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Abstract. Boundary perturbation methods have received considerable attention in recent years
due to their ability to simulate solutions of differential equations of applied interest in a stable,
robust, and highly accurate fashion. In this contribution we study the rigorous numerical analysis of a
recently proposed high-order perturbation of surfaces method for scattering of electromagnetic waves
by a doubly layered, periodic medium in transverse electric polarization. The algorithm in question is
a transformed field expansion method which is discretized with a Fourier—Legendre-Galerkin, Taylor
series approach. We prove not only results on existence and uniqueness of solutions but also theorems
indicating that solutions of our scheme converge to these solutions with high-order spectral accuracy.
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1. Introduction. We consider here the scattering of a time-harmonic electro-
magnetic plane wave by a periodically corrugated grating structure [32]. The scat-
tering of linear waves involving periodic layered media plays a crucial role in a wide
range of engineering and physics applications, e.g., materials science [17], nondestruc-
tive testing [38], sensing [19], geophysics [39], imaging [26], oceanography [9], and
nanoplasmonics [34].

A number of computational methods have been developed for problems of scatter-
ing by periodic gratings. The most popular approaches to these problems are volumet-
ric methods, such as finite differences and finite/spectral element methods [14, 3], but
these methods are greatly disadvantaged with an unnecessarily large number of un-
knowns for piecewise homogeneous grating problems [27]. Interfacial methods based
on integral equations (IEs) [13, 11, 24] are a natural alternative, but these also face
several challenges. First, for periodic problems, the relevant Green function must be
periodized, which greatly increases the computational cost. Additionally, these non-
local TEs produce dense, nonsymmetric positive definite systems of linear equations
which must be solved with each simulation.

A high-order perturbation of surfaces (HOPS) approach can avoid these concerns,
such as the method of transformed field expansions (TFE) [28, 29], which we study
here. These high-order algorithms were first developed by Bruno and Reitich for the
two-dimensional scalar case [10] and later enhanced and stabilized by Nicholls and
Reitich [28, 29] and Malcolm and Nicholls [25]. HOPS approaches are compelling, as
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they maintain the advantageous properties of classical IE formulations (e.g., surface
formulation and exact enforcement of far-field boundary conditions) while avoiding
many of their shortcomings. For instance, since HOPS schemes utilize complex ex-
ponentials as basis functions in the lateral variable, the quasi-periodicity of solutions
does not need to be explicitly enforced. In addition, due to the nature of the scheme,
at every perturbation order, one need only invert a single, sparse operator correspond-
ing to the flat-interface, order-zero approximation of the problem. The TFE method
studied in this contribution was generalized by Nicholls and Shen to the case of ir-
regular bounded obstacles in two [30] and three dimensions [16]. They later delivered
a rigorous numerical analysis of the method [31], and we follow their strategy in this
contribution. Subsequently, in [18, 21, 20, 22] the algorithms were extended to the
case of periodic gratings separating multiply layered materials whose solutions are
governed by either Helmholtz equations or the full Maxwell equations.

Of the immense literature (numbering several thousand papers) on the numerical
simulation of this layered media problem (which we do not have the space to review
here), we make special reference to the work of G. Bao and his group, as it is partic-
ularly relevant to our current approach. We encourage the interested reader to read
the survey paper [6] and survey volume [4] for their efforts up to 2000. Beyond this,
the original results on the weak formulation and finite element analysis of the problem
which first appeared in [2, 3] has been extended to the least-squares framework [8] and
the full vector Maxwell equations [5], including a periodic structure with perturbed
interfaces [1], which we consider here. In addition, this group has done a great deal of
work on the inverse problem of determining the geometrical features of the structure
based on near-field imaging techniques. The paper [7] considers a problem particu-
larly close to the one studied here, and the proofs appearing in our Appendix A use
the same technology.

In this paper, we conduct a rigorous numerical analysis of the method developed
by the authors [21, 20, 22] in the case of a doubly layered material with solutions
satisfying a pair of Helmholtz equations coupled via the boundary conditions at the
interface between the two. The TFE algorithm we derived is not only a stable and
high-order numerical scheme, but it can also be used to directly establish the exis-
tence, uniqueness, and analyticity of solutions, as we presently demonstrate. For this
purpose we establish a classical, but nontrivial, elliptic existence, uniqueness, and
regularity theory by using the Green function and a priori estimates. The proof of
our main result is based on analyticity estimates for the TFE expansions coupled to
the convergence of the Fourier—Legendre—Galerkin method. Our developments illus-
trate the power and flexibility of the TFE approach for both numerical simulation
and theoretical analysis.

2. Governing equations. To specify the problem and its geometry, we consider
the two-dimensional Helmholtz problem which governs the scattering of electromag-
netic waves in transverse electric polarization [32]

(2.1a) Au+Eu=0 in z > g(x),
(2.1b) Av+k3v =0 in z < g(x),
(2.1¢) u—v=—u" at z = g(x),
(2.1d) OnNu — Onv = —Onu'™® at z = g(z),
(2.1e) OWClu] =0 as z — 09,
(2.1f) OWC[v] =0 as z — —00,
(2.1g) u(z +d, z) = e"u(z, 2),

(2.1h) v(z +d, 2) = e(z, 2),
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where u'"¢ = ¢"**~1% 9y is an upward pointing normal derivative and OWC connotes
the outgoing wave condition, which we make precise presently.

