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In this paper we establish the existence and analyticity of periodic solutions of a classical
free-boundary model of the evolution of three-dimensional, capillary–gravity waves on
the surface of an ideal fluid. The result is achieved through the application of bifurcation
theory to a boundary perturbation formulation of the problem, and it yields analyticity
jointly with respect to the perturbation parameter and the spatial variables. The
travelling waves we find can be interpreted as resulting from the (nonlinear) interaction
of two two-dimensional wavetrains, giving rise to a periodic travelling pattern. Our
analyticity theorem extends the most sophisticated results known to date in the absence
of resonance; ‘short crested waves’, which result from the interaction of two wavetrains
with unit amplitude ratio are realized as a special case. Our method of proof also sheds
light on the convergence and conditioning properties of classical boundary perturbation
methods for the numerical approximation of travelling surface waves. Indeed, we
demonstrate that the rather unstable numerical behaviour of these approaches can be
attributed to the strong but subtle cancellations in the formulas underlying their
classical implementations. These observations motivate the derivation and use of an
alternative, stable, formulation which, in addition to providing our method of proof,
suggests new stabilized implementations of boundary perturbation algorithms.
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1. Introduction

The stable and accurate numerical simulation of free-surface ocean dynamics is
one of the central problems in computational fluid mechanics. From shoaling and
breaking of waves over nearshore regions to energy, momentum, and scalar
transport in the open ocean, the rapid and reliable approximation of the surface
of a fluid is a necessary tool in problems of physical relevance. Surface waves that
propagate with constant velocity and without change of form (the travelling
waves) are a distinguished class of motions which are believed to be a
fundamental building-block of surface ocean dynamics.

In this paper we take up the mathematical question of regularity properties of
travelling wave solutions of the classical water wave model (see §2), which
constitutes an accurate representation for the motion of the free surface of
the ocean. In particular, we demonstrate that the water wave problem in
d-dimensions admits surfaces of solutions, parameterized by (dK1) many
Re
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parameters 32RdK1, which are jointly analytic in the parametric and spatial
variables. Our method of proof is perturbative in nature and general enough to
encompass every case away from resonances (see §4).

The first rigorous existence theorems for travelling wave solutions to the water
wave model date to the results in two space dimensions without surface tension
by Levi-Civita (1925) (infinite depth) and Struik (1926) (finite depth) who used
complex variables techniques. With the advent of the modern computer there
was a resurgence of interest in the problem in the 1970s and 1980s as highly
nonlinear waveforms could now be simulated (e.g. Schwartz, 1974; Roberts,
1983; Schwartz & Roberts, 1983; Marchant & Roberts 1987). This resurgence
was also accompanied by new theoretical developments. For instance, Reeder &
Shinbrot (1981a,b) studied the phenomena of Wilton ripples which arise in two-
dimensional travelling capillary–gravity water waves. They showed existence
and smoothness of branches of travelling wave solutions which exist in the
presence of resonance in the linearized problem. Other important theoretical
results in two space dimensions include those of Toland and collaborators, who
used various integral formulations of the two-dimensional water wave problem
coupled with variational techniques (e.g. minimizers, mountain pass). An
important early result of Toland’s (1978) established the global existence of the
bifurcating branch of solutions all the way to the Stokes singularity. Jones &
Toland (1986) also looked at surface tension effects in two dimensions, and
subharmonic bifurcations in (Jones & Toland 1985). Subharmonic bifurcation
was also the object of Buffoni et al. (2000).

In three dimensions, on the other hand, the most general results to date are
those of Craig & Nicholls (2000) who, in the presence of non-zero surface tension,
established existence of travelling capillary–gravity water waves with an arbitrary
fundamental period. The theorem of Craig & Nicholls used the surface formulation
of Zakharov (1968) and Craig & Sulem (1993), coupled with the Lyapunov–
Schmidt procedure from bifurcation theory. Other existence results in three
dimensions include that of Sun (1993), who viewed the travelling wave as
generated by a surface pressure, and Groves & Mielke (2001) and Groves (2001),
who have studied travelling waves using a ‘spatial dynamics’ approach. In this
formulation, the direction of propagation, in the traveling wave equations, is
considered the dynamical quantity; the transverse direction is typically considered
to be periodic and then periodic (in propagation direction) solutions are sought.

Regarding spatial analyticity of solitary travelling water waves, we mention
the seminal work of Lewy (1952) who, using complex variables techniques,
established that (in the presence of gravity alone) once the surface is known to be
C1, it is automatically analytic. Matei (2002) and Craig & Matei (2003) have
extended this result to non-zero capillarity in two and three dimensions,
respectively, using a partial hodograph transform. We also mention the broad
generalization of these techniques in the recent work of Koch et al. (2004).
Bona & Li (1997) established both spatial analyticity and decay (at infinity)
estimates for travelling waves for a wide class of nonlinear, dispersive wave
equations. Using a velocity potential/streamfunction formulation, they extended
these theorems to travelling water waves in two dimensions.

The three-dimensional results most closely related to those we present herein
are those of Reeder & Shinbrot (1981c), who demonstrate the existence and
Proc. R. Soc. A (2005)
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parametric analyticity of ‘short-crested’ capillary–gravity waves of sufficiently
small amplitude; short-crested waves are typically defined (Dias & Kharif 1999)
as the waves which result from the (nonlinear) interaction of two periodic
wavetrains of equal amplitude, infinite extent and non-zero angle of interaction
(as the angle of interaction approaches zero, the waves are typically referred to
as ‘long-crested’). Akin to the method we adopt in §3, Reeder & Shinbrot also
use a ‘domain flattening’ change of variables. Our results expand on those of
(Reeder & Shinbrot 1981c) in two important directions: first, our derivations
demonstrate that, in fact, the free boundary and velocity potential are jointly
analytic in space and bifurcation parameter (a fact that, of course, does not
follow from separate analytic dependence); and second, our developments allow
for the interaction of wavetrains of arbitrary amplitude ratio, i.e. not necessarily
short-crested waves. To attain the latter, our approach entails the use of
multi-dimensional perturbation parameters.

In addition to establishing existence and analyticity of hypersurfaces of
travelling water waves, our work also sheds light on the convergence and
conditioning properties of classical boundary perturbation methods for the
numerical simulation of travelling capillary–gravity water waves. In particular,
we discuss the method of Stokes (1847) (which we term the method of ‘field
expansions’ (FE)) that was further refined and carried out to high order by
Roberts (1983), Schwartz & Roberts (1983), and Marchant & Roberts (1987) for
three-dimensional travelling water waves in the absence of surface tension. As we
show in §2d, this method produces unstable results as the perturbation order is
increased due to subtle but significant cancellations which are present in the
underlying recursions. As we explain, a further consequence of this observation is
that these FE recursions cannot be used for a direct proof of existence or
analyticity. However, as we anticipated above, a direct proof can be realized once
a ‘domain flattening’ change of variables is effected, as this can be shown to
implicitly account for all significant cancellations. This latter fact suggests a
stabilized approach to numerical simulation, whose thorough investigation we
defer to future work (see also Nicholls & Reitich 2001a,b, 2003, 2004a,b).

