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We present a numerical continuation method for traveling wave solutions to the
full water wave problem using a spectral collocation discretization. The water wave
problem is reformulated in terms of surface variables giving rise to the Zakharov—
Craig—Sulem formulation, and traveling waves are studied by introducing a phase
velocity vector as a parameter. We follow non-trivial solution branches bifurcating
from the trivial solution branch via numerical continuation methods. Techniques such
as projections and filtering allow the computation to proceed for greater distances up
the branch, and parallelism allows the computation of larger problems. We conclude
with results including the formation of hexagonal patterns for the three dimensional
problem. (© 1998 Academic Press

1. INTRODUCTION

The study of inviscid, irrotational, free-surface flows, known as the water wave proble
has interested researchers for many years. The observations by Russell of solitary v
inspired the nineteenth century work of Boussinesq, Rayleigh, and others on long waves
Section 10.9 of Stoker [17]). Later on Levi-Civita [13] proved the existence of periodic tra
ling waves of infinite depth, while Struik [18] proved the case of finite depth. More recen
Hammaclet al.[9, 8] and Milewski and Keller [15] have studied traveling wave solutions ¢
approximations to the three dimensional water wave equations. Hamanalckegan their
research with wave tank experiments of two interacting traveling waves and noted hexac
wave forms. They were able to reproduce these using exact solutions to the KP equatior
which serves as a three dimensional analogue to the KdV equation. Milewski and Ke
were also able to reproduce these and other shapes using their own model. Our res
focuses on traveling wave solutions to the Zakharov—Craig—Sulem (ZCS) formulatior
the water wave problem which is equivalent to the full water wave equations. Zakhe
recognized that the water wave problem could be written as a Hamiltonian system [22] w
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Craig and Sulem introduced the Dirichlet-Neumann operator into the formulation [5]. Ci
and Sulem studied the time dependent two dimensional version of these equations [5]
many people have studied various aspects of traveling wave solutions of the two dimens
water wave problem, [2, 6, 12, 19, 20, 21, 23]. Schanz studied the three dimensional
dependent ZCS formulation [16], but little else has been done for the three dimensiona
water wave problem.

The goal of this paper is to find hexagonal solutions of the water wave problem u:
numerical continuation methods applied to traveling wave solutions of the ZCS formulat
In Section 2 we state the water wave equations, show how they are equivalent to the
formulation, introduce the Dirichlet—-Neumann operator, and then derive the equation:
traveling wave solutions. In Section 3 we discuss the spectral collocation discretization o
problem, briefly outline the continuation methods used, and then discuss ourimplement
of projections, filters, and parallelism. In Section 4 we mention a few of our numerical res
in two and three dimensions. Most importantly we show three dimensional waves wi
exhibit the hexagonal shape discussed above.

2. TRAVELING WAVE SOLUTIONS OF THE WATER WAVE PROBLEM

The water wave problem consists of describing the evolution of the free surface o
incompressible, inviscid, irrotational fluid under the influence of gravity. Our version of t
problem ignores the effects of surface tension, while it includes the effects of a botton
fixing one at a constant depth eth. The problem can be formulated indimensions, an
(n — 1) dimensional bottom and one vertical dimension, but is clearly most useful in t
and three dimensions for the modeling of ocean waves.

2.1. Classical Equations and Zakharov—Craig—Sulem Formulation

It is well known that inside the fluid regio, = {(X, y) e R" | —h <y < n(x, 1)}, we
can define a velocity potential(x, y, t) which satisfies Laplace’s equation,

Ag = 0. (2.1a)

Once the velocity potential is found the fluid velocity can be compute@ia®’™ = V.
Boundary conditions fop are

dyp =0 aty = —h (2.1b)

dn+ Vxn-Vxp —dyp =0 aty =n(x, 1) (2.1c)
1

8t§0+§|V<p|2+gn =0 aty=n(xt). (2.1d)

For our problem the horizontal boundary conditions will be periodic. For the two dime
sional problem the surface is parameterized by an interval, while in three dimension:
surface is parameterized by a parallelogram which is itself determined by a attitle
recallthatalattic& c R" generated by the non-singular matfixc R"*" acting on integer
vectorsj € Z" has a conjugate lattice’ ¢ R" generated by 2(AT)~1. A well-behaved
function f periodic on the parallelograrR(I") = R"/T" can be expressed by its Fourier
expansion,

foo=> faoek. (2.2)

ker”
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These equations and boundary conditions are what we have denoted as the classical
tions for the water wave problem. The following paragraph introduces the Zakharov—Cr:
Sulem (ZCS) formulation which constitutes a surface integral formulation of the ab
equations [5, 22].

