem, S : V → (V)′ has a bounded inverse. Also,

〈〈
(S − SN)u, v

〉〉
= A(u, v)− AN(u, v) = 〈(G − GN)[u], v〉

which implies that

∥∥∥S − SN
∥∥∥

L(V,V′)
≤ C

∥∥∥G − GN
∥∥∥

L(H1/2,H−1/2)
≤ 1∥∥S−1

∥∥
L(V,V′)

provided N is chosen large enough; here C incorporates the trace constant.
Since V = H1(
) is complete, by Theorem 2.3.5 of [3], we conclude that

(SN)−1 is a linear bijection between V′ and V, and

∥∥∥(SN)
−1
∥∥∥

L(V,V′)
≤

∥∥S−1
∥∥

L(V,V′)
1 − ∥∥S−1

∥∥
L(V,V′)

∥∥S − SN
∥∥

L(V,V′)
.

In other words, SN is an invertible operator on V, and therefore the variational
problem (19) has a unique solution uN ∈ V. Then, from Theorem 3.6 in [9], AN

is a continuous sesquilinear form on V ×V which satisfies the inf-sup condition,
yielding the existence of γN as claimed.

Remark 15 Note that we cannot yet exclude the possibility that γN → 0 as
N → ∞. This, of course, would prevent us from concluding that the consistency
error

∥∥u − uN
∥∥

V → 0 as N → ∞. The next theorem shows that, indeed, the
inf-sup constants, γN , are bounded strictly away from zero.
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Theorem 16 The inf-sup constants γN defined in Theorem 14 are bounded
strictly away from zero. Specifically, if γ > 0 is the inf-sup constant of
Theorem 13, then

γN ≥ γ

2
> 0 ∀N > N0.

Proof Clearly, γN > 0 for all N ≥ N0. Now, for u, v ∈ V, we have

A(u, v) = A(u, v)− AN(u, v)+ AN(u, v)

which implies that

|A(u, v)|
‖v‖V

≤ C
∥∥∥(G − GN)

∥∥∥
L(H1/2,H−1/2)

‖u‖V +
∣∣AN(u, v)

∣∣
‖v‖V

,

where C > 0 involves the trace constant. Thus,

sup
v∈V\{0}

|A(u, v)|
‖v‖V

− C
∥∥∥(G − GN)

∥∥∥
L(H1/2,H−1/2)

‖u‖V ≤ sup
v∈V\{0}

|AN(u, v)|
‖v‖V

.

If γ is the inf-sup constant for A(·, ·), we can choose, using Theorem 2, N1 ≥ N0
such that for all N > N1,

γ − C
∥∥∥(G − GN)

∥∥∥
L(H1/2,H−1/2)

≥ γ

2
.

Then, for all N ≥ N1,

γ

2
≤ inf

u∈V\{0} sup
v∈V\{0}

∣∣AN(u, v)
∣∣

‖v‖V ‖u‖V
.

This shows that for N > N1, γN ≥ γ /2 > 0.

To establish the convergence of our Enhanced DtN-FE method, note that

∣∣∣AN(uN − u, v)
∣∣∣ ≤

∣∣∣AN(uN , v)− A(u, v)
∣∣∣+

∣∣∣A(u, v)− AN(u, v)
∣∣∣

=
∣∣∣A(u, v)− AN(u, v)

∣∣∣ =
∣∣∣
〈
(G − GN)u, v

〉∣∣∣ .

Using the inf-sup constant γN for AN , we get

∥∥∥u − uN
∥∥∥

V
≤ C
γN

∥∥∥G − GN
∥∥∥

L(H1/2,H−1/2)
‖u‖V

≤ 2C
γ

∥∥∥G − GN
∥∥∥

L(H1/2,H−1/2)
‖u‖V ,
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where C involves the trace constant. Since
∥∥G − GN

∥∥
L(H1/2,H−1/2)

→ 0 as N →
∞, we have convergence.

7 Spectral approximation error

In the previous section, we successfully estimated the key new source of error
in our approximation scheme, introduced by replacing the DtN map G by GN .
We now turn to the spectral approximation error, introduced by the practical
numerical necessity of using only a finite number of terms m in the Fourier
series expansion of the Dirichlet data ξ provided to the DtN map.

To be more precise, recall that uN ∈ V is the unique solution of (19):

Find uN ∈ V such that for all v ∈ V,

AN(uN , v) =
∫

�

g v̄ds. (28)

The spectral truncation error is the difference
∥∥uN − uN,m

∥∥
V where uN,m ∈ Bm

solves (21):

AN,m(uN,m, v) =
∫

�

g v̄ ∀v ∈ V. (29)

We remind the reader that

AN,m(w, v) :=
∫




∇w · ∇v̄ − k2w v̄dV +
〈
GN,m[w], v

〉
.

