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In this paper we establish the existence and analyticity of periodic solutions of a classical
free-boundary model of the evolution of three-dimensional, capillary—gravity waves on
the surface of an ideal fluid. The result is achieved through the application of bifurcation
theory to a boundary perturbation formulation of the problem, and it yields analyticity
jointly with respect to the perturbation parameter and the spatial variables. The
travelling waves we find can be interpreted as resulting from the (nonlinear) interaction
of two two-dimensional wavetrains, giving rise to a periodic travelling pattern. Our
analyticity theorem extends the most sophisticated results known to date in the absence
of resonance; ‘short crested waves’, which result from the interaction of two wavetrains
with unit amplitude ratio are realized as a special case. Our method of proof also sheds
light on the convergence and conditioning properties of classical boundary perturbation
methods for the numerical approximation of travelling surface waves. Indeed, we
demonstrate that the rather unstable numerical behaviour of these approaches can be
attributed to the strong but subtle cancellations in the formulas underlying their
classical implementations. These observations motivate the derivation and use of an
alternative, stable, formulation which, in addition to providing our method of proof,
suggests new stabilized implementations of boundary perturbation algorithms.
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1. Introduction

The stable and accurate numerical simulation of free-surface ocean dynamics is
one of the central problems in computational fluid mechanics. From shoaling and
breaking of waves over nearshore regions to energy, momentum, and scalar
transport in the open ocean, the rapid and reliable approximation of the surface
of a fluid is a necessary tool in problems of physical relevance. Surface waves that
propagate with constant velocity and without change of form (the travelling
waves) are a distinguished class of motions which are believed to be a
fundamental building-block of surface ocean dynamics.

In this paper we take up the mathematical question of regularity properties of
travelling wave solutions of the classical water wave model (see §2), which
constitutes an accurate representation for the motion of the free surface of
the ocean. In particular, we demonstrate that the water wave problem in
d-dimensions admits surfaces of solutions, parameterized by (d—1) many
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1284 D. P. Nicholls and F. Reitich

parameters e€R?™!, which are jointly analytic in the parametric and spatial
variables. Our method of proof is perturbative in nature and general enough to
encompass every case away from resonances (see §4).

The first rigorous existence theorems for travelling wave solutions to the water
wave model date to the results in two space dimensions without surface tension
by Levi-Civita (1925) (infinite depth) and Struik (1926) (finite depth) who used
complex variables techniques. With the advent of the modern computer there
was a resurgence of interest in the problem in the 1970s and 1980s as highly
nonlinear waveforms could now be simulated (e.g. Schwartz, 1974; Roberts,
1983; Schwartz & Roberts, 1983; Marchant & Roberts 1987). This resurgence
was also accompanied by new theoretical developments. For instance, Reeder &
Shinbrot (1981a,b) studied the phenomena of Wilton ripples which arise in two-
dimensional travelling capillary—gravity water waves. They showed existence
and smoothness of branches of travelling wave solutions which exist in the
presence of resonance in the linearized problem. Other important theoretical
results in two space dimensions include those of Toland and collaborators, who
used various integral formulations of the two-dimensional water wave problem
coupled with variational techniques (e.g. minimizers, mountain pass). An
important early result of Toland’s (1978) established the global existence of the
bifurcating branch of solutions all the way to the Stokes singularity. Jones &
Toland (1986) also looked at surface tension effects in two dimensions, and
subharmonic bifurcations in (Jones & Toland 1985). Subharmonic bifurcation
was also the object of Buffoni et al. (2000).

In three dimensions, on the other hand, the most general results to date are
those of Craig & Nicholls (2000) who, in the presence of non-zero surface tension,
established existence of travelling capillary—gravity water waves with an arbitrary
fundamental period. The theorem of Craig & Nicholls used the surface formulation
of Zakharov (1968) and Craig & Sulem (1993), coupled with the Lyapunov—
Schmidt procedure from bifurcation theory. Other existence results in three
dimensions include that of Sun (1993), who viewed the travelling wave as
generated by a surface pressure, and Groves & Mielke (2001) and Groves (2001),
who have studied travelling waves using a ‘spatial dynamics’ approach. In this
formulation, the direction of propagation, in the traveling wave equations, is
considered the dynamical quantity; the transverse direction is typically considered
to be periodic and then periodic (in propagation direction) solutions are sought.

Regarding spatial analyticity of solitary travelling water waves, we mention
the seminal work of Lewy (1952) who, using complex variables techniques,
established that (in the presence of gravity alone) once the surface is known to be
C', it is automatically analytic. Matei (2002) and Craig & Matei (2003) have
extended this result to non-zero capillarity in two and three dimensions,
respectively, using a partial hodograph transform. We also mention the broad
generalization of these techniques in the recent work of Koch et al. (2004).
Bona & Li (1997) established both spatial analyticity and decay (at infinity)
estimates for travelling waves for a wide class of nonlinear, dispersive wave
equations. Using a velocity potential/streamfunction formulation, they extended
these theorems to travelling water waves in two dimensions.

The three-dimensional results most closely related to those we present herein
are those of Reeder & Shinbrot (1981¢), who demonstrate the existence and
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Analyticity of travelling water waves 1285

parametric analyticity of ‘short-crested’ capillary—gravity waves of sufficiently
small amplitude; short-crested waves are typically defined (Dias & Kharif 1999)
as the waves which result from the (nonlinear) interaction of two periodic
wavetrains of equal amplitude, infinite extent and non-zero angle of interaction
(as the angle of interaction approaches zero, the waves are typically referred to
as ‘long-crested’). Akin to the method we adopt in §3, Reeder & Shinbrot also
use a ‘domain flattening’ change of variables. Our results expand on those of
(Reeder & Shinbrot 1981¢) in two important directions: first, our derivations
demonstrate that, in fact, the free boundary and velocity potential are jointly
analytic in space and bifurcation parameter (a fact that, of course, does not
follow from separate analytic dependence); and second, our developments allow
for the interaction of wavetrains of arbitrary amplitude ratio, i.e. not necessarily
short-crested waves. To attain the latter, our approach entails the use of
multi-dimensional perturbation parameters.

