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We present a numerical continuation method for traveling wave solutions to the
full water wave problem using a spectral collocation discretization. The water wave
problem is reformulated in terms of surface variables giving rise to the Zakharov–
Craig–Sulem formulation, and traveling waves are studied by introducing a phase
velocity vector as a parameter. We follow non-trivial solution branches bifurcating
from the trivial solution branch via numerical continuation methods. Techniques such
as projections and filtering allow the computation to proceed for greater distances up
the branch, and parallelism allows the computation of larger problems. We conclude
with results including the formation of hexagonal patterns for the three dimensional
problem. c© 1998 Academic Press

1. INTRODUCTION

The study of inviscid, irrotational, free-surface flows, known as the water wave problem,
has interested researchers for many years. The observations by Russell of solitary waves
inspired the nineteenth century work of Boussinesq, Rayleigh, and others on long waves (see
Section 10.9 of Stoker [17]). Later on Levi-Civita [13] proved the existence of periodic trave-
ling waves of infinite depth, while Struik [18] proved the case of finite depth. More recently
Hammacket al.[9, 8] and Milewski and Keller [15] have studied traveling wave solutions of
approximations to the three dimensional water wave equations. Hammacket al.began their
research with wave tank experiments of two interacting traveling waves and noted hexagonal
wave forms. They were able to reproduce these using exact solutions to the KP equation [10]
which serves as a three dimensional analogue to the KdV equation. Milewski and Keller
were also able to reproduce these and other shapes using their own model. Our research
focuses on traveling wave solutions to the Zakharov–Craig–Sulem (ZCS) formulation of
the water wave problem which is equivalent to the full water wave equations. Zakharov
recognized that the water wave problem could be written as a Hamiltonian system [22] while
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Craig and Sulem introduced the Dirichlet–Neumann operator into the formulation [5]. Craig
and Sulem studied the time dependent two dimensional version of these equations [5] while
many people have studied various aspects of traveling wave solutions of the two dimensional
water wave problem, [2, 6, 12, 19, 20, 21, 23]. Schanz studied the three dimensional time
dependent ZCS formulation [16], but little else has been done for the three dimensional full
water wave problem.

The goal of this paper is to find hexagonal solutions of the water wave problem using
numerical continuation methods applied to traveling wave solutions of the ZCS formulation.
In Section 2 we state the water wave equations, show how they are equivalent to the ZCS
formulation, introduce the Dirichlet–Neumann operator, and then derive the equations for
traveling wave solutions. In Section 3 we discuss the spectral collocation discretization of the
problem, briefly outline the continuation methods used, and then discuss our implementation
of projections, filters, and parallelism. In Section 4 we mention a few of our numerical results
in two and three dimensions. Most importantly we show three dimensional waves which
exhibit the hexagonal shape discussed above.

2. TRAVELING WAVE SOLUTIONS OF THE WATER WAVE PROBLEM

The water wave problem consists of describing the evolution of the free surface of an
incompressible, inviscid, irrotational fluid under the influence of gravity. Our version of the
problem ignores the effects of surface tension, while it includes the effects of a bottom by
fixing one at a constant depth of−h. The problem can be formulated inn dimensions, an
(n− 1) dimensional bottom and one vertical dimension, but is clearly most useful in two
and three dimensions for the modeling of ocean waves.

2.1. Classical Equations and Zakharov–Craig–Sulem Formulation

It is well known that inside the fluid regionSη = {(x, y) ∈ Rn | −h ≤ y ≤ η(x, t)}, we
can define a velocity potentialϕ(x, y, t) which satisfies Laplace’s equation,

1ϕ = 0. (2.1a)

Once the velocity potential is found the fluid velocity can be computed as(u, v)T = ∇ϕ.
Boundary conditions forϕ are

∂yϕ = 0 at y = −h (2.1b)

∂tη +∇xη · ∇xϕ − ∂yϕ = 0 at y = η(x, t) (2.1c)

∂tϕ + 1

2
|∇ϕ|2+ gη = 0 at y = η(x, t). (2.1d)

For our problem the horizontal boundary conditions will be periodic. For the two dimen-
sional problem the surface is parameterized by an interval, while in three dimensions the
surface is parameterized by a parallelogram which is itself determined by a lattice0. We
recall that a lattice0 ⊂ Rn generated by the non-singular matrixA ∈ Rn×n acting on integer
vectors j ∈ Zn has a conjugate lattice0′ ⊂ Rn generated by 2π(AT )−1. A well-behaved
function f periodic on the parallelogramP(0) = Rn/0 can be expressed by its Fourier
expansion,

f (x) =
∑
k∈0′

f̂ (k)eik·x. (2.2)
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These equations and boundary conditions are what we have denoted as the classical equa-
tions for the water wave problem. The following paragraph introduces the Zakharov–Craig–
Sulem (ZCS) formulation which constitutes a surface integral formulation of the above
equations [5, 22].