In our analysis it is convenient to define the projection Pm : Hs(B) → Hs(B),
s ≥ 0, via

Pmµ :=
m∑

p=−m

µ̂peipθ ,

where µ̂p is the pth Fourier coefficient of µ. With this we note that

GN,m[µ] = GN[Pmµ].

While (29) is straightforward to implement numerically (see [43]) it suffers
from a loss of stability. To see this note that the map GN,m is “blind” to Fourier
modes of frequency higher than m which results in a lack of uniqueness. For
example, when the artificial boundary B is a circle one could add any solution
w of the Neumann eigenvalue problem
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�w + k2w = 0, in 
0,

∂nw = 0 on ∂
0,

to our discrete solution and still obtain a valid solution. This results in a loss of
stability if k is near an interior Neumann eigenvalue.

Two possible approaches to address this issue in the setting of circular artifi-
cial boundaries are used. Harari and Hughes [35] have suggested the heuristic
of choosing m > ka, where a is the radius of the artificial boundary. Grote
and Keller [31] advocate modifying the DtN map, in our notation G0,m. This
latter approach, which we will pursue in this section, begins with any operator
G : H1/2(B0) → H−1/2(B0) such that

Im

⎧
⎨

⎩

∫

B
µ̄Gµ ds

⎫
⎬

⎭ < 0 ∀µ �= 0. (30)

Defining

H0,m := G0,m − GPm + G,

Grote and Keller showed that using the operator H0,m in place of the DtN
map G0,m leads to a well-posed problem. We point out that H0,m = G0,m when
applied to µ = ∑

|p|<m µ̂peipθ . This is a desirable feature of the modified map,
since it remains exact for all modes up to the m-th one.

In the present context of perturbed artificial boundaries we will use

HN,mµ := GNPmµ+ G(I − Pm)µ,

defined for any µ ∈ H1/2(B), where

Gµ := −ikµ.

The map G is essentially the Sommerfeld radiation condition, used in the near-
field. It is an easy-to-implement condition which prevents the loss of stability
in (29) since

Im

⎧
⎨

⎩

∫

B
µ̄HN,mµds

⎫
⎬

⎭ < 0 ∀µ �= 0,

cf. (30).
We now examine the solvability of (29) with GN,m replaced by HN,m.
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Theorem 17 Let SN,m : V → V′ be defined by

〈〈
SN,mw, v

〉〉
:=

∫




∇w · ∇v̄ − k2w v̄dV +
〈
HN,m[w], v

〉
∀w, v ∈ V.

If f ∈ H5([0, 2π ]) then there exist positive integers N̄ and m̄ such that for all
N > N̄, m > m̄, SN,m is invertible as a map from V to V′ with bounded inverse.
Hence, the discrete variational problem (29) is uniquely solvable.

Proof We will show that SN,m is close, in operator norm, to the invertible oper-
ator SN (see Theorem 14) which, we recall, has a bounded inverse. For every
w, v ∈ V,

〈〈
(SN,m − SN)w, v

〉〉
=
〈
(HN,m − GN)[w], v

〉

=
〈
(G − GN)(I − Pm)[w], v

〉
.

This allows us to estimate
∣∣∣
〈〈
(SN,m − SN)w, v

〉〉∣∣∣ ≤
∥∥∥(G − GN)(I − Pm)w

∥∥∥
H−1/2(B)

‖v‖H1/2(B)

≤ C
∥∥∥(G − GN)(I − Pm)w

∥∥∥
H1/2(B)

‖v‖V

≤ CN
∥∥I − Pm∥∥

L(H1/2(B),H1/2(B)) ‖w‖V ‖v‖V .

Here, the constant CN > 0 includes dependence on the trace constant and on
the sum of the operator norms of G and GN . Since these are bounded, and

∥∥I − Pm∥∥
L(H1/2(B),H1/2(B)) → 0

as m → ∞, this allows us to conclude that
∥∥∥SN,m − SN

∥∥∥
L(V,V′)

→ 0

as m → ∞. If we choose N large enough so that SN is invertible, the perturba-
tion result Theorem 2.3.5 in [3] provides the desired invertibility result.