The remainder of the paper is organized as follows: first, in §2, we introduce
the equations of motion and the classical FE approach to simulating travelling
water waves; in particular, in §2d, we demonstrate how these classical recursions
rely heavily on significant cancellations for their convergence. In §3, we introduce
a change of variables which substantially ameliorates these cancellations and
paves the way for the analyticity proof of §4; some auxiliary results necessary for
this latter proof are collected in appendix A.
2. Preliminaries

In this section, we briefly review the equations of motion of the water wave
problem (ideal fluid, free-surface flow) and outline the classical FE technique for
perturbatively computing solutions. With the aid of a numerical implementation
of this algorithm and several simulations, we illustrate how these recursions are
inherently unstable at high orders owing to underlying cancellations.
Proc. R. Soc. A (2005)
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(a) Equations of motion

Consider a d-dimensional (dZ2, 3) fluid (one vertical dimension specified by the
variable y and (dK1) horizontal dimensions specified by x) bounded below by an
impermeable bottom at yZKh (h possibly infinite) and above by an
undetermined air/fluid interface, yZh(x, t), which occupies the domain

Sh;h Z fðx; yÞ2RdK1!RjKh!y!hðx; tÞg:

In the case of finite depth, no generality is lost if h is set to one, as this simply
amounts to a rescaling of independent variables. Consider also the classical
assumption that the fluid be periodic with respect to the lattice G3RdK1,
which defines a parallelogram of periodicity P(G). The equations of motion of
an ideal fluid in such a domain under the effects of gravity and capillarity are
(Lamb 1993)

D4Z 0 in S1;h; (2.1a)

vy4ðx;K1ÞZ
ð

PðGÞ

vy4ðx;K1Þ dx;
ð

PðGÞ

4ðx;K1Þ dx Z 0; (2.1b)

vt4C 1

2
jV4j2CghKskðVxhÞZ 0 at y Zh; (2.1c)

KvthKVxh$Vx4Cvy4Z 0 at y Zh; (2.1d)

where 4 is the velocity potential, g is the constant of gravity, s is the constant of
capillarity and k is the curvature:

kðVxhÞZ divx
Vxhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C jVxhj2
q
2
64

3
75:

As we stated, we shall be concerned with travelling waves translating uniformly
with speed c2RdK1, which satisfy

D4Z 0 in S1;h; (2.2a)

vy4ðx;K1ÞZ
ð

PðGÞ

vy4ðx;K1Þ dx;
ð

PðGÞ

4ðx;K1Þ dx Z 0; (2.2b)

½c$Vx �4C 1

2
jV4j2 CghKskðVxhÞZ 0 at y Z h; (2.2c)

K½c$Vx �hKVxh$Vx4Cvy4Z 0 at y Zh: (2.2d)
Proc. R. Soc. A (2005)
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(b) Bifurcation theory

Adopting a bifurcation theoretic approach, we seek solutions of equation (2.2)
near the quiescent state (4ZhZ0 and any velocity c) which forms a ‘trivial’
family of solutions. Bifurcation theory requires the analysis of the linearization of
equation (2.2) about these trivial solutions which leads to consideration of the
problem

D41ðx; yÞZ 0 in S1;0; (2.3a)

vy41ðx;K1ÞZ
ð

PðGÞ

vy41ðx;K1Þ dx;
ð

PðGÞ

41ðx;K1Þ dx Z 0; (2.3b)

½c0$Vx �41ðx; 0ÞC ½gKsDx �h1ðxÞZ 0; (2.3c)

K½c0$Vx �h1ðxÞCvy41ðx; 0ÞZ 0: (2.3d)

The periodic boundary conditions (2.3a) and (2.3b) imply that

41ðx; yÞZ
X

k2G0;ks0

a1;k
coshðjkjðyC1ÞÞ

coshðjkjÞ eik$x ; h1ðxÞZ
X

k2G0;ks0

d1;k e
ik$x :

Equations (2.3c) and (2.3d) become

Aðc0; kÞ
a1;k

d1;k

 !
h

c0$ik gCsjkj2

jkjtanhðjkjÞ Kc0$ik

 !
a1;k

d1;k

 !
Z

0

0

 !
; (2.4)

for every k2G 0, ks0. Thus a non-trivial solution can exist only if the matrix
A(c0, k) is singular for some k2G 0, that is, if the determinant

Lsðc0; kÞZ ðc0$kÞ2 KðgCsjkj2Þjkj tanhðjkjÞ (2.5)

vanishes. In this case, if a pair (c0, k) satisfies Lsðc0; kÞZ0, then a non-trivial
solution of equation (2.3) is

h1ðxÞZakðc0$kÞeik$x C �akðc0$kÞeKik$x ; (2.6a)

41ðx; yÞZakiðgCsjkj2Þ coshðjkjðyC1ÞÞ
coshðjkjÞ eik$x ;

K�akiðgCsjkj2Þ coshðjkjðyC1ÞÞ
coshðjkjÞ eKik$x ; (2.6b)

where ak2C is an arbitrary constant.
Our approach to finding non-trivial solutions of equation (2.3) when dZ2

is to choose a wavenumber k12G0(k1s0) and solve for the corresponding c0
Proc. R. Soc. A (2005)



D. P. Nicholls and F. Reitich1288
such that Lsðc0; k1ÞZ0, i.e.

c0 ZG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgCsjk1j2Þtanhðjk1jÞ

jk1j

s
; (2.7)

without loss of generality, we can always select the positive root. With c0 chosen
in this way, we can write Lsðc0; kÞZk2ðjðk1ÞKjðkÞÞ where

jðkÞZ ðgCsk2ÞtanhðkÞ
k

;

and we have used the fact that tanh(k)/k is even to drop the absolute value.
Clearly, when kZ0, Gk1, Ls is zero and the null space of the linearized

operator is at least three-dimensional. An important question is whether other
wavenumbers will produce zeros of Ls resulting in a higher dimensional null
space; this scenario is one of resonance and is left outside the scope of our current
theory. However, one can easily make some general statements concerning the
possibility of resonance. In the case of zero surface tension (sZ0)

jðkÞZ g tanhðkÞ
k

;

which (for kO0) is strictly decreasing, implying that j(k)Zj(k1) if and only if
kZGk1. Thus, in this case, there can be no resonance. However, for sO0, the
derivative of j may vanish at a point if s/g is sufficiently small. However, even in
this case, the existence of an additional integer root of j(k)Zj(k1) will not occur
generically.

Our approach to finding non-trivial solutions of equation (2.3) when dO2 is to
choose (dK1) many wavenumbers k1; k2;.; kdK12G0 ðkjs0Þ and solve the
corresponding set of (dK1) equations Lsðc0; kjÞZ0, i.e.

Kc0 ZR; (2.8)

where K2R(dK1)!(dK1) has rows k1, k2, ., kdK1, and R2RdK1 has j th entry

Rj ZG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgCsjkj j2Þjkj jtanhðjkj jÞ

q
: (2.9)

Among the 2dK1 choices for the vector R, we will always choose the one such that
RjO0. When dO2 there is always the possibility, though rare, that additional
‘resonant’ wavenumbers kd, ., kp may exist such that L(c0, kj)Z0 for jZd, ., p.
In fact, when sZ0 the number p can be infinite; see e.g. (Craig & Nicholls 2000)
for a more complete discussion of these issues.