In addition to establishing existence and analyticity of hypersurfaces of
travelling water waves, our work also sheds light on the convergence and
conditioning properties of classical boundary perturbation methods for the
numerical simulation of travelling capillary—gravity water waves. In particular,
we discuss the method of Stokes (1847) (which we term the method of ‘field
expansions’ (FE)) that was further refined and carried out to high order by
Roberts (1983), Schwartz & Roberts (1983), and Marchant & Roberts (1987) for
three-dimensional travelling water waves in the absence of surface tension. As we
show in §2d, this method produces unstable results as the perturbation order is
increased due to subtle but significant cancellations which are present in the
underlying recursions. As we explain, a further consequence of this observation is
that these FE recursions cannot be used for a direct proof of existence or
analyticity. However, as we anticipated above, a direct proof can be realized once
a ‘domain flattening’ change of variables is effected, as this can be shown to
implicitly account for all significant cancellations. This latter fact suggests a
stabilized approach to numerical simulation, whose thorough investigation we
defer to future work (see also Nicholls & Reitich 2001a,b, 2003, 20044a,b).

The remainder of the paper is organized as follows: first, in §2, we introduce
the equations of motion and the classical FE approach to simulating travelling
water waves; in particular, in §2d, we demonstrate how these classical recursions
rely heavily on significant cancellations for their convergence. In §3, we introduce
a change of variables which substantially ameliorates these cancellations and
paves the way for the analyticity proof of §4; some auxiliary results necessary for
this latter proof are collected in appendix A.

2. Preliminaries

In this section, we briefly review the equations of motion of the water wave
problem (ideal fluid, free-surface flow) and outline the classical FE technique for
perturbatively computing solutions. With the aid of a numerical implementation
of this algorithm and several simulations, we illustrate how these recursions are
inherently unstable at high orders owing to underlying cancellations.
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1286 D. P. Nicholls and F. Reitich

(a) Equations of motion

Consider a d-dimensional (d=2, 3) fluid (one vertical dimension specified by the
variable y and (d—1) horizontal dimensions specified by z) bounded below by an
impermeable bottom at y=—h (h possibly infinite) and above by an
undetermined air/fluid interface, y=mn(z, t), which occupies the domain

Shay =A{(z,9) eRr’! XR| —=h<y<n(z,t)}.

In the case of finite depth, no generality is lost if h is set to one, as this simply
amounts to a rescaling of independent variables. Consider also the classical
assumption that the fluid be periodic with respect to the lattice TCR* ™,
which defines a parallelogram of periodicity P(I'). The equations of motion of
an ideal fluid in such a domain under the effects of gravity and capillarity are
(Lamb 1993)

Ap =0 in S, (2.1a)

d,0(x,—1) = J d,0(z, —1) dz, J ¢(z,—1)dz =0, (2.1b)
P(I) P(T)

4,0 + %\V(pf +gn—ok(V,m) =0 aty=n, (2.1¢)

—0m =V, Vo +9d,0 =0 aty=n, (2.1d)

where ¢ is the velocity potential, g is the constant of gravity, ¢ is the constant of
capillarity and « is the curvature:

i
V1+ IVl

As we stated, we shall be concerned with travelling waves translating uniformly
with speed c€R?*™ !, which satisfy

k(V,n) = div,

Ap =0 inS,, (2.2a)

d,0(x,—1) = J d,0(z, —1) dz, J o(z,—1)dz =0, (2.20)
P(I) P(T)

[c-V,]o + Vo> + gn —ok(V,n) =0 aty=m, (2.2¢)

—[cVn—=Vn-V,0+0d,0=0 aty=n. (2.2d)
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Analyticity of travelling water waves 1287

(b) Bifurcation theory

Adopting a bifurcation theoretic approach, we seek solutions of equation (2.2)
near the quiescent state (¢ =7n=0 and any velocity ¢) which forms a ‘trivial’
family of solutions. Bifurcation theory requires the analysis of the linearization of
equation (2.2) about these trivial solutions which leads to consideration of the
problem

Agi(z,y) =0 in S, (2.3a)

0,01(z,—1) = J 9,01 (z, —1) da, J ¢1(z,—1) dz =0, (2.30)
P(I') P(I)

[CO'Vx](Pl (ma O) + [g - O'Aac]nl(aﬁ =0, (2'30)

—[co-Vim(z) + ay%(% 0) =0. (2.3d)

The periodic boundary conditions (2.3a) and (2.3b) imply that
cosh(|k|(y +1)) i .
oz = Y o OHROED) e = S g
kel k+0 cos (‘ |) kel k+0

Equations (2.3¢) and (2.3d) become

a -ik + gk as 1 0
Ao, B) 1k o1 g+ alk| Lk _ ’ (2.4)
dy |k|tanh(|k])  —cy-ik dy 0

for every k€I’, k#0. Thus a non-trivial solution can exist only if the matrix
A(c, k) is singular for some k€I, that is, if the determinant

Ao(co, k) = (co-k)* — (g + o|k|*)[k] tanh(|k|) (2.5)

vanishes. In this case, if a pair (cy, k) satisfies 4,(cy, k) =0, then a non-trivial
solution of equation (2.3) is

m(z) = ap(co-k)e™ " + ay(co-k)e 7, (2.6a)

cosh(|k|(y + 1)) oik@
cosh(|k]) ’

¢1(2,y) = a;i(g + alk[*)

cosh(|k|(y +1)) il

_&kl(g+a|k‘2) COSh(|k|)

, (2.60)

where «;,€C is an arbitrary constant.
Our approach to finding non-trivial solutions of equation (2.3) when d=2
is to choose a wavenumber k; €I'(k;#0) and solve for the corresponding ¢,
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such that 4,(cy, k1) =0, i.e.

%=i¢m+wwﬁﬁwmwm; .

\Kﬂ

without loss of generality, we can always select the positive root. With ¢y chosen
in this way, we can write 4,(cy, k) = k*(¥(k;) — ¥(k)) where

2
k) = (g + ok k)tanh(k) ,

and we have used the fact that tanh(k)/k is even to drop the absolute value.

Clearly, when k=0, *+«k;, 4, is zero and the null space of the linearized
operator is at least three-dimensional. An important question is whether other
wavenumbers will produce zeros of A, resulting in a higher dimensional null
space; this scenario is one of resonance and is left outside the scope of our current
theory. However, one can easily make some general statements concerning the
possibility of resonance. In the case of zero surface tension (¢=0)

g tanh(k)
k )

which (for £>0) is strictly decreasing, implying that (k) =y (k) if and only if
k=t ;. Thus, in this case, there can be no resonance. However, for ¢>0, the
derivative of ¥ may vanish at a point if ¢/¢ is sufficiently small. However, even in
this case, the existence of an additional integer root of Y(k)=v/(k;) will not occur
generically.