2.1. Transparent boundary conditions. The usual procedure when imple-
menting the TFE method is to truncate (if necessary) the unbounded problem do-
main to one of finite extent. For this, we introduce artificial boundaries above and
below the structure and enforce transparent boundary conditions to equivalently solve
(2.1). Introducing the planes {z = a > |g|, « } and {z =b < —|g|, « }, we show that
transparent boundary conditions can be enforced at these with Dirichlet—Neumann
operators (DNOs) derived from the Rayleigh expansions [32]. These expansions are
relevant, as they are the explicit solutions (obtained from separation of variables) of
the problems on {z > a} and {z < b} on specification of Dirichlet data at the artificial
boundaries, {z = a} and {z = b}. More specifically, it is known [32] that

u=u(zx,z) E (e’apwmlpza) z > a,

p=—00

v=uv(z,z) Z 1/}6“"”“ "2 (0=2) o <,

p=—00

where

2 _ 2 2 2
ki —ag, o < kf,

+ 2w
Qp 1=« — P, MNp= .
d ivJai -k, ol > ki,

for I = 1,2. We note that, upon evaluating at the artificial boundaries,

Z épeiapm = C(Jf), ’U(va) = Z ,&peiapm = ’(/)(Z‘),

p=—00 p=—00

and from these we can compute the Neumann data at the artificial boundaries,

o o

8271(33,&) = Z (ifpr)CApeiapz’ az’l}(l‘,b) — Z (—i’YQ,p)I;pempz.

p=—00 p=—00

With these, we define the DNOs

T [C] =T [U(x,G,)] = Z (Z’Vl,p)c ezap
D] = Dfv(eb)] = Z (—iv,p)tpe’®?™,

which are order-one Fourier multipliers. Using these, we can state (2.1) equivalently
on the bounded domain {b < z < a} as

(2.2a) Au+kiu=0 in g(x) < z < q,
(2.2b) Av+k3v =0 inb<gx) <z,
(2.2¢) u—v=—u" at z = g(z),
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(2.2d) ONu — Onv = —Onu'™ at z = g(x),
(2.2¢) Ou—Tiul =0 at z = a,
(2.2f) 0,v —Talv] =0 at z =0,
(2.2g) u(z 4 d, 2) = e"u(z, 2),

(2.2h) v(z +d,z) = e(z, 2).

3. TFE. We now recall the TFE method [28, 29], which begins with a domain
flattening change of variables (also known as o-coordinates [33] in the geophysical
literature and the C-method [12] in the electromagnetics community). Subsequently,
we make a boundary perturbation expansion which is solved recursively at each per-
turbation order.

3.1. The change of variables. We define the change of variables 2’ = z,

zla<Zg) for g < z < a, 22b<gz> for b< z < g,
a—g g—2>b

and define
Uy (2, z1) == u(z(2), 2(2', 21, 22)), Us(2',22) :i=v(z(2), 2(2', 21, 22)).

Using this change of variables, a long computation (see section 5) transforms (2.2) to
the following system of equations:

1
(3.1a) AU+ KU, = G—(amngf +0,R; +RY) = Ry in0<2 <a,
1
1
(3.1b) AoUs + k23U, = G—(aI,Rg + 0., R5 + RY) =: Ry inb <z <0,
2
(3.1(}) U1 — U2 = 51 at 21 = 20 = 0,
(31d) leUl — 5Z2U2 = 52 at 21 = %2 = 0,
(3.16) 821 U1 — T1 [Ul] = —%Tl [Ul] = Jl at 21 = a,
(3.1f)  0,Us — To[U] = —%Tg[Ug] = J at zo = b,
(3.1g) Ur(z' 4 d, z1) = WU, (2, 21),
(3.1h) Us(z' +d, 29) = " Uy(a, 29),

where the Laplacian operator A; is defined by A, = 92, + 3§L for [ = 1,2. We refer
the reader to section 5 for the specific formulas for R; and &;.

3.2. A high-order perturbation of surfaces method. We now introduce a
boundary perturbation method to solve the transformed governing equations, (3.1).
To begin, we assume that the deformation has the form

g(a') =ef(@), f=0(Q),

and expand the fields in power series

{U1,Uz} = Z{Ul,na U pnte™.
n=0
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As we shall soon see, not only does the interface need to be the graph of a function,
21 = ef(2’'), but also it must be sufficiently smooth; in this paper, we require f € C+2
for s > 0. Inserting these expansions into (3.1) and equating at order O(¢™) delivers

(3.2&) AlUl,n + k%Ul’n = Rl,n in0<z <a,
(3.2b) AoUspy + k3Us = Ro sy, inb< z <0,
(32(3) Ul,n - U2,n = 51,n at 21 = 29 = 07
(32d> 8z1 Ul,n — 822 Uz)n = 52771 at Z1 = 29 = 07
(326) (921 Ul,n — T1 [Ul,n] = 7£T1 [Ul,n—l] = Jl,n at zZ1 = a,
(32f) (922 Ugm — T2 [UQ,n] = 7%TQ [UZ,n—l] = ng at Z9 = b,
(3.2g) Upn(2' 4+ d,21) = U, (2, 21),

(3.2h) U (2 +d, 20) = €Uy (2, 22).

Again, we refer the reader to the section 5 for the specific formulas for the right hand
sides Ry p, and & .