For general dR2, in the non-resonant case (pZdK1), the first-order solution
will be of the form:

h1ðxÞZ
XdK1

jZ1

hej 3j Z
XdK1

jZ1

ðrj3jÞðc0$kjÞcosðkj$xCqjÞ:

Clearly, by varying 3j, we lose no generality by setting rjZ1. Furthermore, by
fixing the crest of the linear solution at zero we may choose qjZ0. Therefore our
Proc. R. Soc. A (2005)
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solution surface will be parameterized by (dK1) many parameters, 3j. We note
here that, in particular, our construction in §4 will deliver a unique solution
ðhð31;.; 3dK1Þ; 4ð31;.; 3dK1Þ; cð31;.; 3dK1ÞÞ even in the degenerate case where
one or more of the 3j is set to vanish identically. For instance, when dZ3 if we set
32Z0, then the linear solution becomes

h1ðxÞZ 31 cosðk1$xÞ;
and k2 plays no role; in fact, the presence of k2 is purely artificial. As a
consequence of this, our unique solutions comprise, in this situation, only a one-
dimensional family within the two-dimensional (Stokes) manifold of solutions
corresponding to k1 (Craig & Nicholls 2002). Interestingly, however, this
manifold can be completely recovered from our solutions by adding appropriate
velocity components. More precisely, if our unique solution is (h(31,0), f(31,0),
c(31,0)), then all solutions can be parameterized by (31, d)/(h(31,0), f(31,0),
c(31,0)Cdc*), where c*$k1Z0. Similar remarks apply to the case 31Z0
and 31Z32Z0 (trivial branch); in this latter case the parameterization is
ðd1; d2Þ/ð0; 0; cð0; 0ÞCðd1; d2ÞÞ.

(c) Field expansions

A classical approach to finding approximate solutions to equation (2.2) was
devised by Stokes (1847) in the mid-1800s. It consists of the boundary
perturbations philosophy we have termed ‘field expansions’ (FE) to distinguish
it from the alternative ‘operator expansions’ approach, (e.g. Nicholls & Reitich
2004a,b) carried out to low (first or second) order. This method was expanded to
higher orders by subsequent authors with the most recent attempts being those
of Roberts (1983), Roberts & Schwartz (1983), and Marchant & Roberts (1987).
For ease of comparison with the results contained in these papers we adopt their
notation in the current exposition of the FE approach.

For simplicity, we consider equation (2.2) in the case of two dimensions
(dZ2), 2p-periodicity, zero capillarity (sZ0), and infinite depth (hZN).
Following Roberts (1983), we define the surface velocities:

UðxÞZ vx4ðx; yÞjyZh; V ðxÞZ vy4ðx; yÞjyZh;

and expand

hðx; 3ÞZ
X
nR1

hnðxÞ3n; 4ðx; y; 3ÞZ
X
nR1

4nðx; yÞ3n; cð3ÞZ
X
nR0

cn3
n; (2.10a)

Uðx; 3ÞZ
X
nR1

UnðxÞ3n; V ðx; 3ÞZ
X
nR1

VnðxÞ3n: (2.10b)

We find that we must solve

D4n Z 0; y!0; (2.11a)

vy4n/0; y/KN; (2.11b)

c0Un Cghn ZQn KcnK1U1 at y Z 0; (2.11c)
Proc. R. Soc. A (2005)
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Kc0vxhn CVn ZRn CcnK1vxh1 at y Z 0; (2.11d)

where

Qn ZK
XnK2

lZ1

clUnKl K
1

2

XnK1

lZ1

UlUnKl K
1

2

XnK1

lZ1

VlVnKl ;

Rn Z
XnK2

lZ1

clvxhnKl C
XnK1

lZ1

vxhlUnKl :

To solve these equations we note that, on account of equations (2.11a) and
(2.11b), and the periodic boundary conditions, hn and 4n can be expressed as

hnðxÞZ
XN
kZKN

dn;k e
ikx ; 4nðx; yÞZ

XN
kZKN

an;k e
ikxCjkjy: (2.12)

To find forms for Un and Vn we first write

egh Z exp g
X
nR1

hn3
n

" #
Z
X
nR0

Enðx;gÞ3n:

As can be easily verified, the coefficients En are polynomials in g of degree n
which can be recursively found from the relations

E0 Z 1; En Z
Xn
lZ1

l

n
hlEnKlðx;gÞg: (2.13)

Then, we have

UðxÞZ
X
nR1

vx4nðx; yÞ
����
yZh

3n Z
X
nR1

XN
kZKN

an;kðikÞeikx ejkjh3n

Z
X
nR1

XN
kZKN

X
mR0

Emðx; jkjÞ3m
 !

an;kðikÞeikx3n

Z
X
nR1

3n
XN
kZKN

ðikÞan;k eikx C
X
nR2

3n
XnK1

lZ1

XN
kZKN

EnKlðx; jkjÞðikÞal;k eikx ;

so that we can write UnZ �UnC ~Un; where

�Un Z
XN
kZKN

ðikÞan;k eikx ; ~Un Z
XnK1

lZ1

XN
kZKN

EnKlðx; jkjÞðikÞal;k eikx : (2.14)

Similarly, VnZ �VnC ~Vn; where

�Vn Z
XN
kZKN

jkjan;k eikx ; ~Vn Z
XnK1

lZ1

XN
kZKN

EnKlðx; jkjÞjkja1;k eikx : (2.15)
Proc. R. Soc. A (2005)
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Finally, we can rewrite equation (2.11) as

D4n Z 0 y!0; (2.16a)

vy4n/0; y/KN; (2.16b)

c0 �Un Cghn ZQn Kc0 ~Un KcnK1U1 at y Z 0; (2.16c)

Kc0vxhn C �Vn ZRn K ~Vn CcnK1vxh1 at y Z 0; (2.16d)

which, using equation (2.12), is equivalent to

ic0k g

jkj Kic0k

 !
an;k

dn;k

 !
Z

Sn;k KðicnK1kÞa1;k
Tn;k CðicnK1kÞd1;k

 !
; KN!k!N; (2.17)

where

Sn Z
XN
kZKN

Sn;k e
ikx ; Tn Z

XN
kZKN

Tn;k e
ikx ;

and

Sn ZKc0 ~Un K
XnK2

lZ1

clUnKl K
1

2

XnK1

lZ1

UlUnKl K
1

2

XnK1

lZ1

VlVnKl ;

Tn ZK~Vn C
XnK2

lZ1

clvxhnKl C
XnK1

lZ1

vxhlUnKl :

The FE procedure consists of solving equation (2.17) recursively up to a
specified order nZN, starting with relations of the form (2.6), where kZk1 and c0
are chosen to satisfy L0(c0, k1)Z0. For example, choosing k1Zc0Z1 and
normalizing gZ1 the linear part of the solution (taking a real) is (cf. equation
(2.6))

h1ðxÞZ 2a cosðxÞ; 41ðx; yÞZK2a ey sinðxÞ: (2.18)

The procedure can be carried out to an arbitrarily high order N by recursively
solving equation (2.17). Of course, by the choice of c0, the matrix in equation
(2.17) is singular at kZGk1 and a compatibility condition is required to ensure
solvability. This is provided by an appropriate choice of cnK1 in equation (2.17)
which closes the system of equations.

(d) Cancellations

It should be noted that this derivation of the FE recursions, equation (2.17), is
purely formal in nature. Indeed, for instance, the recurrence entails spatial
derivatives of the velocity potential of an increasingly high order (cf. equations
(2.14) and (2.15)) whose growth should be controlled if the series in equation
(2.10) are to be shown to converge. On the other hand, if such control is to be
Proc. R. Soc. A (2005)



Table 1. Coefficients jdn,nj and digits of accuracy

(Computation of the coefficients jdn,nj (cf. equation (2.12)), in double and quadruple precision—only
16 digits are reported—and the digits of accuracy contained in the double precision calculation.)

n double precision quadruple precision digits of accuracy

5 0.162 760 416 666 666 8 0.162 760 416 666 666 7 15
7 0.182 367 621 527 777 9 0.182 367 621 527 777 8 15
9 0.231 689 889 090 401 3 0.231 689 889 090 401 8 15
11 0.317 278 892 745 832 9 0.317 278 892 745 837 1 14
13 0.456 719 934 443 245 0 0.456 719 934 443 266 4 13
15 0.681 283 829 123 065 3 0.681 283 829 123 126 3 12
17 1.043 768 775 207 166 1.043 768 775 207 084 13
19 1.632 677 013 377 351 1.632 677 013 390 746 11
21 2.596 641 986 288 087 2.596 641 980 321 151 9
23 4.186 275 932 441 967 4.186 277 983 801 273 6
25 6.823 624 125 009 305 6.825 974 125 230 163 3
27 8.836 865 217 279 312 11.237 383 290 065 77 0

D. P. Nicholls and F. Reitich1292
based on the relations (2.17), it will demand, for instance, that we bound Un, Vn

recursively from equations (2.14) and (2.15). Here, however, the only obvious
bound will, by necessity, use the triangle inequality in the order l (cf. equations
(2.14) and (2.15)). As we have shown in related applications of boundary
perturbation approaches (Nicholls & Reitich 2001a,b, 2003, 2004a,b), these
bounds will consistently fail to provide useful growth control on any norm of the
solutions as they destroy significant cancellations that are present in the
corresponding recurrences.