Since we are solving Laplace’s equation in the fluid region and we have the boundary
conditions at the other boundaries, once we have found the free surfaceη and the boundary
values of the potential at the free surface we can theoretically solve for the potential.
Zakharov’s method consists of a reduction of the problem from one inside the entire fluid
to one at the surface which reduces the dimension of the problem. With this in mind we
introduceξ(x, t)=ϕ(x, η(x, t), t) as the potential evaluated at the surface. Upon inspecting
the equations at the free surface, Eqs. (2.1d) and (2.1c), it is clear that the only reference
to ϕ on the interior of the fluid domain is through its normal derivative at the surface.
Craig and Sulem [5] found that a convenient way to formulate this is to introduce the
Dirichlet–Neumann operator,G(η), which is the operator that takes Dirichlet data at the
fluid surface to Neumann data at the surface. Since the outward normal to the fluid is given
by Nη = (−∇xη, 1)T and the unit outward normal is given bynη = Nη/|Nη|we can express
the Dirichlet–Neumann operator as

G(η)ξ = (1+ |∇xη|2) 1
2∇ϕ · nη. (2.3)

We note that the right hand side of Eq. (2.3) is not exactly what one would expect for
Neumann data since it is scaled by an extra factor of|Nη|; however, this definition is
effectively equivalent and yields a cleaner set of equations, Eq. (2.5). Using the following
relations, which follow from the chain rule,

∇xϕ|η = ∇xξ − (∂yϕ|η)∇xη (2.4a)

∂yϕ|η = G(η)ξ +∇xϕ|η · ∇xη (2.4b)

∂yϕ|η = 1

|Nη|2 {G(η)ξ +∇xξ · ∇xη} (2.4c)

∂tϕ|η = ∂tξ − ∂tη∂yϕ|η, (2.4d)

it is not difficult to transform Eqs. (2.1d) and (2.1c) into the equivalent ZCS formulation of
the water wave problem,

∂tη = G(η)ξ (2.5a)

∂tξ = −gη − 1

2|Nη| [|∇xξ |2− (G(η)ξ)2− 2(G(η)ξ)∇xξ · ∇xη

+ |∇xξ |2|∇xη|2− (∇xξ · ∇xη)
2]. (2.5b)

2.2. The Dirichlet–Neumann Operator

It can be shown that the Dirichlet–Neumann operator is analytic as a function ofη if the
supremum norm and Lipschitz norm ofη are bounded by a constant [4]. Therefore we can
write G(η) in terms of a convergent Taylor series expansion,

G(η) =
∞∑
j=0

G j (η), (2.6)
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where each termG j (η) is homogeneous of degreej . It is not difficult to show [5] that the
zeroth order term, corresponding to the case of flat water(η = 0), is,

G0ξ(x) = |Dx| tanh(h|Dx|)ξ(x), (2.7)

whereDx = −i∇x. Higher order terms can be derived from a recursive formula obtained
by Craig and Sulem [5]. This formula is derived by considering functionsϕk(x, y) =
eik·x cosh(|k|(y+ h)), k ∈ 0′, which span the set of harmonic functions which also satisfy
both the periodic and the bottom boundary conditions. Putting these functions into the
relationship,

∂yϕk −∇xη · ∇xϕk = G(η)ϕk at y = η, (2.8)

expanding the functions cosh(|k|(η + h)) and sinh(|k|(η + h)) aboutη = 0, and equating
terms of corresponding degree inη we obtain for j = 2r > 0,

G2r (η) = 1

(2r )!
Dx · η2r Dx(|Dx|2)r−1G0

−
r−1∑
s=0

1

(2(r − s))!
G2s(η)

[
η2(r−s)(|Dx|2)r−s

]
−

r−1∑
s=0

1

(2(r − s)− 1)!
G2s+1(η)

[
η2(r−s)−1(|Dx|2)r−s−1G0

]
. (2.9)

For j = 2r − 1> 0 we have

G2r−1(η) = 1

(2r − 1)!
Dx · η2r−1Dx(|Dx|2)r−1

−
r−1∑
s=0

1

(2(r − s)− 1)!
G2s(η)

[
η2(r−s)−1(|Dx|2)r−s−1G0

]
−

r−2∑
s=0

1

(2(r − s− 1))!
G2s+1(η)

[
η2(r−s−1)(|Dx|2)r−s−1

]
. (2.10)

For the current problem the real utility of the above formulae is in their application to
spectral methods. Since the formulae consist of multiplications and applications of Fourier
multipliers composed with one another, a natural choice for applying such an operator is via
a spectral collocation method. The boundary conditions are periodic so we will use a Fourier
collocation method which is a method of weighted residuals with sines and cosines as trial
functions, and translated Dirac delta functions with poles at the equally spaced collocation
points as the test functions [3]. Thus the method is to approximate the functions of interest,
η(x) andξ(x), by expanding them in a finite Fourier series, insert these expansions into the
partial differential equation, project the equations onto the space of delta functions, and then
minimize the residual. For our problem this amounts of evaluating all differential operators
in Fourier space (this includes all Fourier multipliers) while performing all multiplications
in physical space. For example, if we wish to apply the operatorG0 to a functionξ in
physical space we transformξ to Fourier space, apply the diagonal operator|k| tanh(h|k|)
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to the Fourier coefficients ofξ , and then transform back to physical space. To evaluate the
more complicated operatorG1(η) we use the formula

G1(η) = Dx · ηDx − G0ηG0, (2.11)

and note thatDx · ηDxξ = Dx · [ηDx[ξ ]] and G0ηG0ξ = G0[ηG0[ξ ]]. To evaluate the
first part of Eq. (2.11) acting on a functionξ we transform to Fourier space, multiply by the
diagonal operatork, transform back to physical space, multiply by the diagonal operatorη,
transform to Fourier space, multiply by the diagonal operatork, and finally transform back
to physical space. Computations of other such terms are completed in an analogous way.
For speed all transforms are computed via the fast Fourier transform (FFT) algorithm.