Since we are solving Laplace’s equation in the fluid region and we have the boun
conditions at the other boundaries, once we have found the free syrfackthe boundary
values of the potential at the free surface we can theoretically solve for the poter
Zakharov’'s method consists of a reduction of the problem from one inside the entire f
to one at the surface which reduces the dimension of the problem. With this in mind
introduces (x, t) = (X, n(X, t), t) as the potential evaluated at the surface. Upon inspecti
the equations at the free surface, Egs. (2.1d) and (2.1c), it is clear that the only refer
to ¢ on the interior of the fluid domain is through its normal derivative at the surfa
Craig and Sulem [5] found that a convenient way to formulate this is to introduce
Dirichlet—Neumann operato6 (n), which is the operator that takes Dirichlet data at th
fluid surface to Neumann data at the surface. Since the outward normal to the fluid is ¢
by N, = (—Vxn, 1)T and the unit outward normalis given by = N, /|N,| we can express
the Dirichlet—Neumann operator as

G(mE = 1+ |Vxn|A):Ve - n,. (2.3)

We note that the right hand side of Eq. (2.3) is not exactly what one would expect
Neumann data since it is scaled by an extra factofNyfi; however, this definition is
effectively equivalent and yields a cleaner set of equations, Eg. (2.5). Using the follow
relations, which follow from the chain rule,

Vxoly = Vx& — (Oyply) Vxn (2.4a)

dyply, = G(ME + Vxel, - Vxn (2.4b)
1

dyply = W{G(ﬂ)é + Vié - Vkn} (2.4¢)
n

at‘p|n = 8t%_ - 3t’73y§0|m (24d)

it is not difficult to transform Eqgs. (2.1d) and (2.1c) into the equivalent ZCS formulation
the water wave problem,

dn = Gé (2.5a)
1
hE = —gn — =——[IVx&12 — (GE)? — 2(G(n)E) V& - Vyny
2IN,|
+ [ VRE 2| Vxn|? — (V& - Vi)?]. (2.5b)

2.2. The Dirichlet—-Neumann Operator

It can be shown that the Dirichlet—-Neumann operator is analytic as a functipif thfe
supremum norm and Lipschitz norm pfare bounded by a constant [4]. Therefore we ca
write G(n) in terms of a convergent Taylor series expansion,

G =) Gim), (2.6)
j=0
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where each tern®; (n) is homogeneous of degrgelt is not difficult to show [5] that the
zeroth order term, corresponding to the case of flat watet 0), is,

Go& (x) = | Dy| tanhth| Dx)é (x), 2.7)

whereDy = —i Vy. Higher order terms can be derived from a recursive formula obtain
by Craig and Sulem [5]. This formula is derived by considering functionx, y) =
e“*cosh(k|(y + h)), k € T, which span the set of harmonic functions which also satis
both the periodic and the bottom boundary conditions. Putting these functions into
relationship,

dypx — V- Vi = G aty =, (2.8)

expanding the functions co§R|(n + h)) and sinkik|(n + h)) abouty = 0, and equating
terms of corresponding degreerirwe obtain forj = 2r > 0,

1
G (1) = ——— Dy - n? Dx(IDx|?)" Gy

2r)!
r—1
T2 ey o= (729 (1Dx[?) ]
— 1
= B0 —s =i CEn T TIDI TG (29)

Forj =2r —1 > 0 we have

1
Gara() = g5 Dx- n? 1 Dx(IDx )"

r-1 1
=Y G [V H(DxD Gy
SZ:; 2(r —s) - 1!

r—2 1
-2 2r —s—1)!

s=0

Gos1 () [N = P(D4A 1. (2.10)

For the current problem the real utility of the above formulae is in their application
spectral methods. Since the formulae consist of multiplications and applications of Fol
multipliers composed with one another, a natural choice for applying such an operator i
a spectral collocation method. The boundary conditions are periodic so we will use a Fo
collocation method which is a method of weighted residuals with sines and cosines as
functions, and translated Dirac delta functions with poles at the equally spaced colloc:
points as the test functions [3]. Thus the method is to approximate the functions of inte
n(x) andé (x), by expanding them in a finite Fourier series, insert these expansions inta
partial differential equation, project the equations onto the space of delta functions, and
minimize the residual. For our problem this amounts of evaluating all differential operat
in Fourier space (this includes all Fourier multipliers) while performing all multiplicatior
in physical space. For example, if we wish to apply the oper@pto a functioné in
physical space we transforénto Fourier space, apply the diagonal operakdtanh(h|k|)
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to the Fourier coefficients &f, and then transform back to physical space. To evaluate t
more complicated operat@;(n) we use the formula