To substantiate this claim we next present a set of numerical experiments that
demonstrate the existence of cancellations in equations (2.14) and (2.15) as well
as their implications in attempts at numerically simulating travelling water
waves with high-order versions of the FE scheme. We begin by choosing specific
parameters that give rise to a bifurcating solution: dZ2, sZ0, hZN, gZ1,
2p-periodicity, k1Z1, c0Z1, for which we present results of a suitable FE
implementation up to order NZ40. In particular, all convolution products in Sn
and Tn are performed using fast Fourier acceleration in vectors of length NxZ128
(which represent wavenumbers [KNx/2, Nx/2K1]) greater than 2NZ80 to
prevent aliasing.

The first evidence we present concerns the accurate computation of the
Fourier coefficients of the wave profile h. It is not difficult to see that, beginning
with equation (2.18), dn;nCpZan;nCpZ0 for all pO0, while dn,n and an,n will not
be equal to zero and represent a ‘leading edge’ of non-zero Fourier coefficients at
order n. In table 1 we report the results of the computation of jdn,nj, via the FE
recursion (2.17) with aZ1/2 in equation (2.18), in both double and quadruple
precision (NxZ128). In the final column we treat the quadruple precision
calculations as ‘exact solutions’ and count the digits of accuracy in the double
precision calculation. We point out the precipitous loss of accuracy in the
coefficients jdn,nj through all orders of n, which rapidly accelerates beyond nZ17,
resulting in approximations which contain no accurate information by nZ27.
Proc. R. Soc. A (2005)
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Figure 1. Comparison of double and sextuple precision computations of h128n , cf. equation (2.19),
with a highly resolved solution (sextuple precision calculation with NxZ128, nZ40). Error is
measured in the L2 norm (NxZ128, 0%n%39, 3Z0.3, sZ0, hZN, gZ1, kZ1, c0Z1).

1293Analyticity of travelling water waves
In the previous calculation, one could argue that for large n an accompanying
factor of 3n (where 3 is typically much less than 1) in the approximation of h(x)
might disguise the inaccurate computation of dn,n. However, as the next
calculation illustrates, such a hope is unfounded and the accurate computation of
high-frequency information is crucial for a correct representation. To sub-
stantiate this claim, we next approximate a more physically relevant quantity,
the L2-norm of the wave form h(x). More specifically, if we denote

hNx
n ðx; 3ÞZ

Xn
jZ0

XNx=2K1

kZKNx=2

dj;k e
ikx3j ; (2.19)

which represents the FE approximation to h(x), then in figure 1 we present the
difference (measured in L2) between double precision and sextuple precision
approximations of h128n ðx; 0:3Þ, and a highly resolved calculation (sextuple
precision with NxZ128 and nZ40); sextuple precision was necessary as we found
that quadruple precision calculations were inadequate beyond nZ33. We note
that at 3Z0.3 the sextuple precision calculation is fully converged at nZ40,
indicating that 3Z0.3 is within the disc of convergence of the Taylor series (2.10).
We point out in this figure the explosive divergence of the double precision
calculation as n is increased. We also note the roughly linear shape of the curve
on the log-linear axes indicating the exponential growth of errors.
3. Transformed field expansions

As the calculations of the previous section indicate, the cancellations in equation
(2.17) are present for all n and increase in severity with increasing n. As
explained above, this has consequences for more than just numerical simulation.
Indeed, as we mentioned, the cancellations preclude the use of the most natural
Proc. R. Soc. A (2005)
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approach to estimating the convergence of the series (2.10) based on the
derivation of bounds, e.g. of the form shnsHs!CBn, from the recurrence (2.17).

However, as we explain next and further demonstrate in §4 a direct estimation
of the terms in the series (2.10) can be realized upon a change of independent
variables in advance of the perturbation expansion, much as in the application of
boundary perturbation methods to boundary value problems (Nicholls & Reitich
2004a,b). Indeed, as in these latter applications, the transformation has the effect
of implicitly accounting for all significant cancellations so that the terms in the
corresponding recurrence can be inductively estimated. To derive these trans-
formed field expansions (TFE) we begin by considering the transformation

x 0 Z x; y 0 Z
yKh

1Ch
; (3.1)

which maps the domain S1,h to the strip S1,0. The equations (2.2) become, upon
dropping primes,

D4ðx; yÞZFðx; yÞ in S1;0; (3.2a)

vy4ðx;K1ÞZ
ð

PðGÞ

vy4ðx;K1Þ dx;
ð

PðGÞ

4ðx;K1Þ dx Z 0; (3.2b)

½c0$Vx �4C ½gKsDx �hZQðxÞ at y Z 0; (3.2c)

K½c0$Vx �hCvy4ZRðxÞ at y Z 0; (3.2d)

where c0 will be defined as in equation (2.7), Fðx; yÞZdivx ½F ð1Þðx; yÞ�C
vyF

ð2Þðx; yÞCFð3Þðx; yÞ, and

Fð1Þðx; yÞZKh2Vx4K2hVx4Cð1CyÞð1ChÞVxhvy4; (3.3a)

F ð2Þðx; yÞZ ð1CyÞð1ChÞVxh$Vx4Kð1CyÞ2jVxhj2vy4; (3.3b)

F ð3Þðx; yÞZ ð1ChÞVxh$Vx4Kð1CyÞjVxhj2vy4: (3.3c)

The functions Q(x) and R(x) are represented by similar formulas.
To solve equations (3.2) in the transformed variables we now propose the

following expansions for 32RdK1 and multi-index n2NdK1

4ðx; y; 3ÞZ
X
jnjR1

4nðx; yÞ3n; hðx; 3ÞZ
X
jnjR1

hnðxÞ3n; cð3ÞZ
X
jnjR0

cn3
n (3.4)

(the ‘TFE’) and find that we must solve the following problems

D4nðx; yÞZ ð1Kdjnj;0ÞFnðx; yÞ in S1;0; (3.5a)

vy4nðx;K1ÞZ
ð

PðGÞ

vy4nðx;K1Þ dx;
ð

PðGÞ

4nðx;K1Þ dx Z 0; (3.5b)
Proc. R. Soc. A (2005)
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½c0$Vx �4nðx; 0ÞC ½gKsDx �hnðxÞC
XdK1

jZ1
ej%n

½cnKej$Vx �4ej ðx; 0ÞZQnðxÞ; (3.5c)

K½c0$Vx �hnðxÞCvy4nðx; 0ÞK
XdK1

jZ1
ej%n

½cnKej$Vx �hej ðx; 0ÞZRnðxÞ: (3.5d)

Here, dk,p is the Kronecker delta, ejZð0;.; 0; 1; 0;.; 0Þ where ej is non-zero at
index j, and for multi-indices m, n2NdK1, m%n if mj%nj for all jZ1;.; dK1.