Considering the quasi-periodicity of solutions, we propose the generalized Fourier
(Floquet) series expansions

(3.3&) Uln x Zl Z U zapx’, Rln z Zl Z R wng;/7
p=—00 p=—o0
S . 00 -
(3.55) (@) = 2 T g @) = Y e
p=—00 p=—o00

for I = 1, 2. Inserting these expansions into (3.2), the governing equations are reduced
to the one-dimensional boundary value problems

(3.4a) o2, (71(12 + (k% — )Ul(p) Rgp% in0<z <a,
(3.4b)  O2LUP) + (k3 — a2)US") = RY) inb< 2z <0,
(3.4c) ﬁ(p) - [7(32 = /}pr)l at 21 = 20 =0,
(3.4d) 8ZIU(p) 0z, (/]\2(]2 = §(2pn at z1 = 20 = 0,
(34e)  0,0) —in1,UF) = —g(i%,p)ﬁff’nq = J") at z1 = a,
(34f) 822 (p) + ’L’YQ pU(p) %(—iﬁg’p) AQ(?n71 = ‘72(;,077, at z9 = b.

4. Function spaces. In order to use these TFE recursions in a direct proof of
the existence, uniqueness, and analyticity of the solutions {u,v} of (2.2), we must
define our function spaces and state properties of these. To start, we recall, for the
L? function f = f(2'), the classical Sobolev norm for any real s > 0 [23]:

5= Y )

p=—00

:

fo

£ 1 ¢ —ja,z’
. =1+, fp= &/ fahe e da'.
0
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For the L? function w = w(a’, z), we require the classical Sobolev norm for any integer
s >0 [15]:

z u

fully =32 3 02 [ ki)

k=0 p=—o0 24

With these norms, we define the function spaces, for real s > 0,

H([0,d]) == {f(2") € L*([0,d]) | [If]lg- < oo}

and, for integer s > 0,
H?([0,d] X [z¢, 24]) := {w(x',z) € L2([0,d] x [z, 24]) | |lwl s < oo}

and

H([0,d] x [a,b]) == {{wr, w2} | w1 € H*([0,d] x [0,a]),ws € H*([0,d] x [b,0]),
w1(0) = ’LUQ(O)} .

Additionally, we will require their duals, H~* [15].
We recall the following algebra property of Sobolev spaces (see, e.g., [28]), which
allows us to estimate products of elements in these classes.

LEMMA 4.1. Given any integer s > 0 and any o > 0, there exists a constant
k = k(s,0) such that if f € C*([0,d]) and w € H*([0,d] x [b,a]), then

(4.1) lfwllgs < &lfles 1wl g

and if f € C*t1/2+9((0,d]) and @ € H*TV/2([0,d)), then

(4.2) (2] 1 S - Proverey

We also recall an elementary property of H?.

LEMMA 4.2. Given any integer s > 0, if F € H*([0,d] x [b,a]), then (a — 2)F €
H*([0,d] x [b,a]), and there exists a positive constant Z, = Z4(s) such that

(@ =2)Fllge < Za |[Fll g -

As we shall see, the key tool for establishing our result is the following elliptic
estimate, which allows us to show that unique solutions exist to the prototype problem
above, (3.2), in an appropriate Sobolev space.

THEOREM 4.3. Given any integer s > 0, if {F1,Fa} € HS71([0,d] x [b,a]), € €
H5t1Y2([0,d]), and v, K1, Ko € H*~1/2([0,d]), then there exists a unique solution pair
{u,v} € H*T([0,d] x [b,a]) of

(4.3a) Ayu+ Eu = Fy, 0< 2z <a,

(4.3b) Aov + kv = Fy, b<z <0,

(4.3c) u—v=_E, 21 = 29 =0,
(4.3d) 0zt — 02,0 =1, 21 =129 =0,
(4.3¢) 0y u—Th [u] = Ky, z1 = a,
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(43f) 822’0 — T2 [U] = KQ, Z9 = b,
(4.3g) u(z’ +d, z) = (2, 2),
(4.3h) v(z' +d, 2) = (!, 2)

such that, for a universal constant K.,

max {|[ull groro s [[0l] grosr} < Ke {1 F s+ IE2ll o (1€l rovare + 1V sz
T o2 + 12l a1/}

We give the proof in Appendix A.

5. Existence, uniqueness, and analyticity. To study the existence, unique-
ness, and analyticity of solutions, we recall (3.2) and present precise expressions for
the terms on the right hand sides. Recalling that R, = 0, Ry, + 0., R, + R?m, it
can be shown that /

f2
(ax’f)azl Ul,nfl - Eam’ U17n72

2 a— 2
X
1,n = 7fam’U1,n71 +

a a

= S (0 )0, Ur s

Ri, = i (02 f)0x Ut jp—1 — a4 ;221 J(0w [)On Ut 2
- %7221)2(6#1‘)28,21(]1,71727

R =@ 0+ ) 2011+ £ (00 £)0 U1
+2 ;221 (02 £)20:, Ut -2 — k%gULany

similarly for R, and

gl,n _ (_1)n+1 (Z'yf)neza¢7 52,71 _ M7

n! ab

where

Q1,n = —1aby&1 n — iaba (0 f)E1,n—1 — iy(a — ) f€1n1
—ia(a =) f(Ow f)é1m—2 + iV E1n—2 + ic(Bur ) [2E1 03,

Q2. = —af0, Urn—1 + ab(0y f)0p Ut n_1 + (@ — ) f (Opr ) Opr Ut py—2
- ab(ar/f)zazl Ul,n—z - (5r’f)f23m/U1,n—3 - a(ar’f)2fale1,n—3
—bf0,,Uz n—1 — ab(0y [)0p U n—1 — (@ — ) f (O )0 Us 2
+ ab(0y )2 05Uz -2 + (0 [) 200 Us s — bf (0 £)? 02, Uz 3.