The theorem above allows us to deduce the existence of a family of inf-sup
constants γN,m such that

γN,m ‖w‖V ≤ sup
‖v‖V=1

∣∣∣AN,m(w, v)
∣∣∣ ,

where HN,m has replaced GN,m in the definition of AN,m. However, the theorem
does not guarantee that these constants will not tend to zero as N, m → ∞.
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Using an argument analogous to that given for Theorem 16 we will show that
this cannot happen. First we note that

AN(w, v) = AN,m(w, v)+ AN(w, v)− AN,m(w, v)

= AN,m(w, v)+
〈
(GN − G)(I − Pm)[w], v

〉

This implies that

∣∣AN,m(w, v)
∣∣

‖v‖V
+ CN

∥∥(I − Pm)
∥∥

L(H1/2(B),H1/2(B)) ‖w‖V ‖v‖V ≥
∣∣AN(w, v)

∣∣
‖v‖V

.

and hence

sup
‖v‖V=1

∣∣∣AN(w, v)
∣∣∣− CN

∥∥(I − Pm)
∥∥

L(H1/2(B),H−1/2(B)) ‖w‖V

≤ sup
‖v‖V=1

∣∣∣AN,m(w, v)
∣∣∣ ,

where CN > 0 is the same constant as in the previous proof. Recalling that
Theorem 16 gives

(γ /2) ‖w‖V ≤ sup
‖v‖V=1

∣∣∣AN(w, v)
∣∣∣ ∀w ∈ V,

if we choose m sufficiently large then

(γ /4) ‖w‖V ≤ sup
‖v‖V=1

∣∣∣AN,m(w, v)
∣∣∣ ∀w ∈ V. (31)

We can now precisely estimate the discretization error.

Theorem 18 Suppose f ∈ H5([0, 2π ]), N > N̄ and m > m̄, and that uN ∈ V
solves (7) and uN,m ∈ V solves (29) (with GN,m replaced by HN,m). Then there
is a constant C > 0 such that

∥∥∥uN − uN,m
∥∥∥

V
≤ C

∥∥∥(I − Pm)[uN]
∥∥∥

H1/2(B)

where [uN] is the trace of uN on B. Furthermore, if [uN] ∈ H1/2+α(B), for any
α ≥ 0, the error decays as |m|−1/2−α .
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Proof From (31) we have

(γ /4)
∥∥∥uN − uN,m

∥∥∥
V

≤ sup
‖v‖V=1

∣∣∣AN,m(uN − uN,m, v)
∣∣∣

≤ sup
‖v‖V=1

∣∣∣AN,m(uN , v)− AN(uN , v)

−AN,m(uN,m, v)+ AN(uN , v)
∣∣∣

≤ sup
‖v‖V=1

∣∣∣
〈
(HN,m − GN)[uN], v

〉∣∣∣

≤
∥∥∥GN − G

∥∥∥
L(H1/2(B),H−1/2(B))

×
∥∥∥(I − Pm)[uN]

∥∥∥
H1/2(B)

which gives the required error estimate. Using Lemma 19, if [uN] ∈ H1/2+α(B),
α ≥ 0, we can estimate

∥∥∥(I − Pm)[uN]
∥∥∥

H1/2(B) ≤ C |m|−1/2−α .

Finally, the standard spectral approximation result we need is presented
below without proof [29].

Lemma 19 If f ∈ Hs([0, 2π ]) and s ≥ t then

∥∥(I − Pm)f
∥∥

Ht([0,2π ]) ≤ C |m|−1/2−(s−t) .

8 Conclusion

In this paper we have presented a numerical analysis of the “Enhanced DtN-
FE” method devised by the authors in a previous publication [43]. This algo-
rithm uses a perturbative approach to compute the DtN map on a domain
shaped by the deformation of a circle. If the full DtN map is utilized the exact
solution of the full problem is recovered (without spurious reflections), fur-
thermore, if a truncated Taylor series approximation of the DtN map is used
the problem is still well-posed, and the solution converges exponentially (as a
function of the number of Taylor series terms retained) to the exact solution.
We provide a stabilization of our map in the setting where the boundary data
is truncated in Fourier space.

In this analysis we have focused on the error introduced by truncation of
the DtN map in perturbation parameter. Consequently, once this analysis is
in place, the error introduced by a particular choice of finite elements can be
studied using standard techniques. This suggests that our method can be used
in conjunction with any variational algorithm in the truncated region, e.g., a
spectral method. This feature of our method is intentional, and our design
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philosophy has been to create a flexible boundary condition which can be
implemented as a “black-box.” Since the boundary condition we introduce is
high-order, the accuracy of the overall computation becomes essentially limited
by that of the numerical discretization in the bounded region. In a forthcoming
paper we shall describe efficient implementations of these DtN maps, including
preconditioning strategies and preprocessing steps which significantly enhance
the speed and accuracy of this DtN-FE method.
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