Our approach to finding non-trivial solutions of equation (2.3) when d>2 is to
choose (d—1) many wavenumbers Ki,ks,...,k;1 €I (k;#0) and solve the
corresponding set of (d—1) equations 4,(cy,«;) =0, i.e.

KCO == R, (28)

where KeR4™ VXD pag rows K1, Ko, ..., Kg—1, and RER? ™! has jth entry

y(k) =

Ry =41/ (g + olig) | tamh( ). (2.9)

Among the 297! choices for the vector R, we will always choose the one such that
R;>0. When d>2 there is always the possibility, though rare, that addltlonal
resonant’ wavenumbers kg, ..., k, may exist such that A(¢, ;) =0 for j=d, .
In fact, when =0 the number p can be infinite; see e.g. (Craig & Nicholls 2000)
for a more complete discussion of these issues.

For general d>2, in the non-resonant case (p=d—1), the first-order solution
will be of the form:

d—1
Zne = Z pje;)(coKj)cos(k;-x + 0;).

J=1

Clearly, by varying ¢;, we lose no generality by setting p;=1. Furthermore, by
fixing the crest of the linear solution at zero we may choose ,=0. Therefore our
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solution surface will be parameterized by (d 1) many parameters, &, We note
here that, in particular, our construction in §4 will deliver a umque solution
(m(ery ey €qet), @€y .oy€4-1), (€1, ...,€4-1)) even in the degenerate case where
one or more of the ¢;is set to vanish identically. For instance, when d=3 if we set
&o=0, then the linear solution becomes

n(z) = & cos(ky ),

and k, plays no role; in fact, the presence of k, is purely artificial. As a
consequence of this, our unique solutions comprise, in this situation, only a one-
dimensional family within the two-dimensional (Stokes) manifold of solutions
corresponding to k; (Craig & Nicholls 2002). Interestingly, however, this
manifold can be completely recovered from our solutions by adding appropriate
velocity components. More precisely, if our unique solution is (n(e1,0), ¢(e1,0),
c(€1,0)), then all solutions can be parameterized by (e, 0)— (n(e1,0), ¢(e1,0),
c(e1,0)+6c*), where c*-k;=0. Similar remarks apply to the case & =0
and e;=¢e;=0 (trivial branch); in this latter case the parameterization is
(61,02) = (0,0, ¢(0,0) + (61, 02)).

(¢) Field expansions

A classical approach to finding approximate solutions to equation (2.2) was
devised by Stokes (1847) in the mid-1800s. It consists of the boundary
perturbations philosophy we have termed ‘field expansions’ (FE) to distinguish
it from the alternative ‘operator expansions’ approach, (e.g. Nicholls & Reitich
2004 a,b) carried out to low (first or second) order. This method was expanded to
higher orders by subsequent authors with the most recent attempts being those
of Roberts (1983), Roberts & Schwartz (1983), and Marchant & Roberts (1987).
For ease of comparison with the results contained in these papers we adopt their
notation in the current exposition of the FE approach.

For simplicity, we consider equation (2.2) in the case of two dimensions
(d=2), 2m-periodicity, zero capillarity (¢=0), and infinite depth (h= o).
Following Roberts (1983), we define the surface velocities:

U(z) = 0,0(x,9)y=y, V() = y0(x,9)] )=y,

and expand

= " na(@)e", o(z,y.e Zm Ly, o) = e, (2.100)
n>1

n>0
- Z Un ) €T, &) = Z Vn(z)gn- (210b)
n>1 n>1
We find that we must solve
Ap, =0, y<O, (2.11a)
Uy +gn, = Qy — ¢, Uy aty =0, (2.11¢)
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_C()aznn + Vn = Rn + cn—laznl at y =0, (211d)
where
n—2 n—1
Qn = - Z n—l Z le n—l Z Vl VrL—lv

=1 =1
n—2 n—1

Rn = Z Claznn—l + Z axnlUn—l'
=1 =1

To solve these equations we note that, on account of equations (2.11a) and
(2.11b), and the periodic boundary conditions, 1, and ¢, can be expressed as

e}

nn Z dnk e QDn(ZC, y) = Z an,k eilerlkly' (212)

k=— f=—o

To find forms for U, and V,, we first write

e’ = exp [v > nnS”] = E,(x;7)e

n>1 n>0

As can be easily verified, the coefficients FE, are polynomials in vy of degree n
which can be recursively found from the relations

n
l
Ey=1, E,= E E’?zEn—l(iU; Y)Y- (2.13)
=1

Then, we have

n>1 =n n>1 k=—o
-y Y (ZE (RDe™ | a, (k) e
n>1 k=—ow \m=>0
o 1—1 <)
z Z lk nkelkx+z 72 Z En l “{}| 1k)alkek
>1 k=—o0 n>2 =1 k=—

U’n = Z (ik>an,k eikI7 f]’n = Z En—l(x; |k’)(lk)a’l,k eikz' (214)

Similarly, V,,= V,+ V,, where

n = Z |k|an,k eikx’ f/n = Z En—l(x; |k|)|k|a1k eikl" (215)

k=—o0 =1 k=—
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Analyticity of travelling water waves 1291

Finally, we can rewrite equation (2.11) as

Ap, =0 y<0, (2.164)

9,0, =0, y— —o, (2.16b)
aUp+gn,=Q,— U, —c,. Uy aty=0, (2.16¢)
—¢0,m, +V, =R, —V,+c¢,_10,m aty=0, (2.16d)

which, using equation (2.12), is equivalent to
icok a, Sy — (ic,—1k)a
0 9 k) ke ( 1k) 1,k o< k<o, (2'17)
|]€| —ZCOk dn,k Tn,k + (ch—lk) dl,k
where

@ e}
— E : ikz _ § : ikz
Sn - Sn,k €, Tn - T’n,k €,

k=— k=—c

and

[}

n—

B 1 n—1 1 n—1
Sn =G Un - C Un—l -5 Z Ul Un—l Y Z Van—la
=1 2 =1 2 =1

n—2 n—1
Tn = - Vn, + Z Claa:nn—l + Z aznl Un—l'
=1 =1

The FE procedure consists of solving equation (2.17) recursively up to a
specified order n= N, starting with relations of the form (2.6), where k=«; and ¢y
are chosen to satisfy Ag(cyg, k;)=0. For example, choosing k;=cy=1 and
normalizing g=1 the linear part of the solution (taking « real) is (cf. equation

(2.6))
m(z) =2« cos(z), ¢@i(z,y) = —2a e’ sin(z). (2.18)

The procedure can be carried out to an arbitrarily high order N by recursively
solving equation (2.17). Of course, by the choice of ¢, the matrix in equation
(2.17) is singular at k= *+«; and a compatibility condition is required to ensure
solvability. This is provided by an appropriate choice of ¢,_; in equation (2.17)
which closes the system of equations.