Our procedure for computing an approximation to the Dirichlet–Neumann operator is
therefore to choose a desired number of terms in the Taylor expansion, follow the above
procedure for evaluating each of the terms individually, and then sum the result. We note
that there are several drawbacks with such a procedure. First of all, there are the typical
problems of aliasing, and growth of spurious modes. However, there is also the problem
that to evaluate a term of orderj requires evaluations of all terms of orderl , l < j . Thus
the procedure is highly recursive and impractical for very high order terms. In practice we
have used expansions of order 4 and 5 which give excellent results with reasonable cost.

2.3. Traveling Wave Solutions

Our goal is to study traveling wave solutions to the water wave problem. Therefore we
introduce the phase velocity vectorc ∈ Rn−1, wheren = 2 or 3 corresponding to two and
three dimensions, respectively, into the classic water wave equations and then, as with the
ZCS formulation, use the Dirichlet–Neumann operator to express them as surface integral
equations. The classic equations for a steady flow in a frame moving with velocityc are

1ϕ = 0 in Sη (2.12a)

∂yϕ = 0 at y = −h (2.12b)

[c · ∇x]ϕ + 1

2
|∇ϕ|2+ gη = 0 at y = η (2.12c)

[c · ∇x]η +∇xη · ∇xϕ − ∂yϕ = 0 at y = η. (2.12d)

By introducing the Dirichlet–Neumann operator into these equations (2.12), it can be shown
that traveling wave solutions to the water wave problem satisfyF(η, ξ, c) = 0 where

F1(η, ξ, c) = gη + [c · ∇x]ξ + 1

2|Nη| [|∇xξ |2− (G(η)ξ)2− 2(G(η)ξ)∇xξ · ∇xη

+ |∇xξ |2|∇xη|2− (∇xξ · ∇xη)
2] (2.13a)

F2(η, ξ, c) = −[c · ∇x]η + G(η)ξ. (2.13b)

Solutions of the systemF(η, ξ, c) = 0 will be studied using a bifurcation analysis, and
the central issue in such an analysis is the linearization ofF about a branch of known
solutions and its null space. In our case the trivial solutions(η(x) = 0, ξ(x) = 0, c) form
a two dimensional branch of known solutions, and the linearization ofF about the trivial
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solutions is given by

A(c) = ∂uF(η = 0, ξ = 0, c) =
(

g c · ∇x

−c · ∇x G0

)
, (2.14)

whereu = (η, ξ)T . When A(c) is non-singular we expect vis-`a-vis the implicit function
theorem that the only solutions are the trivial ones. Therefore we must search at the sin-
gularities ofA(c) to find bifurcations to branches of non-trivial solutions. If we writeu in
terms of its Fourier series,

u(x) =
(
η(x)
ξ(x)

)
=
∑
k∈0′

(
η̂(k)
ξ̂ (k)

)
eik·x, (2.15)

one can see that the action ofA(c) on the Fourier coefficients is given in 2×2 block diagonal
form, with thekth block being

Âk(c) =
(

g ic · k
−ic · k |k| tanh(h|k|)

)
. (2.16)

Therefore, the matrixA(c) is singular forcsuch that1(c, k) = g|k| tanh(h|k|)−(c·k)2 = 0
for somek ∈ 0′. The corresponding null vectors are

ψ1(c, k) =
(

c · k cos(k · x)
−g sin(k · x)

)
(2.17a)

ψ2(c, k) =
(

c · k sin(k · x)
g cos(k · x)

)
. (2.17b)

If we consider the two dimensional problem and are given ak ∈ 0′, there is a unique, up
to sign, wave speedc which makesÂk(c) singular. At this point we have the null vectors
ψ1(c, k) andψ2(c, k) and we are free to travel up the bifurcation branch in any direction
spanned by these two vectors. However, continuation codes, which we outline below, are
much more robust at bifurcation points which have a one dimensional null space. In light of
this we will choose to travel in theψ1 direction and completely project out theψ2 direction.
It is equivalent, and useful for programming purposes, to demand that the mode ˆη(k) be
real. This is of course arbitrary, but enforcing this simply fixes the crest of the wave atx = 0
and it reduces the dimension of the null space to one.