To begin our demonstration, we establish the analyticity of the Dirichlet data.

LEMMA 5.1. Given any integer s > 0, if f € C*2([0,d]), then

(5.1) 1610

‘Hs+3/2 < KgB?

for constants K¢, B¢ > 0.
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Proof. We note that &1 ,, = —iyf&1 n—1/n and use induction to prove this lemma.
We begin at n = 0 and set

Ke = ||&10

‘Hs+3/2 .

We now assume (5.1) for all n < 7 and consider 7 > 1, where we bound

||§1,ﬁ||Hs+s/2 <|v[MIf
< P[M|f

Cs+3/2+0 Hfl,'ﬁfl ||Hs+3/2
Cs+2 K{B?il.

By choosing Be > M|y||f|qs+2, the lemma follows. d
We now provide the key inductive lemma which enables the proof of our result.

LEMMA 5.2. Given any integer s > 0, if f € C*T2([0,d]) and
[Vsiallgess + [Unllgors < KB ¥n <7

for constants K, B > 0, then there exists a constant C' > 0 such that

max {HRlﬁHH N Teall gosae s 162,a ‘Hs+1/2} <KC (Bﬂ_l +B"? ¢ Bﬁ_?’)

forl=1,2.

Proof. For | = 1,2, we recall that Ry » = 0, Rf;, + 0., R , + R?ﬁ, so that one can
deduce

IRl e SNREAl jess + I BEall o + 1B a1 e -

where ||A|| < ||B|| means that there exists a constant C, independent of all variables
of importance, such that ||A|| < C'||B]|. With the estimates

HRlz,ﬁHHSJrl SN FOuUnimtll ross + 102 02Ut || jrosa
[ £200 Vsl s + 17O )0 Uil s
Sfloen U=l gore +1f
+1f 205+1 ||Ul,ﬁ—2||Hs+2 +1|f
S20flgese KB 142 |f|20§+2 K B2

Cs+2 ||Ul,ﬁ71 HH5+2

és+2 HUl,ﬁ—2||Hs+2

and
HRlz,ﬁHHs+1 § ”(aw’f)aw’Ul,ﬁ—IHHsﬂ + Hf(az’f)aw’Ul,ﬁ—2HHs+1
+ H(am’f)2azl Ul,ﬁ72 ’Hs+l
S|flgere KB + |f‘2cs+2 KB"?
and

1Rl e S 1w HULa=1ll e + 1 F U1l e + 1 (B £)Our Utz 1o
+ 1|00 £)20-Unii—2|| e + | F2Uti—2]| -
S 2|flgese KB 4+ 3| f]70. KB" 2,
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we find that

IReallge S K (1flooss B* 411

2Cs+2 Bﬁ—Q) .
For J; 5, we can show that

||Jl,ﬁ||Hs+1/2 S ‘|fﬂ[Ul,ﬁ—1]||Hs+1/2
5 |f|cs+1/2+u ||Ul,ﬁ71||Hs+3/2
5 |f|cs+1/2+a KBT_L71~

Hence, we deduce that

max {HRl’ﬁ

|Hs ; ||Jl,ﬁ||Hs+1/2} < KC (|f|CS+2 B7—1 + |f‘és+2 Bﬁ_2)
<K (B 4+ B,
It remains to estimate & 5, and for this, we use Lemma 5.1, which implies
|‘§1,n||Hs+1/2 < KEBg;
hence,
1Q1,n

In addition, we find, for [ =1, 2,

‘Hs+1/2 < KC (Bg*1 + BQ*Q + Bgf?,) .

HQZ,ﬁ||Hs+1/2 5 Hazl Ul,ﬁ—lHHs+1/2 + ||ax’Ul,ﬁ—1||Hs+1/2 + ||ax’Ul,ﬁ—2||Hs+1/2
+ HaZz Ul,ﬁ—2||Hs+1/2 + ||81’Ul,ﬁ—3||Hs+1/2 + ||8zz Ul,ﬁ—3HHs+1/z
S WUa-1llgore + 1Ua—2ll gove + 1 Unn—3]l ose
SK(B"™'+B"?+B"?),
and the lemma follows. O
We can now state and prove the main theorem of this section.

THEOREM 5.3. Given any integer s > 0, if f € C*T2([0,d]) and &, ,, € H*+3/2(]0, d])
such that

‘|§1,n‘|5+3/2 < KéBg
for constants K¢, B¢ > 0, then Uy, € H¥72([0,d] x [b,a]) for 1 =1,2 and
(5'2) HUl’nHHsH + ||U2,n||Hs+2 < KB"

for some universal constant K.