(d) Cancellations

It should be noted that this derivation of the FE recursions, equation (2.17), is
purely formal in nature. Indeed, for instance, the recurrence entails spatial
derivatives of the velocity potential of an increasingly high order (cf. equations
(2.14) and (2.15)) whose growth should be controlled if the series in equation
(2.10) are to be shown to converge. On the other hand, if such control is to be
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Table 1. Coefficients |d, ,| and digits of accuracy

(Computation of the coefficients |d,, .| (cf. equation (2.12)), in double and quadruple precision—only
16 digits are reported—and the digits of accuracy contained in the double precision calculation.)

n double precision quadruple precision digits of accuracy
5 0.162 760416 666 666 8 0.162 760416 666 666 7 15
7 0.182367621 5277779 0.182367621 5277778 15
9 0.231 689889090401 3 0.231 689889090401 8 15
11 0.317278 8927458329 0.317278 8927458371 14
13 0.456 719934 4432450 0.456 719934 443 266 4 13
15 0.681 283829123065 3 0.6812838291231263 12
17 1.043 768 775207 166 1.043 768 775 207 084 13
19 1.632677013377 351 1.632677 013390 746 11
21 2.596 641 986 288 087 2.596 641980 321 151 9
23 4.186 275932 441 967 4.186 277983 801 273 6
25 6.823 624 125009 305 6.825974 125230 163 3
27 8.836 865217279312 11.237 383290065 77 0

based on the relations (2.17), it will demand, for instance, that we bound U, V,
recursively from equations (2.14) and (2.15). Here, however, the only obvious
bound will, by necessity, use the triangle inequality in the order [ (cf. equations
(2.14) and (2.15)). As we have shown in related applications of boundary
perturbation approaches (Nicholls & Reitich 2001a,b, 2003, 2004a,b), these
bounds will consistently fail to provide useful growth control on any norm of the
solutions as they destroy significant cancellations that are present in the
corresponding recurrences.

To substantiate this claim we next present a set of numerical experiments that
demonstrate the existence of cancellations in equations (2.14) and (2.15) as well
as their implications in attempts at numerically simulating travelling water
waves with high-order versions of the FE scheme. We begin by choosing specific
parameters that give rise to a bifurcating solution: d=2, ¢=0, h=0, g=1,
27-periodicity, k=1, cy=1, for which we present results of a suitable FE
implementation up to order N=40. In particular, all convolution products in 5,
and T, are performed using fast Fourier acceleration in vectors of length N,=128
(which represent wavenumbers [—N,/2, N,/2—1]) greater than 2N=80 to
prevent aliasing.

The first evidence we present concerns the accurate computation of the
Fourier coefficients of the wave profile . It is not difficult to see that, beginning
with equation (2.18), d,, .1, = @, 4+, =0 for all p>0, while d,, ,, and a,, will not
be equal to zero and represent a ‘leading edge’ of non-zero Fourier coefficients at
order n. In table 1 we report the results of the computation of |d, ,|, via the FE
recursion (2.17) with «=1/2 in equation (2.18), in both double and quadruple
precision (N,=128). In the final column we treat the quadruple precision
calculations as ‘exact solutions’ and count the digits of accuracy in the double
precision calculation. We point out the precipitous loss of accuracy in the
coefficients |d,, ,| through all orders of n, which rapidly accelerates beyond n=17,
resulting in approximations which contain no accurate information by n=27.
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Figure 1. Comparison of double and sextuple precision computations of 2, cf. equation (2.19),

with a highly resolved solution (sextuple precision calculation with N,=128, n=40). Error is
measured in the L? norm (N,=128, 0<n<39, e=0.3, 0=0, h=w, g=1, k=1, ¢o=1).

In the previous calculation, one could argue that for large n an accompanying
factor of " (where ¢ is typically much less than 1) in the approximation of n(z)
might disguise the inaccurate computation of d, ,. However, as the next
calculation illustrates, such a hope is unfounded and the accurate computation of
high-frequency information is crucial for a correct representation. To sub-
stantiate this claim, we next approximate a more physically relevant quantity,
the L?-norm of the wave form n(z). More specifically, if we denote

n Nr/2_l . )
me(ze) = Y e, (2.19)
J=0 k=—N,/2

which represents the FE agproximation to m(z), then in figure 1 we present the
difference (measured in L°) between double precision and sextuple precision
approximations of 7.*(2;0.3), and a highly resolved calculation (sextuple
precision with N,=128 and n=40); sextuple precision was necessary as we found
that quadruple precision calculations were inadequate beyond n=33. We note
that at ¢=0.3 the sextuple precision calculation is fully converged at n=40,
indicating that e=0.3 is within the disc of convergence of the Taylor series (2.10).
We point out in this figure the explosive divergence of the double precision
calculation as n is increased. We also note the roughly linear shape of the curve
on the log-linear axes indicating the exponential growth of errors.