In the three dimensional problem given ak∈0′ there are two parallellinesin the(c1, c2)

plane of values which makêAk(c) singular. At an arbitrary point on these lines we can find a
bifurcation branch consisting of solutions of the two dimensional problem. Interesting points
occur at the intersection of two lines arising from different wave numbers. Therefore we
choose two wave numbers,κ1 andκ2, and find the intersection points of the lines generated
by these wave numbers. At any one of these points we have a null space spanned by four
vectors,ψ1(κ1), ψ2(κ1), ψ1(κ2), andψ2(κ2). Again, we wish to reduce the dimension of the
null space to one, so we seek solutions which are a product ofψ1(κ1) andψ1(κ2)with equal
amplitude. This results in a product of cosines in theη component. Once we have moved
onto the bifurcation branch and proceeded up a short distance, these solutions will form
the hexagonal ones mentioned earlier. Equivalently, again for programming purposes, this
choice amounts to demanding that the modes ˆη(κ1) andη̂(κ2) be real and equal. One final
degree of freedom that must be eliminated is due to the fact that there is a two dimensional
parameter,c. We eliminate this by choosing to move along a line in(c1, c2) space.
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3. NUMERICAL METHODS

Now that we have derived surface integral equations for traveling wave solutions to the
water wave problem we must reduce this to a finite dimensional problem,H(v̄, c) = 0,
H : RN ×R→RN , via some discretization method. As mentioned in Subsection 2.2, we
accomplish this using a spectral collocation method which gives spectral convergence for
the analytic solutions which we seek. However, these methods have difficulties such as
aliasing and spurious growth of high wave number modes which we must overcome in
order to proceed any distance up the bifurcation branch. Once we have arrived at this
finite dimensional problem we must implement a continuation method to move us along
the surface of solutions once we have located it. For the most part we use the standard
methods outlined in the book of Allgower and Georg [1]. These methods generally work
well with some noteworthy modifications which are necessary to select a solution from
among the many possible solutions. This ambiguity regarding possible solutions is due to
the symmetries inherent to our formulation, in particular the boundary conditions, of the
water wave problem, and manifests itself by allowing two dimensional bifurcation surfaces
rather than one dimensional bifurcation branches.

3.1. Spectral Collocation Implementation

As we mentioned in Subsection 2.2 above we use a spectral collocation method to dis-
cretize the problemF(u, c) = F(η, ξ, c) = 0 into the problemH(v̄, c) = 0. The trial
functionsXN are the trigonometric polynomials of degree less than or equal toN

2 and thus
we approximateu byuN ∈ XN . This function is represented by the truncated Fourier series,

uN(x) =
(
ηN(x)
ξN(x)

)
=
∑
k∈0′N

(
η̂(k)
ξ̂ (k)

)
eik·x, (3.1)

where0′N is the set of wave numbers less than or equal toN
2 in the norm of the lattice0′.

The test functionsYN are the Dirac delta functionsδ(x − xj ) where thexj are theNn−1

collocation points, equally spaced grid points within the parallelogramP(0)=Rn/0. We
substitute the functionuN into F(u, c) = 0, project this equation onto the set of test
functionsYN , and then demand that the residual be minimized. This is equivalent to de-
manding that the equation be satisfied at the collocation points,

F(uN(x), c)|x=xj = 0. (3.2)

If we introduce the vector ¯v into the problem by letting ¯v j = uN(xj ), where thexj are the
collocation points, then the discretization of the problem isH(v̄ j , c) = F(uN(x), c)|x=xj .
We will need to be able to transform the ¯v j from physical space to Fourier space; this
is accomplished by performing a discrete Fourier transform on the ¯v j which amounts to
an approximation of the coefficientŝu(k) by the trapezoid rule. Derivatives and Fourier
multipliers are computed by transforming to Fourier space and then applying the associated
diagonal or near-diagonal operators, while multiplications are carried out in physical space
in a pointwise fashion. Consequently all operations are diagonal or near-diagonal with fast
transforms performed in between. However, problems due to aliasing and spurious growth
of high wave numbers require special techniques to allow meaningful computations to
proceed. These techniques are outlined in Subsection 3.4.
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In the next section we will see that a continuation method with a Newton corrector requires
the formation of the Jacobian matrix∂uF . We compute the linear operator∂uF analytically
(this requires computing the first variation of the Dirichlet–Neumann operatorδnG(η)ξ)
and then approximate it numerically using the Fourier collocation method. This presents
no new difficulties but we point out that due to the global nature of the basis functions this
matrix mustin general be dense. This presents a problem for the use of iterative methods
which we discuss in Subsection 3.5.

For convenience we work primarily in Fourier space due to the greater ease of applying the
projections which we outline in Subsection 3.3. The simplest continuation methods require
that the continuation parameter be one dimensional. The two dimensional water wave
problem satisfies this constraint, but the three dimensional problem has two parameters. In
order to reduce the dimension we choose to travel along a straight line in(c1, c2) space
passing through(c∗1, c

∗
2) with angleΨ. Therefore we have

c1(σ ) = c∗1 + cos(Ψ)σ (3.3a)

c2(σ ) = c∗2 + sin(Ψ)σ, (3.3b)

and we useσ as the parameter.

3.2. Continuation Methods

The numerical methods for solving simple continuation problems are well understood
and quite sophisticated. We chose to write our own simple set of basic routines due to our
special needs, and implemented the pseudocode found in the book by Allgower and Georg
[1] which we outline here.