Furthermore, Fnðx; yÞZdivx ½F
ð1Þ
n ðx; yÞ�CvyF

ð2Þ
n ðx; yÞCF

ð3Þ
n ðx; yÞ, where

F ð1Þ
n ðx; yÞZ

XjnjK1

jmjZ2

XjmjK1

jljZ1

hlhmKlVx4nKm K2
XjnjK1

jljZ1

hlVx4nKl

Cð1CyÞ
XjnjK1

jmjZ2

XjmjK1

jljZ1

hlVxhmKlvy4nKm Cð1CyÞ
XjnjK1

jljZ1

Vxhlvy4nKl ;

(3.6a)

Fð2Þ
n ðx; yÞZð1CyÞ

XjnjK1

jmjZ2

XjmjK1

jljZ1

hlVxhmKl$Vx4nKm Cð1CyÞ
XjnjK1

jljZ1

Vxhl$Vx4nKl

Kð1CyÞ2
XjnjK1

jmjZ2

XjmjK1

jljZ1

Vxhl$VxhmKlvy4nKm; ð3:6bÞ

F ð3Þ
n ðx; yÞZ

XjnjK1

jmjZ2

XjmjK1

jljZ1

hlVxhmKl$Vx4nKm C
XjnjK1

jljZ1

Vxhl$Vx4nKl

Kð1CyÞ
XjnjK1

jmjZ2

XjmjK1

jljZ1

Vxhl$VxhmKlvy4nKm:
(3.6c)

The functions Qn and Rn can be similarly derived. Note that F
ðlÞ
n (and Qn, and

Rn) depend only on {hj}jjj!jnj, {4j}jjj!jnj, and {cj}jjj!jnjK1, and vanish for jnjZ1.
4. Analyticity of solutions

Clearly, the nature of equations (3.5) is quite similar to that of equations (2.16);
however, there are some important differences. Most notably, in contrast to
equations (2.16), the right-hand sides of equation (3.5) contain only derivatives
of order one or two which act either on the field, 4l, or the surface shape, hl.
In what follows, we show that this, in fact, allows for the inductive establishment
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of bounds:

s4nsX%CBjnj; shnsY%CBjnj; jcnj%CBjnj

in appropriate function spaces X and Y, and for some constants C, BR0.
Furthermore, we will show that all spatial derivatives of 4n and hn can be
similarly bounded, implying that all quantities are jointly analytic with respect
to all arguments.

To set notation we recall that any L2 function f periodic on a (dK1)-
dimensional lattice G3RdK1 can be represented as

f ðxÞZ
X
k2G0

f̂ ðkÞeik$x ; (4.1)

where G 0 is the conjugate lattice to G. Additionally, if an L2 function u(x, y) is
periodic in x with respect to G and square integrable in the y variable on [K1, 0]
then

uðx; yÞZ
X
k2G0

ûðk; yÞeik$x : (4.2)

Using this representation we can define the L2 based Sobolev spaces

Hs Z fu2L2jsusHs!Ng; (4.3)

for s2ZC and where

suðx; yÞs2
Hs h

Xs
jZ0

X
k2G0

hki2sK2j

ð0
K1

jvjyûðk; yÞj2dy: (4.4)

and hkiZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Ck2

p
. Note that if fZf(x) depends on x alone then the space Hs for

s2R can be defined by the norm

sf ðxÞs2
Hs h

X
k2G0

hki2sjf̂ ðkÞj2: (4.5)

For future reference we note the following algebra property for Hs (Adams,
1975).

Lemma 4.1. If sOd/2 then Hs is an algebra, i.e. for u, v2Hs

suvsHs%MsusHssvsHs (4.6)

for a constant MZM(d, s) depending only on d and s.

In the case of non-zero surface tension (sO0), our main result is as follows.

Theorem 4.2. Given an integer sOd/2, if jnjR1 the solutions 4n(x, y), hn(x),
and cnKej of equation (3.5) (sO0) satisfy���� vkxv

l
y

ðjkjC lÞ! 4n

����
HsC2

%C1

BjnjK1

jnjp
Dl

ðlC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2
; (4.7a)
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���� vkx

jkj! hn
����
HsC5=2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
; jcnKej j%C1

BjnjK1

jnjp (4.7b)

for all jZ1,., dK1, pOdK1, and some constants C1, B, D, AO0.

We will prove theorem 4.2 by induction on l; thus our first objective is to
establish the result for lZ0. This is done in the following lemma, for all k, with an
induction on the order jnj.
Lemma 4.3. Given an integer sOd/2, if jnjR1 the solutions 4n(x, y), hn(x), and

cnKej of equation (3.5) (sO0) satisfy

���� vkx

jkj! 4n

����
HsC2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
;

���� vkx

jkj! hn
����
HsC5=2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
; jcnKej j%C1

BjnjK1

jnjp

for all jZ1, ., dK1, pOdK1, and some constants C1, B, AO0.

To prove Lemma 4.3 we need two lemmas: the following which estimates the
right hand sides of equation (3.5) of the inhomogeneous problems, and the sequel
which provides estimates on solutions of these problems.

Lemma 4.4. Given an integer sOd/2, suppose that

���� vkx

jkj! 4n

����
HsC2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
ck;

���� vkx

jkj! hn
����
HsC5=2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
ck; jcnKej j%C1

BjnjK1

jnjp ;

for all 1%n!N (i.e. nj!Nj), pOdK1, and for some constants C1, B, AO0. Then

there exists a constant C2 such that the functions F
ðjÞ
N , Q

ðjÞ
N , and RN in equation

(3.5) satisfy

���� vkx

jkj! F
ðjÞ
N

����
Hs

%C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
ck; (4.8a)

���� vkx

jkj!Q
ðjÞ
N

����
HsC1=2

%C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
ck; (4.8b)

���� vkx

jkj!RN

����
HsC1=2

%C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
ck: (4.8c)
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Proof of lemma 4.4. For the sake of brevity consider the first term of F
ð3Þ
N :

Z1 Z
XjnjK1

jmjZ2

XjmjK1

jljZ1

hlhmKlVx4nKm;

every other term in FN, QN, and RN can be similarly estimated. We begin

���� vkx

jkj! Z1

����
Hs

%
XjN jK1

jmjZ2

XjmjK1

jljZ1

M 2
X
s%t

X
t%k

k!jsj!jtKsj!jkKtj!
jk!j!s!ðtKsÞ!ðkKtÞ!

���� vsx

jsj! hl
����
Hs

!