Proof. We proceed by induction, and at order n = 0, Theorem 4.3 guarantees a
unique solution such that

1U1,0

| vz T 1020l gase < Kell€1,0ll etz »

so we choose K > K. |[&1,0|fs13/2- We now assume (5.2) holds for all n < 7, and
from Theorem 4.3, we deduce that
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1ULallgpese + 1025 gese < O ([[R1all e + 1 R2,5 ]l e
+ 11

‘Hs+1/2 + ||J27ﬁ||Hs+1/2 + ||§2,ﬁ||Hs+1/2) + Oy ||fl,ﬁ||Hs+3/2 :

Appealing to Lemmas 5.1 and 5.2, we find that

[ULall sz + 1U2,nll jrose < 5CLKC (B 1+ B2+ B" %) + C3 K¢ BY.
Now, on choosing K > CyK,¢ and

B > max {Bg, 50,C, (5C,C)V2, (5016*)1/3} :

the theorem follows. 0

Remark 5.4. We point out that this result is quite similar to Theorem 2.13 of [7],
which establishes an analogous estimate in the single-layer setting.

6. Convergence analysis. We are now in a position to conduct a numerical
analysis of our TFE approach. We recall the TFE recursions (3.2) and note that,
in practice, we make use of the Floquet series representation, (3.3), and focus our
attention on the reduced problem (3.4). We further specialize by splitting this into

two: a homogeneous Helmholtz problem with inhomogeneous coupling (Eﬂ Z 0)
(see (B.1)) and an inhomogeneous Helmholtz problem with homogeneous coupling

@12 = 0) (see (B.2)). Clearly, the solution of (3.4) is the sum of the solutions of
these two problems, and, in practical numerical implementations, we need only solve
the latter, as (B.1) can be solved explicitly via separation of variables, e.g., [18, 21, 20].
For this reason, we focus on (B.2), and, for simplicity, we suppress the index n. The
weak form of this boundary value problem is

Find U® € H'(b,a) such that
(6.1) B(UW, ) = R(¢p) Ve H(ba),
where
BUW,¢) = —in1,,0" ()¢1(a) = iv2,05" (6) @(b)
+/ 0.UPd, 5 dz—fyg/ UP g dz,
b b
R(p) = T5(0) = o) + [ (~RP)p d.
b
For our numerical analysis, we define the discrete function space
Xy =span {u € C(b,a) | ulo,a), ulp0) € Pu,
(0= i ) (@) = T O+ i ) 1) = TP}

where P); is the space of all complex valued polynomials of degree less than or equal
to M. The Legendre—Galerkin approximation of (6.1) is as follows:

Find U®-M ¢ Xw,p such that
(6.2) BUPM oy) = Rlpnr) V¥ ou € Xy p-

To prove the main theorem of this section, the following interpolation result [35]
is required for the projection (II}, from H'(b,a) to Py subject to the boundary
conditions of the space Xy p.
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LEMMA 6.1. There exists a mapping oI, : H'(b,a) — X, such that
(0-(oI}V = V),0.00) =0 ¥V opr € Xgp.
Moreover, for 1 <1< M + 1, we have

(M—1+1)!

HOH}WV*VHHM 5 M)

(M + =02 0kv ||,

where =0, 1.

Proof. We prove this lemma for Vi := V| q). By the straightforward change
of variables * = 2z/a — 1, the domain of V; € H*(0,a) can be transformed to the
interval (—1,1). Thus, we establish the result for a real valued function v(x) on
A=(-1,1). Let H}\’; be the H}-orthogonal projection operator onto Py x Py, and,
for any v € H(A), we define v,(x) by

(@) = va(z) + (1;”5) (1) + (1 - m) v(=1), w.(x) € HL(A).

Similarly, we define ¢, (x) by

@) = o) + () o) + (57 ) oD, o) € HA),
for any ¢ € Py;. Regarding

oI v(@) = 11500, (2) + (1 ;x> v(1) + (1 3 “””) v(~1),

we observe that

(90 (o0 = 0),020) = (DU} v. = v.), Do)

<v(21) _ U(;U) /11 0. (T v, — v,) () dx

HOH}M’U(I’) — U”HM = HH}»’IOU* — v, .

|
v iy ee0r2 g1,
For [ = 1, by the Poincaré inequality, we derive that

10504l L2 < (1020] 2 + ¢ (o (V)] + [o(=1)]) < ¢[[Ozv]lL- -

From this, the lemma follows. O

Now we are ready to prove the convergence theorem:.
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THEOREM 6.2. Let U®) and UM be the solutions of (6.1) and (6.2), respec-
tively. Then, for 1 <1< M + 1, we have

Hﬁ(m _ ﬁ(:uLMH + | Hg@) _ ﬁ(p),M‘
H! P

L2
(M —1+1)!

< (L+pMT) i

(M + 1)1-072 HaiU(”)

L2’
Proof. Let
en i= UM _ I OW) &y = U@ — L, UP.

For opr € X p, using (6.1) and (6.2), we find

B(U(p) — @M, o) = 0.
Using Lemma 6.1, we obtain

Bleas, on) = BOWM _g®) @ — 11}, UP o)
— B((}(p) _ OH}\/[ﬁ(p),QOM)
(6.3) = = (ears o) — i71,pEn (a)@ar (@) — iv2,pE01 (B)@ar (D).

In view of (6.3), we rewrite (6.1) by replacing {U®), jl(p), jg(p),ﬁ(p)} with
{eMv 7i71,péM (CL), Z"YQ,péM(b)a VzéM}a
respectively. Then, by the regularity result (B.7) from Appendix B, we obtain that
2 2 S 2 - 2 - 2
learllz + 5 learllze S vp lenllze +97, [ear (@)l + 92, [ear (B)]° -
By the Gagliardo—Nirenberg interpolation inequality [36] and Lemma 6.1, we find

- ~ 1/2 1~ 1/2
e(x1)] < llearll % 1earl

S\ a2 gu@)|
Using Lemma 6.1 again, we deduce that
HU(p) _ U(p)7MH + [l HU(p) _ U(p%M‘
H1 P L2
S (learll g + bl llearll o + N1earll g + Pyl 1Ear 2)

M—1+1)!