We wish to solve the nonlinear problem

H(v̄, c) = 0, (3.4)

whereH : RN × R→ RN andH is smooth. We will letv = (v̄, c) and assume that there
is a pointv0 ∈ RN+1 such thatH(v0) = 0 andH ′(v0) has maximal rankN. In this case
the implicit function theorem gives us a solution curveγ (α) such thatH(γ (α)) = 0. We
differentiate the previous equation to obtain

H ′(γ (α))γ ′(α) = 0. (3.5)

Thusγ ′(α) spans ker(H ′(γ (α))). We parameterize the curve with respect to arclength im-
plying that‖γ̇ (s)‖=1 whereγ̇ (s)= dγ

ds represents differentiation with respect to arclength.
Finally, in order to uniquely specify our tangent we form theaugmented Jacobian

Jaug=
(

H ′(γ (s))
γ̇ (s)∗

)
, (3.6)

where∗ here represents the conjugate transpose, and require that detJaug> 0. This develop-
ment inspires the following general definition,

DEFINITION 3.1. LetA ∈ RN×(N+1) with rank(A) = N. The unique vectort (A) ∈ RN+1

such thatAt(A) = 0, ‖t (A)‖ = 1, and det( A
t (A)∗ ) > 0 is called thetangent vector induced

by A.



             

232 DAVID P. NICHOLLS

With this definition in mind we can think of the problem of following the solution curve
as solving the followingdefining initial value problem:

v̇ = t (H ′(v)) (3.7a)

v(0) = v0. (3.7b)

It can be shown that the right hand side of Eq. (3.7a) is smooth on an open set and thus the
classical existence and uniqueness results of ordinary differential equations apply resulting
in a locally defined smooth solutionγ (s).

Our goal is to numerically traceγ (s) by computing a sequence of points{v j } near the
curve such that

‖H(v j )‖ ≤ ε, (3.8)

whereε > 0 is a user defined tolerance. Suppose that we have a pointv j ∈ RN+1 such
that‖H(v j )‖ ≤ ε. To obtain the next point we make a predictor stepw j+1, and then use a
corrector to obtainv j+1. The most common predictor in such methods in theEuler predictor,

w j+1 = v j +1s ∗ t (H ′(v j )), (3.9)

where1s > 0 is the step size which we will vary based on various convergence criterion
(see Allgower and Georg [1, Chap. 6]). For the corrector step we take advantage of the fact
thatH(v, c) = 0 and use a powerful Newton corrector. We wish to findy ∈ RN+1 such that

‖y− w j+1‖ = min
y
{‖y− w j+1‖ | y ∈ γ (s)}. (3.10)

If v j is close toγ (s) and1s is small enough then thisy is unique. Our approximation toy
will be v j+1.

The final step is to implement this minimization procedure using Newton’s method. If
H : RN → RN then we could use the classic Newton’s method. However, sinceH : RN+1→
RN we must use the Moore–Penrose inverse in place of the inverse in a Newton-like scheme.
If we are given a matrixA ∈ RN×(N+1) of maximal rank we denote the Moore–Penrose
inverse byA+ and recall thatA+ = A∗(AA∗)−1. The following central lemma can be proven,

LEMMA 3.2. If A ∈ RN×(N+1) has maximal rank and t(A) is the induced tangent, then
the following are equivalent for all b∈ RN and x∈ RN+1,

(1) Ax = b and t(A)∗x = 0.
(2) x = A+b.
(3) x solvesminy{‖y‖ | Ay= b}.

Now we wish to solve miny{‖w− y‖ | H(y) = 0}. The method of Lagrange multipliers
gives a necessary condition on the solutiony which is that

H(y) = 0 (3.11a)

y− w = H ′(y)∗λ, (3.11b)

whereλ ∈ RN . The second condition is equivalent toy−w ∈ ran(H ′(y)∗) = {t (H ′(y))}⊥,
thusy satisfies

H(y) = 0 (3.12a)

t (H ′(y))∗(y− w) = 0. (3.12b)
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To realize Newton’s method we linearize the left hand side of Eq. (3.12) aboutw to get

H(y) = H(w)+ H ′(w)(y− w)+O(‖y− w‖2) (3.13a)

t (H ′(y))∗(y− w) = t (H ′(w))∗(y− w)+O(‖y− w‖2). (3.13b)

The solution of the linearized equation,N (w), therefore solves

H(w)+ H ′(w)(N (w)− w) = 0 (3.14a)

t (H ′(w))∗(N (w)− w) = 0. (3.14b)

Using Lemma 3.2 we see that the following is equivalent,

N (w) = w − H ′(w)+H(w). (3.15)

This is precisely Newton’s method where the Moore–Penrose inverse replaces the inverse.
Other topics such as adaptive step sizing, bifurcation point detection and location, and
variable order predictors are all discussed in Allgower and Georg [1] and H. B. Keller [11].

3.3. Projections

Like most physical problems the water wave problem admits many symmetries. For ex-
ample, if we have a solution(η(x), ξ(x), c) to the two dimensional problem with periodic
boundary conditions then(η(x+ θ), ξ(x+ θ), c) is also a solution since this merely trans-
lates the origin. The presence of such symmetries makes continuation methods difficult
since it introduces singularities into the Jacobian matrix∂uF which must be inverted at
every step. Overcoming these obstacles is not difficult and it is greatly aided by the fact that
we work primarily on the Fourier side, but one must be careful to work in a consistent man-
ner in order to obtain a solution with the correct rate of convergence. We will first discuss
the types of symmetries and singularities that arise in the water wave problem and how we
can theoretically overcome them, and then we outline how to implement these techniques
into the algorithm.