���� vtKs
x

jtKsj! VxhmKl

����
Hs

���� vkKt
x

jkKtj! Vx4NKm

����
Hs

:

Since

k!jsj!jtKsj!jkKtj!
jkj!s!ðtKsÞ!ðkKtÞ!%1;

we can deduce that

���� vkx

jkj! Z1

����
Hs

%
XjN jK1

jmjZ2

XjmjK1

jljZ1

M 2
X
s%t

X
t%k

C1

BjljK1

jljp
YdK1

qZ1

Asq

ðsq C1Þ2

!C1

BjmKljK1

jmK ljp
YdK1

qZ1

AtqKsq

ðtq Ksq C1Þ2
C1

BjNKmjK1

jN Kmjp
YdK1

qZ1

AkqKtq

ðkq Ktq C1Þ2
:

Continuing,���� vkx

jkj! Z1

����
Hs

%M 2C3
1

BjN jK3

jN jp S2ðdK1ÞYdK1

qZ1

Akq

ðkq C1Þ2
XjN jK1

jmjZ2

XjmjK1

jljZ1

jN jp

jljpjmK ljpjN Kmjp ;

and ���� vkx

jkj! Z1

����
Hs

% M 2C3
1

S2ðdK1ÞS2
dK1

B

" #
BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
;

where

S Zmax
k

Xk
tZ0

k2

ðtC1Þ2ðkKtK1Þ2
; SdK1hmax

m

XjmjK1

jljZ1

jmjp

jljpjmK ljp ;

which is bounded uniformly in jmj for pOdK1. The proof is complete provided
BOMC1S

dK1SdK1. &

The second lemma necessary to prove lemma 4.3 is now presented; the proof,
based on classical elliptic estimates, is given in appendix A.
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Lemma 4.5. Consider any integer sR0. Given linearly independent
wavenumbers k1;.; kdK12G03RdK1 there exists a unique speed cZðc1;.; cdK1Þ
2RdK1 satisfying equation (2.8) such thatRjO0.Given this c, if for all multi-indices
jnjZ �n, pn2H s, qn2H sC1/2, and rn2H sC1/2 then there exist for all jnjZ �n
real solutions wn2H sC2, vn2H sC5/2, and mnKej ðjZ1;.; dÞ of

Dwnðx; yÞZ pnðx; yÞ in S1;0; (4.9a)

vywnðx;K1ÞZ
ð

PðGÞ

vywnðx;K1Þ dx;
ð

PðGÞ

wnðx;K1Þ dx Z 0; (4.9b)

ðgKsDxÞvnðxÞC ½c$Vx �wnðx; 0ÞC
XdK1

jZ1
ej%n

½mnKej$Vx �bej ðxÞZ qnðxÞ; (4.9c)

K½c$Vx �vnðxÞCvywnðx; 0ÞK
XdK1

jZ1
ej%n

½mnKej$Vx �fej ðxÞZ rnðxÞ; (4.9d)

where

bej ðxÞZaj iðgCsjkj j2Þeikj$x K �aj iðgCsjkj j2ÞeKikj$x ; (4.10a)

fej ðxÞZajðc$kjÞeikj$x C �ajðc$kjÞeKikj$x : (4.10b)

If, in addition, we require that ð
PðGÞ

vnðxÞeGikj$x dx Z 0; (4.11)

then this solution is unique. Furthermore there exists a constant Ce such that the
solutions satisfy

swnsHsC2%Ce½spnsHs CsqnsHsK1=2 CsrnsHsC1=2 �; (4.12a)

svnsHsC5=2%Ce½spnsHs CsqnsHsC1=2 CsrnsHsC1=2 �; (4.12b)

jmnKej j%Ce½spnsHs CsqnsHsC1=2 CsrnsHsC1=2 �: (4.12c)

We can now complete the proof of lemma 4.3.

Proof of lemma 4.3. The proof proceeds via induction on jnj; since 4n, hn, cn
satisfy equation (3.5), vkx=jkj!4n, v

k
x=jkj!hn, and cnK1 satisfy

D
vkx

jkj! 4n Z ð1Kdn;1Þ
vkx

jkj! Fn in S1;0; (4.13a)
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vy
vkx

jkj! 4nðx;K1ÞZ
ð

PðGÞ

vy
vkx

jkj! 4nðx;K1Þ dx;
ð

PðGÞ

vkx

jkj! 4nðx;K1Þ dx Z 0; (4.13b)

½c0$Vx �
vkx

jkj!4nðxÞC½gKsDx �
vkx

jkj!hnðxÞCð1Kdn;1Þ½cnK1$Vx �
vkx

jkj!41ðxÞ

Zð1Kdn;1Þ
vkx

jkj!QnðxÞ;
(4.13c)

K½c0$Vx �
vkx

jkj!hnðx;0ÞCvy
vkx

jkj!4nðx;0ÞKð1Kdn;1Þ½cnK1$Vx �
vkx

jkj!h1ðx;0Þ

Zð1Kdn;1Þ
vkx

jkj!RnðxÞ:
(4.13d)

In the case jnjZ1 we have the explicit formulas

4ej ðx;yÞZakj iðgCsjkj j2Þ
coshðjkj jðyC1ÞÞ

coshðjkj jÞ
eikj$x

K�akj iðgCsjkj j2Þ
coshðjkj jðyC1ÞÞ

coshðjkj jÞ
eKikj$x ;

(4.14a)

hej ðxÞZakj ðc$kjÞe
ikj$xC�akj ðc$kjÞe

Kikj$x ; (4.14b)

and, for c02RdK1, the set of (dK1) equations Lsðc0;kjÞZ0. From these formulas
the estimates for jnjZ1 follow easily. Next, consider order jNj and note that
NZnCej for some multi-index n. Suppose that���� vkx

jkj!4n

����
HsC2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkqC1Þ2
;

���� vkx

jkj!hn
����
HsC5=2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkqC1Þ2
; jcnKej j%C1

BjnjK1

jnjp

for all k and for all 1%jnj!jNj, n!N. Using lemma 4.5 we have���� vkx

jkj!4nCej

����
HsC2

%Ce

���� vkx

jkj!FnCej

����
Hs

C

���� vkx

jkj!QnCej

����
HsK1=2

C

���� vkx

jkj!RnCej

����
HsC1=2

� �
;

���� vkx

jkj!hnCej

����
HsC5=2

%Ce

���� vkx

jkj!FnCej

����
Hs

C

���� vkx

jkj!QnCej

����
HsC1=2

C

���� vkx

jkj!RnCej

����
HsC1=2

� �
;

jcnj%Ce

���� vkx

jkj!FnCej

����
Hs

C

���� vkx

jkj!QnCej

����
HsC1=2

C

���� vkx

jkj!RnCej

����
HsC1=2

� �
:
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Finally, using lemma 4.4 we obtain���� vkx

jkj!4nCej

����
HsC2

%Ce6C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkqC1Þ2
;

���� vkx

jkj!hnCej

����
HsC5=2

%Ce6C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkqC1Þ2
;

jcnj%Ce6C1C2

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkqC1Þ2
:

The proof is complete, provided that BO6CeC2 and pOdK1. &

Lemma 4.3 proves equation (4.7) for lZ0. In order to complete the induction
for lO0 we need the following two results.

Lemma 4.6. Given an integer sO0 the following estimate holds

���� vkxv
L
y

ðjkjCLÞ! 4ej

����
HsC2

%C1

DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2
ck;L (4.15)

for some constants C1, D, AO0.

Proof of lemma 4.6. The proof comes immediately from the explicit formula
(4.14) for 4ej . &

Lemma 4.7. Given an integer sOd/2, suppose that

���� vkxv
l
y

ðjkjC lÞ! 4n

����
HsC2

%C1

BjnjK1

jnjp
Dl

ðlC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2
; (4.16a)

���� vkx

jkj! hn
����
HsC5=2

%C1

BjnjK1

jnjp
YdK1

qZ1

Akq

ðkq C1Þ2
; jcnKej j%C1

BjnjK1

jnjp (4.16b)

for all indices kR0, jnjR1, when l!L; for all kR0, jnj!jNj when lZL; and
pOdK1. Then there exists a constant C3 such that FN, QN, and RN in equations
(3.6) satisfy���� vkxv

LK1
y

ðjkjCLÞ! FN

����
HsC1

%C1C3

BjN jK2

jN jp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2
ck; (4.17a)

���� vkx

jkj!QN

����
HsC1=2

%C1C3

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
ck; (4.17b)
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���� vkx

jkj!RN

����
HsC1=2

%C1C3

BjN jK2

jN jp
YdK1

qZ1

Akq

ðkq C1Þ2
ck: (4.17c)

Proof of lemma 4.7. Estimates (4.17b) and (4.17c) are true by lemma 4.4. For
brevity, in regard to equation (4.17a) let us consider only the third portion of
F

ð2Þ
N , namely

Z3ðx; yÞhð1CyÞ2
XjN jK1

jmjZ2

XjmjK1

jljZ1

Vxhl$VxhmKlvy4NKm:

Then���� vkxv
LK1
y

ðjkjCLÞ! vyZ3

����
HsC1

%
XjN jK1

jmjZ2

XjmjK1

jljZ1

M 2
X
s%t

X
t%k

k!jsj!jtKsj!ðjkKtjCLÞ!
s!ðtKsÞ!ðkKtÞ!ðjkjCLÞ!