G1(n) = Dx - nDx — GonGo, (2.11)

and note thaDy - nDy& = Dy - [nDy[£]] and GonGoé = Go[nGo[£]]- To evaluate the
first part of Eq. (2.11) acting on a functigrwe transform to Fourier space, multiply by the
diagonal operatdk, transform back to physical space, multiply by the diagonal opetator
transform to Fourier space, multiply by the diagonal operatand finally transform back
to physical space. Computations of other such terms are completed in an analogous
For speed all transforms are computed via the fast Fourier transform (FFT) algorithm.
Our procedure for computing an approximation to the Dirichlet—Neumann operato
therefore to choose a desired number of terms in the Taylor expansion, follow the al
procedure for evaluating each of the terms individually, and then sum the result. We |
that there are several drawbacks with such a procedure. First of all, there are the ty
problems of aliasing, and growth of spurious modes. However, there is also the prot
that to evaluate a term of ord¢rrequires evaluations of all terms of ordet < j. Thus
the procedure is highly recursive and impractical for very high order terms. In practice
have used expansions of order 4 and 5 which give excellent results with reasonable ¢

2.3. Traveling Wave Solutions

Our goal is to study traveling wave solutions to the water wave problem. Therefore
introduce the phase velocity vectoe R"*, wheren = 2 or 3 corresponding to two and
three dimensions, respectively, into the classic water wave equations and then, as wit
ZCS formulation, use the Dirichlet—-Neumann operator to express them as surface int
equations. The classic equations for a steady flow in a frame moving with vedomigy

Ap =0 inS, (2.12a)
dyp =0 aty = —h (2.12b)

1
[C-Vx]<o+§|w|2+gn =0 aty=q (2.12c)
[C- Vin+ Vxn - Vxp —dyp =0 aty = n. (2.12d)

By introducing the Dirichlet-Neumann operator into these equations (2.12), it can be sh
that traveling wave solutions to the water wave problem sakgfy, £, c) = 0 where

1
Fi(n,&,0) = gn+[c- Vi + 2IN |[|Vx§|2 — (G()&)* — 2G(ME)VKE - Vi
n
+ IViEPIVxn|? = (Vi - Vx)?] (2.13a)
Fa(n, &, 0) = —[c- Vx]n + G()é. (2.13b)

Solutions of the systerk (5, &, ¢) = 0 will be studied using a bifurcation analysis, anc
the central issue in such an analysis is the linearizatioR @bout a branch of known
solutions and its null space. In our case the trivial solutigrig) = 0, £(x) = 0, ¢) form
a two dimensional branch of known solutions, and the linearizatidh about the trivial
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solutions is given by

g C- Vg
A(c) =3,F(n=0,§ =0,c) = 2.14
(© =&WF(=0¢=00 (_C.VX GO>, (2.14)
whereu = (1, £)T. When A(c) is non-singular we expect visVis the implicit function
theorem that the only solutions are the trivial ones. Therefore we must search at the
gularities of A(c) to find bifurcations to branches of non-trivial solutions. If we writen
terms of its Fourier series,

n(x) 1K)\ kx
- - 7 , 2.15
1o (s<x>) 2 (sao) © (2:49)

one can see that the actionAfc) on the Fourier coefficients is given ink2 block diagonal
form, with thekth block being

~ _ g ic-k
Ac(©) = (—ic KK tank(h|k|))' (2.16)

Therefore, the matri@(c) is singular forc such thatA (c, k) = g|k| tanh(h|k|) — (c-k)? = 0
for somek € I"". The corresponding null vectors are

[ c-kcogk-x)

Y1(c, k) = ( _gsin(k - x) ) (2.17a)
_ [ c-ksink-x)

Ya(c, k) = ( gcosk - x) ) (2.17b)

If we consider the two dimensional problem and are givkreal™’, there is a unique, up
to sign, wave speedwhich makesAy(C) singular. At this point we have the null vectors
Y¥r1(c, K) andy,(c, k) and we are free to travel up the bifurcation branch in any directic
spanned by these two vectors. However, continuation codes, which we outline below
much more robust at bifurcation points which have a one dimensional null space. In ligt
this we will choose to travel in th¢; direction and completely project out tlie direction.