The first singularity arises from an ambiguity in the average values ofη andξ . If we let
P(0) denote ann dimensional parallelogram in the lattice0, then the average value of a
function f periodic on the lattice0 is

f̄ = 1

|P(0)|
∫

P(0)
f (x) dx = f̂ (0). (3.16)

Since the velocity potential is unique only up to a constant, and the average value of the
water surface is free to be chosen, we will have a singularity of degree two. We can eliminate
this by specifying the values of ¯η andξ̄ , and consequently we demand that ˆη(0) = ξ̂ (0) = 0.
Numerically this is achieved by demanding that a certain mode, the zeroth one, be zero at
every step. Another case where it is useful to set an entire mode to zero is the highest wave
number. We always use an even number of collocation points which implies that the highest
wave number is purely real. This creates an inconsistency when applying differentiation
operators since we can represent cosines but not sines of the highest wave number. Therefore
the highest wave number is set to zero at each step.

Another singularity arises from the symmetries inherent to the water wave problem
with periodic boundary conditions. In the two dimensional problem we recall that at a
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valuec∗ such that1(c∗, k) = 0, k ∈ 0′, the operatorA(c∗) has a two dimensional null
space spanned byψ1(c∗, k) andψ2(c∗, k). We have decided to travel in theψ1(c∗, k)
direction which we implement by requiring that Im{η̂(k)} = 0 at every step. Similarly in
the three dimensional problem at a parameter valuec∗ = (c∗1, c

∗
2) such that1(c∗, κ1) =

1(c∗, κ2) = 0, κ1, κ2 ∈ 0′, the operatorA(c∗) has a four dimensional null space spanned by
ψ1(c∗, κ1), ψ2(c∗, κ1), ψ1(c∗, κ2),andψ2(c∗, κ2). We have decided to travel in the direction
of the product ofψ1(c∗, κ1) andψ1(c∗, κ2) which we implement by setting Im{η̂(κ1)} and
Im{η̂(κ2)} to zero, and Re{η̂(κ1)} and Re{η̂(κ2)} equal to one another.

In practice implementing these procedures to avoid the singularities due to symmetry
is straightforward. At the end of each iteration of Newton’s method we simply set the
component in question equal to zero or equal to another component. The only difficulty
arises when considering the Jacobian matrix. Applying these procedures effectively projects
out some of the dependent variables and so if we are to have a Jacobian of maximal rank
we need to eliminate a corresponding number of equations. We project out equations which
reduce the singularity ofA(c)at the bifurcation valuec∗ that we are near. After the projection
we insert appropriate placeholders into the Jacobian matrix to maximize its rank. Such a
procedure has worked well for us since we are only interested in solutions a short way up
the branch.

3.4. Filtering

Two of the major sources of error in spectral methods for nonlinear differential equations
are aliasing and spurious growth of high wave number errors. Effective methods to reduce
aliasing error are computing de-aliased products, and filtering, while the effects of high wave
number errors are usually controlled by filtering alone. Our efforts in reducing these types
of errors have been focused almost exclusively on filtering and we have seen good results.
We have implemented limited de-aliasing in evaluating the Dirichlet–Neumann operator
where aliasing effects are most severe, but other products in the evaluation ofF are aliased.
More extensive de-aliasing techniques could be implemented, but we have chosen not to
since aliasing errors decrease as the number of modes increases and our results have been
satisfactory.

The first goal is to try to reduce the errors due to aliasing in evaluating the Dirichlet–
Neumann operator. Thej th term in the Dirichlet–Neumann operator involves nonlinearities
of order( j +1) so aliasing errors may accumulate quickly for largej . Complete de-aliasing
of the Dirichlet–Neumann term of orderj requires applying a perfect low-pass filter to both
η andξ of the form,

3(k, ν) =
{

1 for |k| ≤ ν|kmax|
0 for |k| > ν|kmax|, (3.17)

with ν = 1
j+1.

Our second goal is to control the growth of errors in high wave numbers. It is well known
that small errors are quickly amplified in spectral methods when differentiation operators
are applied, and amplification is greatest in the highest modes. Filtering is the obvious
method for overcoming such difficulties and we have used the ideal filter given in Eq. (3.17).
However, applying the filter toη andξ before each function and Jacobian evaluation resulted
in solution paths which eventually diverged. As an alternative, we enforce the condition that
wave numbers of modulus greater thanν= 1

2 be set to zero at every step. While intermediate
calculations such as evaluation ofF, ∂uF , and∂cF took place the higher wave numbers
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were allowed to fill which reduced aliasing errors, but at the end of the step the high wave
numbers were set to zero. This was accomplished using the projection-placeholder zeroing
out technique outlined above. This method does have the disadvantage that half of the modes
are inactive; however, our method is spectral and our solutions are analytic so only a few
modes are required to satisfy stringent conditions of convergence. Other non-ideal filters
were also explored, such as the one used by Craig and Sulem [5], but the same divergence
phenomenon was observed as with the application of the ideal filter. This is a phenomenon
which needs to be investigated further, on a much simpler problem, and may be a numerical
analogue of the techniques of alternate smoothing and Newton stepping found in Nash
implicit function theorem techniques.