< (1 + M 4 |y, M—W) ( T (M) HaiU“’)‘ 0

L2’
We now reintroduce the index n and let
P
UL M (@, z) = 3 O e, =01,
p=—P

be the Fourier-Legendre approximation of the solution U;,, of (3.2). Using the same
argument as in Theorem 3.3 in [31], we can prove the following estimate.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/08/21 to 128.248.156.45. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

468 YOUNGJOON HONG AND DAVID NICHOLLS

THEOREM 6.3. For any integer r > 1, if U € H", then

HV(UM . Ul{Z)’M)HL s HUz WU
< (P PO R M) W<M+r>“—”/2> Vil -
Finally, if we choose
UM (a, Z UM (2, 2)en

as our approximation to the solution U, of (3.2), then, using Theorem 6.3 and The-
orem 2.1 of [31], we have the final result.

THEOREM 6.4. For any integer r > 2, if f € C7([0,d]), & € H™™Y/2([0,d]), and
& € H™=3/%([0,d)), then we have, for 1 = 1,2,

V@ -, + ko - o MH < (Be)N+

L2

_ |
4 (P” (L 4+R2MY W(MJrr)(l’")/Q)

X (||€1HH7‘—1/2 + ||£2||Hr—3/2)-

Remark 6.5. A similar result appears in Theorem 3.6 of [7]. The difference is that
our new theorem concerns convergence of the fields as discretization parameters are
refined, while [7] estimate errors in the interface reconstruction.

7. Conclusions. In this paper, we have provided a rigorous numerical analysis
of a HOPS algorithm for electromagnetic scattering. Introducing DNOs at artificial
boundaries placed above the top and below the bottom of the structure, we equiva-
lently reformulated the governing Helmholtz equations for the doubly layered medium
on a bounded domain. Using a suitable change of variables, the governing equations
on a separable geometry with flat interfaces were derived. Introducing boundary
perturbations, we described the scattered field in a Taylor series; more precisely,
we derived a sequence of linear boundary value problems to be solved at each per-
turbation order resulting in the TFE algorithm. Our approach to establishing the
convergence and accuracy of the TFE methodology is to combine analyticity theo-
rems with results on Legendre—Galerkin methods. Our developments clearly point
toward several extensions of great importance. In particular, our approach must be
generalized to the three-dimensional vector wave equations of electromagnetics and
linear elastodynamics. These extensions are not straightforward, as more complicated
boundary conditions between layers are required. Hence, the algorithmic differences
will be significant, and we will describe them in a future publication.

Appendix A. Proof of the elliptic estimate: Theorem 4.3. To begin
our proof of Theorem 4.3, we state two classic results [29] on solutions of Helmholtz
problems on each of the two layers separately.

THEOREM A.1. Given any integer s > 0, if Fy € H*"Y([0,d] x [0,a]), U €
H*t1Y/2([0,d]), and K, € H*2([0,d]), then there exists a unique solution u €
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H*"1([0,d] x [0,a]) of

(A.1a) Aqu+ kiu = Fy, 0< 2z <a,
(A.1b) u="0, 2 =0,
(A.1c) 0y u —Thlu] = Ky, z21 = a,
such that

[ull goss < CudllFall gos + U rosrse + 1K a2} -

In addition, if U = [—0:,ul,, o and we define the DNO

G: (UK, F)—U, GUK,F]=G6OU+G" K ]+GOD R,

then
HG(O) U ‘ I < CG(U) ||UHH5+1/2 )
HG(“) H , S Cow 1Kl oy
HG( 0.aD ] H < Cowoay | Fill ga-n -

Hs—1/2

Proof. For clarity of presentation, we drop the “1” subscript on all variables. Due
to the quasi-periodic boundary conditions, we posit expansions

{u, F}(z, z) Z {i,, F,}(2)e'®,  {U,K}(x Z (U,, K,}er",

p=—00 p=—00

and (A.1) delivers the two-point boundary value problem

024y, + i, = Fp, 0<z<a,
ip(0) = Uy,
Ozt (a) — (ivp)iip(a) = Ky,
where
v = /k2—a2,  al <k
T =% 0, a2 = k?,

iy =iy o — k2 ap > k2,
Yo Yy € R, Ay, > 0.
It is not difficult to show that the unique solution of this problem is given by
ip(2) = Up@o(2;p) + Kpe @4 (23p) — Io[Ey) (2) — La[E3)(2),
where
ei’y;z’ 2 kQ
Bg(z;p) = e =< 1, = k2,

7//2 2
e w?, ap>k,

'Sw*d
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and
sin('\,/z’)z)7 o2 < k‘2,
sinh(y,z) T ’
Ba(aip) = T L T e,
p sinh (v 2) 9 9
71,),” , ooy > kT
and