It is equivalent, and useful for programming purposes, to demand that the mpiodiee”
real. This is of course arbitrary, but enforcing this simply fixes the crest of the wave &
and it reduces the dimension of the null space to one.

In the three dimensional problem givek a I'’ there are two paralldinesin the(cy, ¢;)
plane of values which makék(c) singular. At an arbitrary point on these lines we can find
bifurcation branch consisting of solutions of the two dimensional problem. Interesting po
occur at the intersection of two lines arising from different wave numbers. Therefore
choose two wave numbers, andk,, and find the intersection points of the lines generate
by these wave numbers. At any one of these points we have a null space spanned b
vectorsyi (k1), ¥a(k1), ¥i1(k2), andyra(k2). Again, we wish to reduce the dimension of the
null space to one, so we seek solutions which are a produgt@f) andi, (x2) with equal
amplitude. This results in a product of cosines in gheomponent. Once we have movec
onto the bifurcation branch and proceeded up a short distance, these solutions will
the hexagonal ones mentioned earlier. Equivalently, again for programming purposes
choice amounts to demanding that the moglgs)"ands(x2) be real and equal. One final
degree of freedom that must be eliminated is due to the fact that there is a two dimens
parameterc. We eliminate this by choosing to move along a lingdn c,) space.
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3. NUMERICAL METHODS

Now that we have derived surface integral equations for traveling wave solutions to
water wave problem we must reduce this to a finite dimensional prolktem,c) = O,
H:RN x R— RN, via some discretization method. As mentioned in Subsection 2.2,
accomplish this using a spectral collocation method which gives spectral convergenc
the analytic solutions which we seek. However, these methods have difficulties suc
aliasing and spurious growth of high wave number modes which we must overcom
order to proceed any distance up the bifurcation branch. Once we have arrived at
finite dimensional problem we must implement a continuation method to move us al
the surface of solutions once we have located it. For the most part we use the star
methods outlined in the book of Allgower and Georg [1]. These methods generally w
well with some noteworthy modifications which are necessary to select a solution fi
among the many possible solutions. This ambiguity regarding possible solutions is dt
the symmetries inherent to our formulation, in particular the boundary conditions, of
water wave problem, and manifests itself by allowing two dimensional bifurcation surfa
rather than one dimensional bifurcation branches.

3.1. Spectral Collocation Implementation

As we mentioned in Subsection 2.2 above we use a spectral collocation method tc
cretize the problenfF(u,c) = F(n, &, ¢) = 0 into the problemH (v, ¢) = 0. The trial
functionsXy are the trigonometric polynomials of degree less than or eqd}d&nd thus
we approximate by uy € Xy. This function is represented by the truncated Fourier serie

N (X) 1K)\ kx

UN(X)—(SN(X)>—k§%(§(k)>e , (3.1)
wherel'}, is the set of wave numbers less than or equa} tim the norm of the latticé™.
The test functiony are the Dirac delta functions(x — X;) where thex; are theN"~*
collocation points, equally spaced grid points within the parallelogPgim) = R"/T". We
substitute the functiomy into F(u,c) = 0, project this equation onto the set of tes
functionsYy, and then demand that the residual be minimized. This is equivalent to
manding that the equation be satisfied at the collocation points,

F(un (), C)|x=xi =0. (3.2)

If we introduce the vector into the problem by letting; = un(X;j), where thex; are the
collocation points, then the discretization of the problerdli@;, ¢) = F(un(X), C)[x=x; -
We will need to be able to transform the from physical space to Fourier space; this
is accomplished by performing a discrete Fourier transform orvthghich amounts to
an approximation of the coefficieni¥(k) by the trapezoid rule. Derivatives and Fouriel
multipliers are computed by transforming to Fourier space and then applying the assoc
diagonal or near-diagonal operators, while multiplications are carried out in physical sy
in a pointwise fashion. Consequently all operations are diagonal or near-diagonal with
transforms performed in between. However, problems due to aliasing and spurious gr
of high wave numbers require special techniques to allow meaningful computation
proceed. These techniques are outlined in Subsection 3.4.
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Inthe next section we will see that a continuation method with a Newton corrector requ
the formation of the Jacobian matixF. We compute the linear operatgyF analytically
(this requires computing the first variation of the Dirichlet—-Neumann opeéat®(n)¢)
and then approximate it numerically using the Fourier collocation method. This pres
no new difficulties but we point out that due to the global nature of the basis functions
matrix mustin general be dense. This presents a problem for the use of iterative mett
which we discuss in Subsection 3.5.