3.5. Parallelization

Although we have already stated that only a small number of modes are necessary to ac-
curately resolve waveforms of interest, the problem is computationally challenging enough
that it is worthwhile to program carefully and take advantage of any structure available. The
challenge in the water wave problem arises due to the large number of total modes necessary
to resolve the three dimensional problem, and the complicated nature of our equations.

A true Newton’s method involves computing the Jacobian matrix at every iteration step
and gives quadratic convergence, while a linear method would be to evaluate the Jacobian
once at the beginning of the branch and then use this at all subsequent steps. Of course
everything in between is possible and an appropriate choice of method is based on the
accuracy required and the cost of evaluating and factoring the Jacobian matrix. For the water
wave problem of small to moderate size the true bottleneck in the computation is the
formation of the Jacobian matrix. We have decided to evaluate the Jacobian at the previous
point along the branch,v j , to determine the new tangent,t (H ′(v j )), and then evaluate
once in the corrector phase using the Euler value,w j+1. This does not result in a true
Newton’s method and it will not theoretically have super-geometric convergence rates, but
nevertheless the convergence is very quick and the number of Jacobian evaluations is kept
at two per step.

Since we have decided to evaluate the Jacobian at every step we ensure that the evaluation
of the matrix is as fast as possible. Due to their recursive natures there are no direct formulae
for either the Dirichlet–Neumann operator,G(η), or its first variation,δnG(η)ξ as matrices.
Therefore we are forced to form these matrices by evaluating them on each of the basis
vectors and then placing the results in the appropriate columns. This is the most expensive
operation in computing the Jacobian matrix and thus in the code for small to moderate
problems. Not much can be done about this on a serial machine, but a simple way of
speeding this process up on a parallel machine is to adopt a master-slave model [7] where
the master runs most of the serial code on its own, and then parcels out this matrix evaluation
work to the slave processes wheneverG(η) andδηG(η)ξ are needed. Clearly this is not
the only way to parallelize this program, and for large numbers of modes it is obviously
not the best especially as the cost of factoring the dense Jacobian matrix in serial becomes
prohibitive. However, it is extremely easy to implement and debug and we have been able to
run moderately sized problems,N1 = N2 = 32, on 32 nodes of the CCSTs SP at Argonne
National Laboratory in reasonable amounts of time to get excellent results.

We have discussed two other ways to parallelize this code, each of which has its ad-
vantages. The first way would be to parallelize the evaluation of the Dirichlet–Neumann
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operator and its first variation. This would be based on the fact that when evaluating the
j th term, we need to evaluate terms likeGl (η) f j,l (x) for l = j, . . . ,0 where thef j,l are
different for each value ofj . We would again employ the master-slave model and invoke
the help of the slaves only when evaluations of the Dirichlet–Neumann operator and its first
variation are needed. Each one of the slaves would “specialize” in computing a certain order
of Gl and would be passed appropriatef j,l for computation. This places a large burden on
the slaves computing lower modes but it does parallelize the evaluation. Like the procedure
we implemented this one will also suffer at higher number of modes due to the serial matrix
factorization. The other procedure we considered would be to distribute the data over all of
the nodes and then proceed as the serial code does, but with all FFTs, factorizations, etc.,
done in parallel. This has the obvious advantage that it adapts well to larger problems since
it can store more data in memory and a larger portion of the code is in parallel (in particular
the costly matrix factorization). However, this style of parallel programming is much more
difficult and error-prone, and since our matrices are dense we cannot appeal to the iterative
solution methods which have made large problems on parallel machines feasible. We plan
to investigate both methods in the future.

4. NUMERICAL RESULTS

We have implemented the above procedure in both a serial and parallel version. As we
have mentioned, a serial version is all that is necessary for even large two dimensional runs;
however, a parallel version is required for moderately sized three dimensional runs. We
have completed many runs for both problems and we briefly outline our progress below.

4.1. The Two Dimensional Problem

Much work has been done on the numerical solutions of the two dimensional water wave
problem. There are many equations which approximate the two dimensional water wave
equations which have all been studied in great detail. Craig and Sulem [5] have investigated
the full time dependent water wave problem using our method and this is the precursor
to our current work. Many people have investigated traveling wave solutions to the full
equations and computed waves near the Stokes wave singularity (highest wave having a
120◦ angle at the crest) [2, 12, 19–21] (see also the summary by Miles [14]), breaking waves
[6], and waves with various symmetry properties [23]. We do not attempt to compete with
such computations since our formulation is not appropriate in all of these situations, but
we present some of the our results concerning waves near the singularity. In Fig. 1 we see
how the norm of our solution varies as a function of the parameterc along the non-trivial
branch. In Fig. 2 we see the fastest-moving and most singular wave that we have computed
thus far. In each case the results are from a computation withN = 512 collocation points
andm = 5 Dirichlet–Neumann terms. The full run took roughly 7.4 h on 8 nodes of the
Argonne SP.

Aside from traveling waves near the singularity we also would like to investigate sec-
ondary bifurcations from this primary branch of non-trivial solutions. A goal of such com-
putations would be to find traveling waves with symmetry properties not yet seen, or a
combination of various symmetry properties with the wave approaching a singularity. Both
investigations will require more intensive computations, but they should be feasible given
our parallel implementation.
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FIG. 1. Plot of |u(x)|∞ vs c (h = 1
10
).