3. Transformed field expansions

As the calculations of the previous section indicate, the cancellations in equation
(2.17) are present for all n and increase in severity with increasing n. As
explained above, this has consequences for more than just numerical simulation.
Indeed, as we mentioned, the cancellations preclude the use of the most natural
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approach to estimating the convergence of the series (2.10) based on the
derivation of bounds, e.g. of the form ||, |l 7 < CB", from the recurrence (2.17).
However, as we explain next and further demonstrate in §4 a direct estimation
of the terms in the series (2.10) can be realized upon a change of independent
variables in advance of the perturbation expansion, much as in the application of
boundary perturbation methods to boundary value problems (Nicholls & Reitich
2004a,b). Indeed, as in these latter applications, the transformation has the effect
of implicitly accounting for all significant cancellations so that the terms in the
corresponding recurrence can be inductively estimated. To derive these trans-
formed field expansions (TFE) we begin by considering the transformation

) F_y—m
= 1, 3.1
L e (3.1)

which maps the domain S ,, to the strip 5 o. The equations (2.2) become, upon
dropping primes,

A(p(l‘, y) = F("Ev y) in Sl.O’ (320’)

d,0(x,—1) = J d,0(z, —1) dz, J ¢(z,—1)dz =0, (3.20)
P(I) P(I)

[co' Vo +[g—0A]n = Q(z) aty=0, (3.2¢)

—[coVyn+d,0 = R(z) aty=0, (3.2d)

Where ¢y will be defined as in equation (2.7), F(z,y)=div,[FY(z,y)]+
9, F" 2(z,y)+ FO(z,y), and

FO(z,y) = —1°V,0 — 20,0 + (1 + y)(1 + 1)V,19,0, (3.3a)
FO(z,y) = 1+ 9) (1 + 1)V Voo — (1 + 9)V,1)%,0, (3.3)
FO(z,9) = 1 +1)V,n V0 — (1 +9)|V,1/%,0. (3.3¢)

The functions Q(z) and R(z) are represented by similar formulas.
To solve equations (3.2) in the transformed varlables We now propose the
following expansions for e€R? ™! and multi-index n&eN?~

(z,5,6) = > ¢ul,y)e =D mu(a)e", cle) =) e (34)

[n[>1 [n[>1 [n[>0

(the ‘TFE’) and find that we must solve the following problems

A(Pn(i) y) ( 5\n| ()) n(x y) in Sl,()’ (350’)
d,0,(z,—1) = J 0,0, (z,—1) dz, J @, (z,—1)dz =0, (3.5b)
P(I) P(I)
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d—
[co"Vo)oa(,0) + [g — oA,] Z Cnme, 2,0) = Qu(z),  (3.5¢)
v
d—1
—[eo-V,]n(2) +9,0,(2,0) = Y [eye, *Valne (2,0) = R, (2). (3.5d)
Y
Here, 0y, is the Kronecker delta, ¢; = SO,I ,0,1,0,...,0) where e; is non-zero at

1ndex j, and for multi-indices m, nEN , mSn it mj<n,forall j=1,...,d— 1.

Furthermore, F,(z,y)= dlvz[Fy(L )(:1:, y)]+0 F,(lQ)(a:, y) + F,(I,S)(x, y), where

[n|—1 |m|—1 |n|—1
F(l) Z Z MmN m— lvz(pn m —2 Z nlvz(pn l
|m|=2 |l|=1 [l|=1
[n|=1 |m|—-1 |n|—1
+ (1 + y) Z Z nlvznm—lay(pn—m + (1 + y) Z Vznlay(pn—la
[m|=2 |l|=1 [l|=1
(3.6a)
n| 1 |m|—1 [n|—1
\ml 2 |I=1 =1
[n|=1 |m|—1
- (1 + y)2 Z Z Vznl'vanm—lay(pn—mv (36b)
[m|=2 |l|=1
In|—1 [m|—1 lnl—1
Z/) = Z Z MV im—1"Ve®p—m + Z Vo Vo@n—
Im|=2 |l|=1 l1]=1
[n|=1 |m|—-1
- (1 + y) Z Z Vznl'vznm—lay(Pn—m'
=2 fi=1 (3.6¢)

The functions @, and R, can be similarly derived. Note that F7(7,l> (and @,, and
R,,) depend only on {n;}i<|n>s {®;}1j<|nl>» and {¢;}|ji<|nj—1, and vanish for |n|=

4. Analyticity of solutions

Clearly, the nature of equations (3.5) is quite similar to that of equations (2.16);
however, there are some important differences. Most notably, in contrast to
equations (2.16), the right-hand sides of equation (3.5) contain only derivatives
of order one or two which act either on the field, ¢, or the surface shape, 7,
In what follows, we show that this, in fact, allows for the inductive establishment
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of bounds:

lpallx < CB™. lin,lly < CB", e | < CB™

in appropriate function spaces X and Y, and for some constants C, B>0.
Furthermore, we will show that all spatial derivatives of ¢, and 7, can be
similarly bounded, implying that all quantities are jointly analytic with respect
to all arguments.

To set notation we recall that any L? function f periodic on a (d—1)-
dimensional lattice TCR?™! can be represented as

Zf 1k z (41)
keI’

where I is the conjugate lattice to I'. Additionally, if an L? function u(z, y) is
periodic in z with respect to I' and square integrable in the y variable on [—1, 0]
then

u(z,y) = Z w(k, y)e™ . (4.2)
keI’

Using this representation we can define the L? based Sobolev spaces
H* = {ue€ L*|llull g < %}, (4.3)

for s€Z™’ and where

||u(x,y)||%pEiz<k>2s_2jj |07, a(k, y)|*dy. (4.4)

7=0 keI’

and (k) =V 1+ k?. Note that if f=f(z) depends on z alone then the space H® for
s€R can be defined by the norm

1F (@) =Y (R (F (k). (4.5)
keI’

For future reference we note the following algebra property for H° (Adams,
1975).

Lemma 4.1. If s>d/2 then H® is an algebra, i.e. for u, vE H’
vl gs < Ml wll g lloll g (4.6)
for a constant M= M(d, s) depending only on d and s.
In the case of non-zero surface tension (¢>0), our main result is as follows.
Theorem 4.2. Given an integer s>d/2, if |n|=>1 the solutions @,(z, y), n.(z),
and ¢, of equation (3.5) (¢>0) satisfy

B|n\—1 d—1 Akq
<C 4.7
wee [l z+12 1 (47a)

3!,
H (W + 017

(1=1
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LB A o <c Bll-1
=0 ; = Y177 p
H9+o/2 ’n‘p q=1 (k(] + 1)2 n K ‘ ’p

H o (170)

for all j=1,..., d—1, p>d—1, and some constants C,, B, D, A> 0.

We will prove theorem 4.2 by induction on [; thus our first objective is to
establish the result for /=0. This is done in the following lemma, for all k, with an
induction on the order |n|.

Lemma 4.3. Given an integer s> d/2, if |n|>1 the solutions ¢,(z, y), n,(x), and
Cne, Of equation (3.5) (¢>0) satisfy

B|n\—1 =1 4k,
H"f“(p" w1y + 1)

pinl=1 d=1 4k, il
H s = O LG e 1ol = G

forall j=1, ..., d—1, p>d—1, and some constants C,, B, A>0.