For convenience we work primarily in Fourier space due to the greater ease of applyin
projections which we outline in Subsection 3.3. The simplest continuation methods rec
that the continuation parameter be one dimensional. The two dimensional water v
problem satisfies this constraint, but the three dimensional problem has two paramete
order to reduce the dimension we choose to travel along a straight lifeg, icy) space
passing througlic;, ¢;) with angle®. Therefore we have

Ci(o) = ¢j + cog¥)o (3.33)
C2(0) = ¢ + sin(P)o, (3.3b)

and we use as the parameter.

3.2. Continuation Methods

The numerical methods for solving simple continuation problems are well underst
and quite sophisticated. We chose to write our own simple set of basic routines due tc
special needs, and implemented the pseudocode found in the book by Allgower and C
[1] which we outline here.

We wish to solve the nonlinear problem

H(v,c) =0, (3.4)

whereH : RN x R — RN andH is smooth. We will le = (v, ¢) and assume that there
is a pointvg € RN* such thatH (vg) = 0 andH’(vg) has maximal rank. In this case
the implicit function theorem gives us a solution cupver) such thatH (y («)) = 0. We
differentiate the previous equation to obtain

H'(y (@))y'(a) = 0. (3.5)

Thusy’(«) spans kefH’(y («))). We parameterize the curve with respect to arclength ir
plying that|y (s)|| = 1 wherey (s) = ‘c‘i—ys represents differentiation with respect to arclengtt
Finally, in order to uniquely specify our tangent we form thegymented Jacobian

_ ([ H'y(s)
Jw—<y®*), (3.6)

wherex here represents the conjugate transpose, and require tiatgdet0. This develop-
ment inspires the following general definition,

DEFINITION3.1. LetA € RN*(N+D wjth rank(A) = N. The unique vectdr(A) € RN*?
such thatAt(A) =0, [t(A)|| = 1, and det&ﬁ)*) > 0 is called theangent vector induced
by A
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With this definition in mind we can think of the problem of following the solution curv
as solving the followinglefining initial value problem

v=t(H'(v)) (3.7a)
v(0) = vo. (3.7b)

It can be shown that the right hand side of Eg. (3.7a) is smooth on an open set and tht
classical existence and uniqueness results of ordinary differential equations apply rest
in a locally defined smooth solution(s).

Our goal is to numerically tracg(s) by computing a sequence of poirits } near the
curve such that

IHwpl <e, (3.8)

wheree > 0 is a user defined tolerance. Suppose that we have a goiatRN*! such
that||H (vj)|| < e. To obtain the next point we make a predictor sigp,, and then use a
corrector to obtaim;..1. The most common predictor in such methods irEhker predictoy

wjt1 = vj + Asxt(H' (v))), (3.9

whereAs > 0 is the step size which we will vary based on various convergence criter
(see Allgower and Georg [1, Chap. 6]). For the corrector step we take advantage of the
thatH (v, ¢) = 0 and use a powerful Newton corrector. We wish to find RN+ such that

Iy — wjall =myin{|IY—Wj+1I| ly ey} (3.10)

If v; is close toy (s) andAs is small enough then thigis unique. Our approximation tp
will be vj 1.

The final step is to implement this minimization procedure using Newton’s method
H:RN — RNthenwe could use the classic Newton’s method. However, $indeN+! —
RN we must use the Moore—Penrose inverse in place of the inverse in a Newton-like sch
If we are given a matrixA € RN*(N+D of maximal rank we denote the Moore—Penros
inverse byA™ and recall thaA* = A*(AA*)~L. The following central lemma can be proven,

LEMMA 3.2. If A e RN*(N+D has maximal rank and(®) is the induced tangenthen
the following are equivalent for all ke RN and xe RN+1,

(1) Ax=Dband t(A)*x =0.
(2) x = Ath.
(3) x solveaminy{|ly|l | Ay = b}.

Now we wish to solve mip{||lw —y|| | H(y) = 0}. The method of Lagrange multipliers
gives a necessary condition on the solutjowhich is that

H(y)=0 (3.11a)
y—w = H'(y)"4, (3.11b)

wherex € RN, The second condition is equivalentgte- w € ran(H’(y)*) = {t(H’(y))}*,
thusy satisfies

H(y) =0 (3.12a)
t(H'(y)*(y —w) = 0. (3.12b)
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To realize Newton’s method we linearize the left hand side of Eq. (3.12) abtaget

H(y) = Hw) + H' (w)(y — w) + O(|ly — w||? (3.13a)
t(H' (y)*(y — w) = t(H' (w)*(y — w) + O(ly — w||?). (3.13b)