4.2. The Three Dimensional Problem

In contrast to the two dimensional problem, very little work has been done on the three
dimensional problem. The time dependent problem has been analyzed by Schanz [16],
while traveling wave solutions to simplified versions of the three dimensional water wave
equations have been studied by Hammacket al. [8, 9] and Milewski and Keller [15].
Hammacket al. constructed a wave tank where they were able to study two groups of

FIG. 2. Plot ofη(x) vs x (h = 1
10
).
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solitary waves interacting where the angle between the wave train velocities was small.
They produced pictures where hexagons were formed by the wave crests and noted that
such behavior is exhibited by ocean waves in shallow water. They reproduced such solutions
using the KP equation which models this behavior well. Milewski and Keller reproduced
these and other solutions using their own formulation, and one of our goals in this paper is
to reproduce these hexagonal solutions using the full water wave equations.

We have had great success in producing hexagonal solutions while traveling only a short
distance up the non-trivial branch. The key seems to lie in choosing the fluid depth, the
underlying parallelogram of periodicity, and the wave speed carefully. Since we allow
the depth of the water to vary we can specify a general periodic problem using the matrix

A =
(

1 Rcos2
0 Rsin2

)
, (4.1)

to generate a lattice0. Choosingκ1, κ2 ∈ 0′ one can find a parameter valuec∗ = (c∗1, c∗2)
such thatA(c∗) has a four dimensional null space. From this pointc∗ we move in a line
with angle9 in the(c1, c2) plane. In all of our runs thus far we have chosen wave numbers
corresponding to the pointsj1 = (1, 1), j2 = (1,−1) in the lattice, i.e.,

κ1 = 2π(AT )−1 j1 (4.2a)

κ2 = 2π(AT )−1 j2. (4.2b)

Our experience has shown that choosing shallow water on a periodic rectangle of high
aspect ratio is effective in producing hexagonal wave patterns. Therefore we have selected
h = 1

100, R = 11, and2 = π
2 for the runs presented in this paper. For these values ofR

and2, c∗ lies on thec1 axis. We choose to move in a positivec1 direction, i.e.,Ψ = 0, to
amplify the hexagonal wave forming effect. In Fig. 3 we show the shape of the traveling
wave moving with speedc = (0.100512, 0.0). In Fig. 4 we show a contour plot of the
same wave. It is easy to see in this figure that the wave crests are forming a hexagonal
shape.

FIG. 3. Plot ofη(x) vs x (h = 1
100
, R= 11,2 = π

2
).
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FIG. 4. Contour plot ofη(x) vs x (h = 1
100
, R= 11,2 = π

2
).

One further direction for our three dimensional numerics is to try to reproduce some of the
other wave forms seen by Milewski and Keller [15]. We would also like to reproduce their
results concerning resonant interactions between primary waves and their subharmonics.

ACKNOWLEDGMENTS

The author thanks his advisor, Walter Craig, for suggesting this problem and providing encouragement and
useful comments. He also thanks Paul Fischer and Catherine Sulem for much help along the way. He thanks the
National Science Foundation (Graduate Fellowship) and the Division of Applied Mathematics at Brown University
for supplying funding during this work. Finally, he thanks his wife Kristy for her undying love and support.

REFERENCES

1. E. Allgower and K. Georg,Numerical Continuation Methods: An Introduction(Springer-Verlag, New York,
1990).

2. J. Byatt-Smith, An exact integral equation for steady surface waves,Proc. R. Soc. London A315, 625 (1970).

3. C. Canuto, Y. Hussani, A. Quarteroni, and T. Zang,Spectral Methods in Fluid Dynamics(Springer-Verlag,
New York, 1988).

4. R. Coifman and Y. Meyer, Nonlinear harmonic analysis and analytic dependence, inProc. Sympos. Pure Math.
(Amer. Math. Soc., Providence, RI, 1985), Vol. 43, p. 71.

5. W. Craig and C. Sulem, Numerical simulation of gravity waves,J. Comput. Phys.108, 73 (1993).

6. D. Dommermuth and D. Yue, A high-order spectral method for the study of nonlinear gravity waves,J. Fluid
Mech.184, 267 (1987).

7. W. Gropp, E. Lusk, and A. Skjellum,Using MPI: Portable Programming with the Message Passing Interface
(MIT Press, Cambridge, MA, 1996).

8. J. Hammack, D. McCallister, N. Scheffner, and H. Segur, Two-dimensional periodic waves in shallow water.
Part 2 Asymmetric waves,J. Fluid Mech.285, 95 (1995).

9. J. Hammack, N. Scheffner, and H. Segur, Two-dimensional periodic waves in shallow water,J. Fluid Mech.
209, 567 (1989).



     

240 DAVID P. NICHOLLS

10. B. Kadomtsev and V. Petviashvili, On the stability of solitary waves in weakly dispersing media,Sov. Phys.
Dokl. 15, 539 (1970).

11. H. Keller,Lectures on Numerical Methods in Bifurcation Problems(Springer-Verlag, New York, 1987).

12. C. Lenau, The solitary wave of maximum amplitude,J. Fluid Mech.26, 309 (1966).
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