To prove Lemma 4.3 we need two lemmas: the following which estimates the
right hand sides of equation (3.5) of the inhomogeneous problems, and the sequel
which provides estimates on solutions of these problems.

Lemma 4.4. Given an integer s> d/2, suppose that

H B|n\—1 d—1 Ak Vi
[ P i § ST
B\n\—l d—1 Ak B|n\ 1

Vka ’Cn e|—01

<
H\kw oo (P L (k1)

for all1<n<N (i.e. n;<N,), p>d—1, and for some constants C,, B, A>0. Then

there exists a constant Cs such that the functions F%), %), and Ry in equation
(3.5) satisfy

nf"

B|N| 2 d—
Vk 4.

H W= TR H | s
pIN-2 d=1 4k,

< ¢, C VE, 4.8b

H BN || e = AP H(@u)? (450
(:)k B‘N‘72 d—1 Akq

? < G C VEk. 4.8

H i PR il | ey (450
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Proof of lemma 4.4. For the sake of brevity consider the first term of F](\:;’):
[n]=1 |m|—1

ZI = Z Z 77177771—1V1’(Pn—m;
|m|=2 |l|=1

every other term in Fy, @y, and Ry can be similarly estimated. We begin

& 'N' e Ro|!|r —ollk — 7]t || 82
x M x
i), = 2 2 S5 = =7 o™
T— k*T
X ‘ I_ | V:L'nm—l VLQ)N m
|7 —al! — 7! e
Since
| Nl — gl — 7!
Klo|!|r — a|l|k — 7! <1,
|k|lo!l(t — o)l(k —7)!
we can deduce that
|2a] <SSy y a2
z M Cy
‘k" [m|=2 |l|=1 o<1 <k |l’p q=1 (Uq + 1)2
B\m—l\—l d—1 AT B\N—m|—1 d—1 Akq—T‘J
X Cl ) ) CI D 2"
|m_l‘ ¢=1 (Tq_0q+1) |N_m| q=1 (kq_7q+1)
Continuing,
_ _ N|—1 |m|—1
H 8]; < Cf BINI-3 i =1 4k, [N[—1|m]| INJ?
R | e |N|? pot (kg + 12 2y = U [m = 1P IN — m”
and
H M203 S2d 1) E B|N| —2 d—1 Ak‘q
yk|v B INI" L (k, +1)°
where
; 12 |m|—1 m|”
S = max , 241 =max T,
k TZ:O(T—f-l)Q(k—T—l)Q -t m |l|2=1|l|p]m—l|p

which is bounded uniformly in |m| for p>d—1. The proof is complete provided
B> MC, 8"y, . [ |

The second lemma necessary to prove lemma 4.3 is now presented; the proof,
based on classical elliptic estimates, is given in appendix A.
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Lemma 4.5. Consider any integer s=0. Given linearly independent
wavenumbers Ky, ..., kg_; €' TR there exists a unique speed ¢ = (C1y ey Ca1)
ER* satisfying equation (2.8) such that R;>0. Given this c, if for all multi-indices
|n|=n, p,€H®, ¢q,€ HSY2 and r,e H*YY? then there exist for all |n|=n
real solutions w,&€ H*"2, v,€ H*"°/% and Mo, (j=1,...,d) of

Awn(x) y) = pn($7 y) in 81,07 (49&)
a,w,(z, —1) = J d,w,(z, —1) daz, J wy,(z,—1) dz =0, (4.9b)
P(I) P(I)
d—1
(9 —aA,)v,(x) + ¢V, ]w,(z,0) + [Mn—e,* Vol b, (2) = qu(2), (4.9¢)
j=1
e<n
d—1
—[CVT]’U,,(ZE) + aywn(x70) - Z [:un—e,.vx]fe](x) = Tn(m)a (49d)
j=1
ej=<n
where
be,(z) = aji(g + alk;|?)e™ " — aji(g + ok, )e ™, (4.10a)
fe(2) = a]»(c—icj)ei"f” + dj(c'K]-)efinz. (4.100)
1If, in addition, we require that
J v, (2)e™9 " dz = 0, (4.11)
P(I)

then this solution is unique. Furthermore there exists a constant C, such that the
solutions satisfy

”wn“HS” < Ce[HanHs + | qn“Hs—l/Q + “Tn”H‘“/Q]v (4120,)
||’Un||Hs+5/2 < C'e[||pn||Hs + IanllH,s+1/z + ||T’n||Hs+1/2], (412b)
e | < Colllpall s + Ngull o + 1l gosaza]. (4.12¢)

We can now complete the proof of lemma 4.3.

Proof of lemma 4.3. The proof proceeds via induction on |n|; since @, 7, ¢,
satisfy equation (3.5), 9%/|k|'g,,, 0%/|k|!'n,, and c,_, satisfy

A’k—T!(pn = (1 - 6n,l)ﬁFn in 51,07 (413@)
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1300 D. P. Nicholls and F. Reitich

0 9, ok
ayW(pn(% _1) = J %W%(x, —1) dil?, J W(pn(x, —1) dx = O, (413b)
P P(I)

i d; 9
[C()'Vx]—xgon(x) + [g - O-Az]—lnn(x) + (1 - én,l)[cn—l 'Vz]_x(pl (.’E)
k! ! L 4.13
ak ( . C)
=(1-—
( nl)|k||Qn( )7
a% ok %
—[C ] nn(‘r O) +a (Pn(if 0) ( 6n,1)[cn—1'v ] '771(1; O)
|K|! Y [K|! ! (4.134)
=(1-9¢ R, (z).
( mom“ ()
In the case [n|=1 we have the explicit formulas
: cosh(lk;[(y+1)) 5.
— k. 2 ) ik
(Pej($7 y) akjl(g+0| ]| ) COSh(“{le) ( )
4.14a
—& 1( _’_0_’]{;‘2) COSh(|kj|(y+1))e—ik]~z
KGO cosh([k;]) ’
n,(z) = (e k)™ + ay (e ky)e ™7, (4.14b)

and, for ¢e€R™!, the set of (d—1) equations 4, (¢, k;)=0. From these formulas
the estimates for |n|=1 follow easily. Next, consider order |N| and note that
N=v+ ¢, for some multi-index v. Suppose that

ak B\n|—1 d—1 Akq
H—T'(pn < 01 D 29
K[V e " 25 (k, +1)
ak B|n\—1 d—1 Ak B|n\ 1
H | Nn < Cl D 29 | Cn— €,| = Cl D
R e = O L 5 7]
for all k and for all 1<|n|<|N], n<N. Using lemma 4.5 we have
ok 9%
< CP iFv e + vte; + _'TRIJ e; )
H ‘k|' (pH—P H5+2 : L ’k“ T HS |k’|' Q + H5—1/2 |]€|' te Ho+/2 |
<ol r + Q 1% g _
|k|'nl/+c 2 — Ve I ‘k|' V-'rC] 7 |k|' V—‘r(, oy |I€|' V-‘rej Hs+1/2_ )
r k k
’CV’ < Ce &Fv-i-e + Qv+e + &Rv-i-ev :
L |k|' g HS |k|‘ HstT1/2 |k|' J Hs+]/2_
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Finally, using lemma 4.4 we obtain

pIN-2 d=1 4k,
< C60, Gy .
as+? |N’ g=1 (kq + 1)