The solution of the linearized equatioN,(w), therefore solves

H(w) + H' (w)(N(w) —w) =0 (3.14a)
t(H'(w))* (W (w) — w) = 0. (3.14b)

Using Lemma 3.2 we see that the following is equivalent,
Nw)=w—H W) THwW). (3.15)

This is precisely Newton’s method where the Moore—Penrose inverse replaces the iny
Other topics such as adaptive step sizing, bifurcation point detection and location,
variable order predictors are all discussed in Allgower and Georg [1] and H. B. Keller [1

3.3. Projections

Like most physical problems the water wave problem admits many symmetries. For
ample, if we have a solutioy (x), £(x), ¢) to the two dimensional problem with periodic
boundary conditions thefy(x + 6), £(x + ), €) is also a solution since this merely trans:
lates the origin. The presence of such symmetries makes continuation methods dif
since it introduces singularities into the Jacobian maigik which must be inverted at
every step. Overcoming these obstacles is not difficult and it is greatly aided by the fact
we work primarily on the Fourier side, but one must be careful to work in a consistent m
ner in order to obtain a solution with the correct rate of convergence. We will first disc
the types of symmetries and singularities that arise in the water wave problem and ho
can theoretically overcome them, and then we outline how to implement these techni
into the algorithm.

The first singularity arises from an ambiguity in the average valuesamidé . If we let
P(I") denote am dimensional parallelogram in the latti¢g then the average value of a
function f periodic on the lattic& is

e 1
PO Jem

f(x) dx = f(0). (3.16)

Since the velocity potential is unique only up to a constant, and the average value o
water surface is free to be chosen, we will have a singularity of degree two. We can elimi
this by specifying the values gfandg, and consequently we demand théd) = £(0) = 0.
Numerically this is achieved by demanding that a certain mode, the zeroth one, be ze
every step. Another case where it is useful to set an entire mode to zero is the highest
number. We always use an even number of collocation points which implies that the hig
wave number is purely real. This creates an inconsistency when applying differentis
operators since we can represent cosines but not sines of the highest wave number. The
the highest wave number is set to zero at each step.

Another singularity arises from the symmetries inherent to the water wave prob
with periodic boundary conditions. In the two dimensional problem we recall that a
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valuec* such thatA(c*, k) = 0,k e I'’, the operatorA(c*) has a two dimensional null
space spanned by (c*, k) and y,(c*, k). We have decided to travel in thg; (c*, k)
direction which we implement by requiring that {fr(k)} = O at every step. Similarly in
the three dimensional problem at a parameter vafue- (cj, c5) such thatA(c*, k1) =
A(C*, k2) = 0, k1, k2 € T, the operatoA(c*) has a four dimensional null space spanned b
Y1 (C*, k1), Ya(C*, k1), Y1 (C*, k2), andyro(C*, k2). We have decided to travel in the direction
of the product ofir1 (c*, k1) andir1(c*, k2) which we implement by setting Ifi(x1)} and
Im{7(k2)} to zero, and REj(x1)} and Ré¢n(«x2)} equal to one another.

In practice implementing these procedures to avoid the singularities due to symm
is straightforward. At the end of each iteration of Newton’s method we simply set 1
component in question equal to zero or equal to another component. The only diffic
arises when considering the Jacobian matrix. Applying these procedures effectively pro
out some of the dependent variables and so if we are to have a Jacobian of maximal
we need to eliminate a corresponding number of equations. We project out equations w
reduce the singularity o&(c) at the bifurcation value* that we are near. After the projection
we insert appropriate placeholders into the Jacobian matrix to maximize its rank. Su
procedure has worked well for us since we are only interested in solutions a short wa
the branch.

3.4. Filtering

Two of the major sources of error in spectral methods for nonlinear differential equati
are aliasing and spurious growth of high wave number errors. Effective methods to re
aliasing error are computing de-aliased products, and filtering, while the effects of high w
number errors are usually controlled by filtering alone. Our efforts in reducing these ty
of errors have been focused almost exclusively on filtering and we have seen good re
We have implemented limited de-aliasing in evaluating the Dirichlet-Neumann oper:
where aliasing effects are most severe, but other products in the evaluaiarehliased.
More extensive de-aliasing techniques could be implemented, but we have chosen r
since aliasing errors decrease as the number of modes increases and our results hax
satisfactory.