L{Fy)() == / D05 )®a (5 p) Fy (5) ds,

LIE)(2) == / Bo(s;p)Bu(z ) Fy(s) ds.
It is straightforward to compute that

0.LIED) = Boleip) i) ) + | (0.%0(2:9)) a5 9) Ey () ds,

O.LL[Fy)(2) = ~Bolzsp)Balesp)Fy(2) + [ @o(sip)(@Bulz5p)) Fylo) ds.
Noting the cancellation in the sum of the terms 0,1y and 0,1,, we realize

01y (2) = 0paz®0(2§p) + erivpaazq)a('z;p) - jO[FP](Z) - ja[ﬁp}(z)a

where

D{E,)(2) = / (0.0 (2 ) a5 ) E (s) ds,

LIEI() = / Bo(5: p) (0,0 (2 p)) Ey (s) ds.
If we evaluate this at z = 0, we find

—0,11,(0) = —U,0.®0(0; p) — K,e'7720,®,(0; p) + Io[F,)(0) + I,[F,](0)
= —U,(iv,) — Kpe e —|—/ 173 cosh(7y,2) Fy(s) ds.
0

With these, it is easy to see that

GO == 3 e O:p0ye™>” = 3 (=i)Opes"
p=—00 p=—00
and
GWIK] = — Z e(9,D,)(0; p) K peir® = Z (e K eior®
p=—00 p=—00
and

G [F) = Z / (ei'“’s cosh(7,z) Fp(s) ds) elor®,
0

p=—00
Regarding the estimates, these follow from the asymptotic estimates of || ®ol|z2(4z),
1Pallz2(azys 1HolF N L2 (dz)s HalF]llL2(dz)s 1Ho[Fll L2 (dz)> and [[La[F]l| L2 dz)- g
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The analogue in the lower layer is the following result. It is established in an
almost identical fashion as Theorem A.1.

THEOREM A.2. Given any integer s > 0, if Fo € H*"([0,d] x [b,0]), V €
HtY2([0,d]), and Ky € H*"'/2([0,d]), then there exists a unique solution v €
H=([0,d] x [b,0]) of

(A.2a) Ao + kv = Fy, b< 2z <0,
(A.2b) v="V, 20 =0,
(A2C) 82211 — TQ[’U] = K27 Z9 = b,
such that

[0l groer < Co {llF2ll o + IV grosrz + 1Kol gro-r/2}-

In addition, if V = [02,9],,— and we define the DNO

T :(V,Ky, Fo) =V, JV, Ky, Fy] = JOWV] + JO[K,] + JOOD[Fy],
then

|7OWI ., < Coo WV lgeee

Hs—1/2
HJ(b) [KQ}HHs—m < Cyw | K2l a1y

oo, <Cano 15t

In addition, we require the following result on the boundary conditions which
couple v and v at the interface z; = zo = 0.

THEOREM A.3. Given any integer s > 0, if Q@ € H*tY/2([0,d]) and R €
H*=Y/2([0,d]), then there exists a unique solution pair U,V € H**1/2([0,d]) of

(A.3a) U-V=q,
(A.3b) GO +J9 V] =R
such that

max {[|U| gorirz s [Vigerz} < Co {ll@ grovare + [[Bll gra-1/2}-

Proof. The result follows simply from the well-known expressions for the flat-
interface DNOs

G U] = G LZ Upempgp] = Z (*Wl,p)f]p@mpxa
——00 p=—00

JOW) =7 LZ V] = Y (i) Vpe'™”,
=——00 pP=—00

so that the governing equations become

(Conp) i) ([é) (%) vrez
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These are readily solved,

() = e (G 1) (R)

and the {Up, Vp} have the right decay to verify the conclusions of the theorem. ]
We can now proceed to our principal result, Theorem 4.3.
Proof. [Theorem 4.3] We begin by rewriting (4.3) as

(A.4a) Ayu+ kiu=Fy, 0< 2z <a,
(A.4b) u="U, z1 =0,
(A.4dc) 0,u—T [u] = Ky, z1 = a,
(A.4d) Agv + kv = Fy, b <z <0,
(A.de) v="V, 29 =0,
(A.4f) 0,0 — Ty [v] = Ko, 29 = b,
(A.4g) U-V =g, z1 =29 =0,
(A.4h) U+V=—v, z1 =29 = 0.

From Theorem A.1, we see that, provided that Fy, € H*~', K; € H*"Y/2 and U €
H5t1/2 (A.4a)—(A.4c) delivers a unique solution u € H**! as desired. The functions
F} and K in the correct spaces are provided, so we merely need show that U is
in H*t1/2 In a similar fashion, Theorem A.2 guarantees that if F» € H*~! K, €
H*=1/2 and V € H*t1/2 then (A.4d)-(A.4f) provides a unique solution v € H*T!.
As before, the functions F5 and K> in the correct spaces are provided, so we are left
to show that V is in H*+1/2,

Thus, all that remains is to consider (A.4g)—(A.4h), which we write in terms of
DNOs as

U-V=¢
(Gw) U] + G@[K,] + G([o,al)[pl]) n (J<o> V] + J®[K,) + J<[b,01>[F2]) —
or
U-V=g¢
G (U] + J© V]=—v-— G(@ (K] — G([O’“])[Fl] _ J® (K] — J([bao])[F2]_
Theorem A.3 delivers the required solutions U, V € H'/? provided that
Q=gem 2,
R=—v—-GY[K ] - GUOD[R] - JO[K,] — JEOD[Fy] e H57Y/2,

both of which are true from (i) our hypotheses on £, v, Ky, Ko, F;, and F5 and (ii)
the mapping properties of G, G0l j®) "and J(¥:0D established in Theorems A.1
and A.2. d