H ‘k|' (PVJrP

N2 d=1 4k,
<060 G -
Hs+5/2 |N| e (k‘q + 1)

H ‘k|'n1/+?

BINl-2d=1 4k,

‘CV’SCe6OICQ .
NI =t (kg +1)?

The proof is complete, provided that B>6C,Cy and p>d—1. [ ]

Lemma 4.3 proves equation (4.7) for [=0. In order to complete the induction
for [>0 we need the following two results.

Lemma 4.6. Given an integer s>0 the following estimate holds

S

-1 Ak‘i
L (k, + 1)

DL
< 5
H+2 (L+1) Z

H dkoL
(

— Vk, L 4.15

for some constants C,, D, A>0.

Proof of lemma 4.6. The proof comes immediately from the explicit formula
(4.14) for ¢, . |

Lemma 4.7. Given an integer s> d/2, suppose that

dka), girl-1  plod=l gk,
” <G 2 7> (4.16a)
(Ik| +l) o " (14+1)* L5 (k, +1)
Bln‘_l a-l Ak B\n\ -1
H l 01 p 2 | Cp— € | = 01 P (4.16b)
L VA |’ L4 (k, +1) In|

for all indices k>0, |n|>1, when I<L; for all k>0, |n|<|N| when I=L; and
p>d—1. Then there exists a constant Cs such that Fy, Qy, and Ry in equations
(3.6) satisfy

akag[jfl B|N\*2 DL d—1 Akq
Y __F <qcC Vk, 4.17a
el e LG Ty (4.170)
B\N\—2 d—1 Akq
< O, C VE, 4.17b
o], <00t Mt (171

Proc. R. Soc. A (2005)
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B\N\—Q d—1 Ak
< C VEk. 4.17¢
" 1%v3 ‘N‘p ql;[l (kq + 1)2 ( )

I

Proof of lemma 4.7. Estimates (4.17b) and (4.17¢) are true by lemma 4.4. For
brevity, in regard to equation (4.17a) let us consider only the third portion of
F](V), namely

|N| 1|m|—1
Z( 1 +y Z Z V¢nl eMm— lay(PN m*
|m|=2 |l|=1
Then
kol lmiony k'|ay'yr—aw |k —7|+ L)
76 23 < M?
e, zz zz S A
T—0
Vo
‘ HstL |T _— O'" s+l
ak ) L
——— (14 y)°d _ .
H |1<;—Ty+L) (1 +5)3y0n-n] et
Since
Kle|!|7 —a|l(|k — 7| + L)! <1
ol(t —ao)l(k—7)(|k| + L)'~
and

55[(1 + y)2ay<ﬂN—m] =1+ Z/)QagﬂfPN—m +2L(1 + y)aﬁww
+ L(L - 1)65_1¢N7m’

we can continue

9,7, < M o)
(K +L)! BT =2 (=1 o<t 1<k | =1 (0 +1)

Blm=i-1 d—1 ATi04

X C
Yim —1pP (=0, + 1)
X< YiM2 ﬂq,
(b — 7]+ L)1 V7" gose
ak TaL 1
+2LYM|| —2L——
H CEE i P

ak TaL2
H yk—7\+L"”N ”

H9+2 }
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Using equation (4.16) we obtain

6{‘:6,’;_1 ; <o 2B\N\ -3 |N[=1]m|—1 IN|?
Y 97 M
H<|k\+L>! VB = T IND 2, e WP Im = IPIN = mf?
d—1 2
(k;+1)
X
]l_I{k—i-lQ;; (r;—o;+1)*(kj—7;+ 1)
Dt 2LYM  D'!
X< Y2M? +
{ (L+1)* (k—7|+L) L?
N L(L—1) DL—2 }
(lk—=7l+L)(|k—71|+L—1) (L—1)*
and
kgLt szl <c Cy M2 §Hd=1) V2 2LYM(L+1)>
(K+D)0 =" B (k—7|+L)I2D
N L(L—1)(L+1)? }
(k=7 +L)(|k—7|+L—1)(L—1)"D?
BINl=2  pL A=l 4k
NP (L+1)? I:I(k +1)?
B\N\—Q DL d—1 Akq
< C.
PN (L4 1) H(k +1)%
provided that Cj is chosen appropriately. [ |

We are now in a position to prove theorem 4.2.

Proof of theorem 4.2. We begin by noting that lemma 4.3 has already established
equation (4.7b) so we need only focus on equation (4.7a). For this estimate we
work by induction on I. For /=0 and any k>0, |n|>1 we use lemma 4.3. Now we
assume

Q.

—1 Akq
L (k, + 1)

a’fal

gl <o % 7
(k] +1)!