The first goal is to try to reduce the errors due to aliasing in evaluating the Dirichl
Neumann operator. Thigh term in the Dirichlet—-Neumann operator involves nonlinearitie
of order(j + 1) so aliasing errors may accumulate quickly for lajg€omplete de-aliasing
of the Dirichlet—-Neumann term of ord¢requires applying a perfect low-pass filter to bott
n andé of the form,

1 for |k| < v|kmax

Ak, v) = {

i — 1
with v = -

Our second goal is to control the growth of errors in high wave numbers. It is well kno
that small errors are quickly amplified in spectral methods when differentiation opera
are applied, and amplification is greatest in the highest modes. Filtering is the obv
method for overcoming such difficulties and we have used the ideal filter givenin Eq. (3.
However, applying the filter tg and¢ before each function and Jacobian evaluation result
in solution paths which eventually diverged. As an alternative, we enforce the condition
wave numbers of modulus greater thag % be setto zero at every step. While intermediat
calculations such as evaluation Bf 9, F, andd.F took place the higher wave numbers
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were allowed to fill which reduced aliasing errors, but at the end of the step the high w
numbers were set to zero. This was accomplished using the projection-placeholder ze
outtechnique outlined above. This method does have the disadvantage that half of the n
are inactive; however, our method is spectral and our solutions are analytic so only a
modes are required to satisfy stringent conditions of convergence. Other non-ideal fi
were also explored, such as the one used by Craig and Sulem [5], but the same diver
phenomenon was observed as with the application of the ideal filter. This is a phenom:
which needs to be investigated further, on a much simpler problem, and may be a nume
analogue of the techniques of alternate smoothing and Newton stepping found in I
implicit function theorem techniques.

3.5. Parallelization

Although we have already stated that only a small number of modes are necessary
curately resolve waveforms of interest, the problem is computationally challenging enc
that it is worthwhile to program carefully and take advantage of any structure available.
challenge in the water wave problem arises due to the large number of total modes nece
to resolve the three dimensional problem, and the complicated nature of our equation

A true Newton’s method involves computing the Jacobian matrix at every iteration <
and gives quadratic convergence, while a linear method would be to evaluate the Jac
once at the beginning of the branch and then use this at all subsequent steps. Of c
everything in between is possible and an appropriate choice of method is based o
accuracy required and the cost of evaluating and factoring the Jacobian matrix. For the \
wave problem of small to moderate size the true bottleneck in the computation is
formation of the Jacobian matrix. We have decided to evaluate the Jacobian at the pre
point along the branchy;, to determine the new tangert(H’(v;)), and then evaluate
once in the corrector phase using the Euler valug,;. This does not result in a true
Newton’s method and it will not theoretically have super-geometric convergence rates
nevertheless the convergence is very quick and the number of Jacobian evaluations i
at two per step.

Since we have decided to evaluate the Jacobian at every step we ensure that the eva
of the matrix is as fast as possible. Due to their recursive natures there are no direct forn
for either the Dirichlet—-Neumann operat@(n), or its first variationg, G ()& as matrices.
Therefore we are forced to form these matrices by evaluating them on each of the |
vectors and then placing the results in the appropriate columns. This is the most expe
operation in computing the Jacobian matrix and thus in the code for small to mode
problems. Not much can be done about this on a serial machine, but a simple we
speeding this process up on a parallel machine is to adopt a master-slave model [7] v
the master runs most of the serial code on its own, and then parcels out this matrix evalu
work to the slave processes whene@i) ands,G(n)¢é are needed. Clearly this is not
the only way to parallelize this program, and for large numbers of modes it is obviol
not the best especially as the cost of factoring the dense Jacobian matrix in serial bec
prohibitive. However, it is extremely easy to implement and debug and we have been al
run moderately sized problem; = N, = 32, on 32 nodes of the CCSTs SP at Argonn
National Laboratory in reasonable amounts of time to get excellent results.

We have discussed two other ways to parallelize this code, each of which has its
vantages. The first way would be to parallelize the evaluation of the Dirichlet—-Neum
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operator and its first variation. This would be based on the fact that when evaluating
jth term, we need to evaluate terms I&e(n) fj (x) for | = j, ..., 0 where thef;, are
different for each value of. We would again employ the master-slave model and invol
the help of the slaves only when evaluations of the Dirichlet—-Neumann operator and its
variation are needed. Each one of the slaves would “specialize” in computing a certain ¢
of G, and would be passed appropridtg for computation. This places a large burden ol
the slaves computing lower modes but it does parallelize the evaluation. Like the proce
we implemented this one will also suffer at higher number of modes due to the serial m:
factorization. The other procedure we considered would be to distribute the data over ¢
the nodes and then proceed as the serial code does, but with all FFTs, factorizations
done in parallel. This has the obvious advantage that it adapts well to larger problems
it can store more data in memory and a larger portion of the code is in parallel (in partic
the costly matrix factorization). However, this style of parallel programming is much me
difficult and error-prone, and since our matrices are dense we cannot appeal to the itel
solution methods which have made large problems on parallel machines feasible. We
to investigate both methods in the future.