!

���� vsx

jsj! Vxhl

����
HsC1

���� vtKs
x

jtKsj! VxhmKl

����
HsC1

!

���� vkKt
x vLy

ðjkKtjCLÞ! ½ð1CyÞ2vy4NKm�
����
HsC1

:

Since

k!jsj!jtKsj!ðjkKtjCLÞ!
s!ðtKsÞ!ðkKtÞ!ðjkjCLÞ!%1;

and

vLy ½ð1CyÞ2vy4NKm�Z ð1CyÞ2vLC1
y 4NKm C2Lð1CyÞvLy4NKm

CLðLK1ÞvLK1
y 4NKm;

we can continue���� vkxv
LK1
y

ðjkjCLÞ! vyZ3

����
HsC1

%
XjN jK1

jmjZ2

XjmjK1

jljZ1

M 2
X
s%t

X
t%k

C1

BjljK1

jljp
YdK1

qZ1

Asq

ðsq C1Þ2

!C1

BjmKljK1

jmK ljp
YdK1

qZ1

AtqKsq

ðtq Ksq C1Þ2

! Y 2M 2

���� vkKt
x vLy

ðjkKtjCLÞ! 4NKm

����
HsC2

(

C2LYM

���� vkKt
x vLK1

y

ðjkKtjCLÞ! 4NKm

����
HsC2

CLðLK1Þ
���� vkKt

x vLK2
y

ðjkKtjCLÞ! 4NKm

����
HsC2

)
:
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Using equation (4.16) we obtain���� vkxv
LK1
y

ðjkjCLÞ!vyZ3

����
Hs

%C2
1M

2B
jN jK3

jN jp
XjN jK1

jmjZ2

XjmjK1

jljZ1

jN jp

jljpjmKljpjNKmjp

!
YdK1

jZ1

Akj

ðkjC1Þ2
X
s%t

X
t%k

ðkjC1Þ2

ðsjC1Þ2ðtjKsjC1Þ2ðkjKtjC1Þ2

( )

! Y 2M 2 DL

ðLC1Þ2
C

2LYM

ðjkKtjCLÞ
DLK1

L2

�

C
LðLK1Þ

ðjkKtjCLÞðjkKtjCLK1Þ
DLK2

ðLK1Þ2
�

and���� vkxv
LK1
y

ðjkjCLÞ!vyZ3

����
Hs

%C1

C1M
2S2ðdK1Þ

B
Y 2M 2C

2LYMðLC1Þ2

ðjkKtjCLÞL2D

�

C
LðLK1ÞðLC1Þ2

ðjkKtjCLÞðjkKtjCLK1ÞðLK1Þ2D2

�

!
BjN jK2

jN jp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkqC1Þ2

%C1C3

BjN jK2

jN jp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkqC1Þ2
;

provided that C3 is chosen appropriately. &

We are now in a position to prove theorem 4.2.

Proof of theorem 4.2. We begin by noting that lemma 4.3 has already established
equation (4.7b) so we need only focus on equation (4.7a). For this estimate we
work by induction on l. For lZ0 and any kR0, jnjR1 we use lemma 4.3. Now we
assume ���� vkxv

l
y

ðjkjC lÞ! 4n

����
HsC2

%C1

BjnjK1

jnjp
Dl

ðlC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2

for all l!L and any kR0 and jnjR1, and seek to prove���� vkxv
L
y

ðjkjCLÞ! 4n

����
HsC2

%C1

BjnjK1

jnjp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2

for any kR0 and jnjR1. We accomplish this via a second induction on jnj.
Lemma 4.6 establishes equation (4.7a) in the case jnjZ1. We now assume
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that ���� vkxv
L
y

ðjkjCLÞ! 4n

����
HsC2

%C1

BjnjK1

jnjp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2

for all jnj!jNj and seek to prove���� vkxv
L
y

ðjkjCLÞ! 4N

����
HsC2

%C1

BjN jK1

jN jp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkq C1Þ2
:

We make the estimate���� vkxv
L
y

ðjkjCLÞ! 4N

����
HsC2

%

���� vkxv
L
y

ðjkjCLÞ!4N

����
HsC1

C

���� vkxv
L
y

ðjkjCLÞ!Vx4N

����
HsC1

C

���� vkxv
L
y

ðjkjCLÞ! vy4N

����
HsC1

%

���� vkxv
LK1
y

ðjkjCLÞ!4N

����
HsC2

C

���� vkxv
LK1
y

ðjkjCLÞ!Vx4N

����
HsC2

C

���� vkxv
LK1
y

ðjkjCLÞ!Dx4N

����
HsC1

C

���� vkxv
LK1
y

ðjkjCLÞ!FN

����
HsC1

%

���� vkxv
LK1
y

ðjkjCLÞ!4N

����
HsC2

C

���� vkxv
LK1
y

ðjkjCLÞ!Vx4N

����
HsC2

CCðdÞ
���� vkxv

LK1
y

ðjkjCLÞ!Vx4N

����
HsC2

C

���� vkxv
LK1
y

ðjkjCLÞ!FN

����
HsC1

;

where C is a generic function of dimension alone and we have used the fact
that 4N solves equation (3.5). Finally, using lemma 4.7 we have

���� vkxv
L
y

ðjkjCLÞ!4N

����
HsC2

%C1½1CCðdÞA�B
jN jK1

jN jp
DLK1

L2

YdK1

qZ1

Akq

ðkqC1Þ2

CC1C3

BjN jK2

jN jp
DL

ðLC1Þ2
YdK1

qZ1

Akq

ðkqC1Þ2
;

which completes the proof provided that D O(1CC(d)A) and B OC3. &

We remark here that the same existence and analyticity proofs given above for
the case of capillary gravity waves (sO0) can also be given for pure gravity
waves (sZ0) provided that dZ2. The key differences lie in the different nature of
Ls when sZ0, and the elliptic estimate, lemma 4.5.
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Appendix A. Elliptic estimate

First, we state two lemmas which are needed in the proof of lemma 4.5; the
proofs are straightforward and therefore omitted.

Lemma A.1. If the unknowns mm2RdK1, m2NdK1, jmjZ �nK1R0 are
constrained by the linear equations

En;j : kj$mnKej ZRn;j ; cjnjZ �n; (A 1)

and all jZ1;.; dK1 such that nRej, k1;.; kdK1 are linearly independent, then a
unique solution of equation (A 1) exists.

Lemma A.2. The convolution integrals

T1ðFÞðyÞZ
ðy
K1

ejkjðsKyÞFðsÞ ds; T2ðFÞðyÞZ
ð0
y
ejkjðyKsÞFðsÞ ds;

(ks0) satisfy the estimates

sT1ðFÞsL2%
1

jkj sFsL2 ; sT2ðFÞsL2%
1

jkj sFsL2 ;

jT1ðFÞð0Þj%
1ffiffiffiffiffiffiffiffi
2jkj

p sFsL2 ; jT2ðFÞðK1Þj% 1ffiffiffiffiffiffiffiffi
2jkj

p sFsL2 :

We will now establish the elliptic estimate lemma 4.5.