Appendix B. Regularity of solutions of the weak formulation. We now
produce an elliptic regularity theory for solutions of the boundary value problem (3.4).
(For the sake of simplicity, we drop the indices {p,n}.) Noting that 77, = k7 — oz,
we split (3.4) into two BVPs: one with inhomogeneous coupling (which, due to the
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homogeneous Helmholtz equations, we can solve explicitly with Fourier analysis),

(B.1a) 92 Ui + iU, =0, 0< 2z <a,
(B.1b) 92Uz + 73U, =0, b< z <0,
(B.1c) Uy — Uy =&, 21 =29 =0,
(B.1d) 0,01 — 0.,U = &, 2 =2 =0,
(B.1le) 3Z1U1 - i’ylﬁl =0, 721 =a,
(B.1f) 0., Uz + iy2Us = 0, 29 = b,

and one with homogeneous coupling (but inhomogeneous Helmholtz equations),
(B.2a) 831[71 +730, = Ry, 0<% <a,
(B.2b) 82,Us + 73U = Ry, b <z <0,
(B.2¢) Uy — Uy =0, 21 =2 =0,
(B.2d) 9., Uy — 0,,Uy = 0, 21 =2 =0,
(B.2e) 8zl[71 — imﬁl = jl, z1 = a,
(B.2f) 8z2[72 + i’}/gﬁg = jg, 29 = b.

To study the regularity of solutions of (B.2), we find the variational formulation as in
[36, 37],

(B.3) /ba 0.U0.¢ —* /ba U — imUi(a)@(a) + iv2Us(b)@a(b)

~

= ipa(0) ~ o) + | R

take ¢ = U , and consider the imaginary and real parts, respectively. For the imaginary
part, we find

‘2 = Im{(—]/%\, U)} +Im {iﬁl(a)} —Im {fgﬁg(b)} :

- 2 ~
—n |Tr(@)| =72 |Ta(®)
With this, we estimate

2

S R P e w1

2 L2 2(5151\/[ L2

NI IO I R P B G P
B4 T [O@| +F {00 + o |3+ o [E]
(B.4) + 5 Ui(a)| + 5 Us(b) -1-2,}/1 J1 +272 Jo

where ks := max(|v1],|y2|) and §; > 0 will be chosen later. For the real part, we
deduce that

‘ i _ 2 H(}‘ i ~ Re {(—sz, 17)} +Re {flﬁl(a)} ~Re {fﬂ%(b)} ,

8217‘
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and this implies

~ 112 ~ 112 ~ 2 ~ 2
T R e

2

~ 2 1 12 §ak2, 1~112 1 ~
®9 A+ g, 1]+ 250 |7

+ [
2535&?\/[

Y

4(52 "Q?\/I ' 452 /i?w L2

where d2, 03 > 0 will also be chosen later. Using (B.4), we deduce that

- 2~ 2 1 12 1~
o ([P [T ) < [0, + g [R5 1A+
0 kM L2 m
where Ky, := min(y1,72), and this implies
~ 2 |~ 2 1 ~|2 1 |~2 1 =
(B.6) |Ti(a)| +|0a)] < ron —— |~ ]+ —— |
d1KMEm L* 7ikm Y2km
where 7 = Kpr/fm. Using (B.6) and (B.5), we derive that
S3k2 ~ 1|2 1) 1 NE
< (s + barfyran s 250 ) 0]+ (51 |
’ - <HM + 0263701+ 2 L2 + 61 + 205K3, L2

(o) (A7)

Setting 02 = d3/(2017), we obtain

+ (35 * e, ) IR,

1 2 .2
+ 52T2+ ‘J1’ +‘J2‘ .
réok3,

Regarding (B.3) again, we now take the test function

o 9:0.77 — 2z8zl:]1, z€(0,a) =: I,
2282U2, z e (b, 0) =: I5.

Then the weak form (B.3) becomes

~ 112 ~ 12 ~ 2 ~ 2
‘@Ul’ +‘8ZU2H +alo. (a)‘ —bla. (b)‘

Lz(h) L*(I2)

ot H L3(I) 3 H ‘ L3(I)

2 12
+ 8M?2 HRH
L2

oo )+ 22 (13 +[3]).

g,ﬁwM(]ﬁl(a)\ +|20) )H\

8
+ (T; + m4M2K,?W) <

~ 2
i(a)] +
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where M := max(|al, |b]) and m := min(|al, |b|]). Hence, we deduce that
11 ~12 m 2 )12
2[00],. % 20| )+ 0]
2 ‘ L2 * 2 ( 20)| ) + i L2

32M 2 K2 ~
< (e + 25 (s

~ 2
8ZU1(a)‘ +

1 12 1 12 |~ 2
Al + o (150 + 1))
L2 K2,

~12 32M2 /1~ 2 ~ 2
+em2 R+ = (‘Jll +| 7| >

2
_|_
L2

01KMEm

m
and this implies

1
2

0.0, + 2.0 +[o.00)])

2M2 2 —n2
+ (/ifn - (H?WM + w) 7'51) HUH
m L2

By choosing §; < (1/(273))(M + 32M?/m)~!, we derive our required estimate

~ 12 ~ 12 12 ~ |2 ~ |2
(B.7) (aZUH + o |0 SC(HRH +‘J1’ + || )
L2 L2 L2
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