<
e P (14 1)

q

for all [<L and any k>0 and |n|>1, and seek to prove

oy
(|k| + L) ""

c B|n|71 —
<
Hs+2 1 |n|p L+1 ]J k +1

for any k>0 and |n|>1. We accomplish this via a second induction on |n|.
Lemma 4.6 establishes equation (4.7a) in the case |n|=1. We now assume
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that
koL Bini=t  pb 4=l gk,
el 50
(|k’ + L) Hst2 |n| (L + 1) 7=1 (kq + 1)
for all |n|<|N| and seek to prove
akaL B|N|—1 d—1 Akq
el 5o
(|k| + L)! i) INI" (L+1) q:1 (k, +1
We make the estimate
H dy GL
(k| + L) s
a; GL 6];65 kaL 3
ZE A PR AT |k|+L)' N
akaL 1 akaL 1 akaL 1
7V 74
H |k‘ + L '(pN Ha+2 H |k’ + L) ZQDN Hs+2 H ’kl + L) I(pN Hs+]
akaL 1
| ez,
akaL 1 akaL 1 akaL 1
Ty _TYy
H(|k\+L) e me V[ o H CET G P
akaL 1
H ‘k| + L Herl’

where C'is a generic function of dimension alone and we have used the fact
that ¢y solves equation (3.5). Finally, using lemma 4.7 we have

B|N|—1 DL—l d—1 Akq
<Ci1+C(d)A
e 1[ ( ) ] |N’p L2 = (kq + 1)2
B\N\—Q DL Akq
| N|” (L+1) 1 (K, +1)

koL ”
(Jk| + D)"Y

+ C G

":ﬁ:

which completes the proof provided that D >(1+ C(d)A) and B > Cs. |

We remark here that the same existence and analyticity proofs given above for
the case of capillary gravity waves (¢>0) can also be given for pure gravity
waves (6=0) provided that d=2. The key differences lie in the different nature of
A, when ¢=0, and the elliptic estimate, lemma 4.5.
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Appendix A. Elliptic estimate
First, we state two lemmas which are needed in the proof of lemma 4.5; the
proofs are straightforward and therefore omitted.

Lemma A.l. If the unknowns w,€R?™', meN'"' |m|=a—1>0 are
constrained by the linear equations

En,j : Kj':unfe] = Rn,j7 V|1’L‘ =n, (A 1)
and all j=1,...,d— 1 such that n> ej, k1, ...,K4—1 are linearly independent, then a
unique solution of equation (A 1) exists.

Lemma A.2. The convolution integrals

—1

n)) = [ MR ds T = jje“y—‘”F(s) s,

(k#0) satisfy the estimates

1 1
NT (F)ll 2 <— I Fllz2, WTo(F)ll 2 Sm

Fll
I WE 2,

1
T.(F)(0)| < NFW 2, |To(F)(—1)|<—=IIFIl2.
| T1(F)(0)] oy | To(F)(—1)] e
We will now establish the elliptic estimate lemma 4.5.

Proof of lemma 4.5. The periodicity of solutions of equation (4.9) permit the
Fourier series expansions

ker’ keI’
If k#0 variation of parameters gives a solution of equation (4.9a)
1 1
W, (k, y) = An(k)elkly - m Ty(y) + Bn(k)e_lk‘y - m T(y), (A2)
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where
y 0
1) = | Mk s Ty = [ (k) ds.
-1 y
Then equations (4.9b) to (4.9d) can be used to solve for A, (k), B,(k), and 0, (k).
Provided that £#0 and k+ *«, the solution of this problem is

() = ey § — G D eosh(k(y + 1)
g ol oty + 1)+ 0 coay +1)
(ot AWM oy -+ 1)+ D sy
(0t AWTED coni) | - o00) = 5 T
) = 5 e € T10) + (-0 = HER g
%m(m.

In the case k=0, variation of parameters and equation (4.9) require that

0 y 0
@,0,) = (y+ Dia(0) =y | 300, ds = | 550,05 = | 5,009 ds,

0,(0) = ——,
0) ==,
where we have used equation (4.90) to uniquely specify w,(0, y).

For k=k; (and similarly for k= —«;) we again use the variation of parameters
formula (A2) and seek A,(k;), B,(k;), and 0, (k;). Combining equations (4.9¢) and
(4.9d) it can be shown that

—(ek;)%i;(k;5,0) + (g + alk;|*)a, w;(k;, 0)

Y

= 2i(ck)) (a15) (g + ol )y + (ie26)) (k) + (g + o)) 5(k5)  (A3)
must hold. Equations (4.9b) and (A 3) result in a linear system of equations for
A, (k;) and B,(k;)

( |,<],|e—|r<j\ _|Kj‘e"<j‘ ) (An(Kj) )
—(ck)? + 5l (g + aligP)  —(en))? = Iiil (g + alig?) ) \ Balrs)

1
_ (2 T2(_1)>7 (A4)
D(k;)
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where
D(k;) = 2i(c 1)) (a—e, 1) (g + 0l )y + (ie:k;)45(x;) + (g + ali*) (k)

(c'k;)” (g + alx;*)
- 2l T1(0)_#T1(0)-

Since A,(c, k;)=0, the matrix on the left-hand side of equation (A 4) is singular,
and thus there is a compatibility condition required for solvability. This
condition reads

(ck;)” = Ikl (g + olwy|*)
2|k;|e 1k

D(k;) + Tr(—1) =0,

and can be written generically as k;-u,_ e, = Ry ;. From lemma A.1 we conclude
that there exist unique u,_ ¢, 1O satisfy all of these compatibility conditions at
order |n| = n. We note that while w, and v, can be completely determined from
equation (4.9) at multi index n, the Hy—, Tequire equation (4.9) at all multi-
indices |n|= 7 for their unique resolution. Once we have solvability we need to
specify an orthogonality condition to ensure uniqueness. We choose equation
(4.11) which requires that 9, (t«;) = 0. From equation (4.9¢),

’&n(Kj) !

o (i) = e 00) = ) o+ o))

and from equation (A 2),

1

W, (k;,0) = A, (x;) + B,(k;) — Bl
J

Tl (0)7

so we now have a second equation to specify A,(k;) and B,(k;) (in addition to the
one from equation (A 4)) uniquely; the result is

o
A, (k) = M Joosh(x,)
k. |elil ol
X [|ijc|'K—‘ (@n(k;) — (uok;) (g + alx,[*)) + 5 11(0) +% T2(_1)]7
Bn(Kj) = !

2|k;|cosh([k;])

‘Kj‘eflkjl eIkl

((55) = (k) (9 + i) + 5 T (0) T2<—1>].

X

ZC'Kj

Now, using the estimates given in lemma A.2 it can be shown that for all k&I"’

o (R, )11 72(ay) < CLR) T 1@n(R) + (B) 170 (B)P + (k) " 1Ky 9) 1 2]
||(9yﬁ)"(k, y) H%Z(dy) < C[<k>73|(}n(k)|2 + <k>71’7ﬁn(k)‘2 + <k>72”ﬁn(k’ y) ”iz(dy)]’
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[0, (K)* < CLR) " an(B) + (B) 7R + (B Do (R, 9) 1),

which give the desired estimates on w, and v,,. [ |
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