Proof of lemma 4.5. The periodicity of solutions of equation (4.9) permit the
Fourier series expansions

wnðx; yÞZ
X
k2G0

ŵnðk; yÞeik$x ; vnðx; yÞZ
X
k2G0

v̂nðkÞeik$x :

If ks0 variation of parameters gives a solution of equation (4.9a)

ŵnðk; yÞZAnðkÞejkjy K
1

2jkj T2ðyÞCBnðkÞeKjkjy K
1

2jkj T1ðyÞ; (A 2)
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where

T1ðyÞh
ðy
K1

ejkjðsKyÞp̂nðk; sÞ ds; T2ðyÞh
ð0
y
ejkjðyKsÞp̂nðk; sÞ ds:

Then equations (4.9b) to (4.9d) can be used to solve for An(k), Bn(k), and v̂nðkÞ.
Provided that ks0 and ksGkj the solution of this problem is

ŵnðk; yÞZ
1

Lsðc; kÞcoshðjkjÞ
Kðic$kÞq̂nðkÞcoshðjkjðyC1ÞÞ

�

KðgCsjkj2Þr̂nðkÞcoshðjkjðyC1ÞÞC ðc$kÞ2T1ð0Þ
2jkj coshðjkjðyC1ÞÞ

C
ðgCsjkj2ÞjkjT1ð0Þ

2jkj coshðjkjðyC1ÞÞC ðc$kÞ2T2ðK1Þ
2jkj sinhðjkjyÞ

C
ðgCsjkj2ÞjkjT2ðK1Þ

2jkj coshðjkjyÞ
�
K

1

2jkj T2ðyÞK
1

2jkj T1ðyÞ;

v̂nðkÞZ
Kðic$kÞ

2Lsðc; kÞcoshðjkjÞ
fejkjT1ð0ÞCT2ðK1ÞgK jkjtanhðjkjÞ

Lsðc; kÞ
q̂nðkÞ

C
ðic$kÞ
Lsðc; kÞ

r̂nðkÞ:

In the case kZ0, variation of parameters and equation (4.9) require that

ŵnð0; yÞZ ðyC1Þr̂nð0ÞKy

ð0
y
p̂nð0; sÞ dsK

ðy
K1

sp̂nð0; sÞdsK
ð0
K1

p̂nð0; sÞ ds;

v̂nð0ÞZ
q̂nð0Þ
g

;

where we have used equation (4.9b) to uniquely specify ŵnð0; yÞ.
For kZkj (and similarly for kZKkj) we again use the variation of parameters

formula (A2) and seek An(kj), Bn(kj), and v̂nðkjÞ. Combining equations (4.9c) and
(4.9d) it can be shown that

Kðc$kjÞ2ŵjðkj ; 0ÞCðgCsjkj j2Þvyŵjðkj ; 0Þ

Z 2iðc$kjÞðmn$kjÞðgCsjkj j2Þaj Cðic$kjÞq̂jðkjÞCðgCsjkj j2Þr̂ jðkjÞ (A 3)

must hold. Equations (4.9b) and (A 3) result in a linear system of equations for
An(kj) and Bn(kj)

jkj jeKjkj j Kjkj jejkj j

Kðc$kjÞ2C jkj jðgCsjkj j2Þ Kðc$kjÞ2 K jkj jðgCsjkj j2Þ

 !
AnðkjÞ
BnðkjÞ

 !

Z
1

2
T2ðK1Þ
FðkjÞ

0
@

1
A; (A 4)
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where

FðkjÞZ 2iðc$kjÞðmnKej$kjÞðgCsjkj j2Þaj Cðic$kjÞq̂jðkjÞCðgCsjkj j2Þr̂ jðkjÞ

K
ðc$kjÞ2

2jkj j
T1ð0ÞK

ðgCsjkj j2Þ
2

T1ð0Þ:

Since Ls(c, kj)Z0, the matrix on the left-hand side of equation (A4) is singular,
and thus there is a compatibility condition required for solvability. This
condition reads

FðkjÞC
ðc$kjÞ2K jkj jðgCsjkj j2Þ

2jkj jeKjkj j
T2ðK1ÞZ 0;

and can be written generically as kj$mnKejZRn;j . From lemma A.1 we conclude
that there exist unique mnKej to satisfy all of these compatibility conditions at
order jnjZ �n. We note that while wn and vn can be completely determined from
equation (4.9) at multi index n, the mnKej require equation (4.9) at all multi-
indices jnjZ �n for their unique resolution. Once we have solvability we need to
specify an orthogonality condition to ensure uniqueness. We choose equation
(4.11) which requires that v̂nðGkjÞZ0. From equation (4.9c),

v̂nðkjÞZ
1

gCsjkj j2
½q̂nðkjÞKðic$kjÞŵnðkj ; 0ÞKðmn$kjÞðgCsjkj j2Þaj �;

and from equation (A 2),

ŵnðkj ; 0ÞZAnðkjÞCBnðkjÞK
1

2jkj j
T1ð0Þ;

so we now have a second equation to specify An(kj) and Bn(kj) (in addition to the
one from equation (A 4)) uniquely; the result is

AnðkjÞZ
1

2jkj jcoshðjkj jÞ

!
jkj jejkj j

ic$kj
ðq̂nðkjÞKðm$kjÞðgCsjkj j2ÞÞC

ejkj j

2
T1ð0ÞC

1

2
T2ðK1Þ

" #
;

BnðkjÞZ
1

2jkj jcoshðjkj jÞ

!
jkj jeKjkj j

ic$kj
ðq̂nðkjÞKðmn$kjÞðgCsjkj j2ÞÞC

eKjkj j

2
T1ð0ÞK

1

2
T2ðK1Þ

" #
:

Now, using the estimates given in lemma A.2 it can be shown that for all k2G0

sŵnðk; yÞs2
L2ðdyÞ%C ½hkiK5jq̂nðkÞj2 ChkiK3jr̂nðkÞj2ChkiK4sp̂nðk; yÞs2

L2ðdyÞ�;
svyŵnðk; yÞs2

L2ðdyÞ%C ½hkiK3jq̂nðkÞj2 ChkiK1jr̂nðkÞj2ChkiK2sp̂nðk; yÞs2
L2ðdyÞ�;
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jv̂nðkÞj2%C ½hkiK4jq̂nðkÞj2 ChkiK4jr̂nðkÞj2 ChkiK5sp̂nðk; yÞs2
L2ðdyÞ�;

which give the desired estimates on wn and vn. &
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profondeur finie. Math. Ann. 95, 595–634.
Sun, T. Y. 1993 Three-dimensional steady water waves generated by partially localized pressure

disturbances. SIAM J. Math. Anal. 24, 1153–1178.
Toland, J. F. 1978 On the existence of a wave of greatest height and Stokes’s conjecture. Proc. R.

Soc. A 363, 469–485.
Zakharov, V. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid.

J. Appl. Mech. Tech. Phys. 9, 190–194.

As this paper exceeds the maximum length normally permitted,
the authors have agreed to contribute to production costs.
Proc. R. Soc. A (2005)


	On analyticity of travelling water waves
	Introduction
	Preliminaries
	Equations of motion
	Bifurcation theory
	Field expansions
	Cancellations

	Transformed field expansions
	Analyticity of solutions
	Disclaimer. Effort sponsored by the Air Force Office of Scientific Research, Air Force Materials Command, USAF, under grant number F49620-02-1-0052, and by AHPCRC under the auspices of the Department of the Army, Army Research Laboratory cooperative ag...
	Elliptic estimate
	References