4. NUMERICAL RESULTS

We have implemented the above procedure in both a serial and parallel version. A
have mentioned, a serial version is all that is necessary for even large two dimensional
however, a parallel version is required for moderately sized three dimensional runs.
have completed many runs for both problems and we briefly outline our progress belo

4.1. The Two Dimensional Problem

Much work has been done on the numerical solutions of the two dimensional water w
problem. There are many equations which approximate the two dimensional water v
equations which have all been studied in great detail. Craig and Sulem [5] have investic
the full time dependent water wave problem using our method and this is the precu
to our current work. Many people have investigated traveling wave solutions to the
equations and computed waves near the Stokes wave singularity (highest wave hay
120 angle at the crest) [2, 12, 19-21] (see also the summary by Miles [14]), breaking we
[6], and waves with various symmetry properties [23]. We do not attempt to compete v
such computations since our formulation is not appropriate in all of these situations,
we present some of the our results concerning waves near the singularity. In Fig. 1 wi
how the norm of our solution varies as a function of the parametdong the non-trivial
branch. In Fig. 2 we see the fastest-moving and most singular wave that we have comj
thus far. In each case the results are from a computationNvith 512 collocation points
andm = 5 Dirichlet—-Neumann terms. The full run took roughly 7.4 h on 8 nodes of tl
Argonne SP.

Aside from traveling waves near the singularity we also would like to investigate s
ondary bifurcations from this primary branch of non-trivial solutions. A goal of such co
putations would be to find traveling waves with symmetry properties not yet seen,
combination of various symmetry properties with the wave approaching a singularity. E
investigations will require more intensive computations, but they should be feasible g
our parallel implementation.
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FIG. 1. Plotof|u(X)|. vsc(h= ).

4.2. The Three Dimensional Problem

In contrast to the two dimensional problem, very little work has been done on the tt
dimensional problem. The time dependent problem has been analyzed by Schanz
while traveling wave solutions to simplified versions of the three dimensional water w
equations have been studied by Hammatlal. [8, 9] and Milewski and Keller [15].
Hammacket al. constructed a wave tank where they were able to study two groups
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FIG.2. Plotofy(x)vsx (h= ).
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solitary waves interacting where the angle between the wave train velocities was st
They produced pictures where hexagons were formed by the wave crests and note
such behavior is exhibited by ocean waves in shallow water. They reproduced such solu
using the KP equation which models this behavior well. Milewski and Keller reproduc
these and other solutions using their own formulation, and one of our goals in this pap
to reproduce these hexagonal solutions using the full water wave equations.

We have had great success in producing hexagonal solutions while traveling only a
distance up the non-trivial branch. The key seems to lie in choosing the fluid depth,
underlying parallelogram of periodicity, and the wave speed carefully. Since we all
the depth of the water to vary we can specify a general periodic problem using the ma

1 Rcos®
A= (0 Rsin@)’ “.1)

to generate a latticE. Choosinges, k2 € I'” one can find a parameter valoe= (c}, c)
such thatA(c*) has a four dimensional null space. From this paintve move in a line
with angleW in the (c;, ¢;) plane. In all of our runs thus far we have chosen wave numbe
corresponding to the pointg = (1, 1), j» = (1, —1) in the lattice, i.e.,

k1 = 2w (AT L, (4.2a)
Ko = 2 (A1), (4.2b)

Our experience has shown that choosing shallow water on a periodic rectangle of
aspect ratio is effective in producing hexagonal wave patterns. Therefore we have sel
h = 1—%)0, R =11, and® = 7 for the runs presented in this paper. For these valuds® of
and®, c* lies on thec; axis. We choose to move in a positiggdirection, i.e.,. & = 0, to

amplify the hexagonal wave forming effect. In Fig. 3 we show the shape of the travel
wave moving with speed = (0.1005120.0). In Fig. 4 we show a contour plot of the
same wave. It is easy to see in this figure that the wave crests are forming a hexag

shape.

-

FIG. 3. Plotofn(x)vsx (h = R=1160=12).

INIE]

L
100°



TRAVELING WATER WAVES: SPECTRAL CONTINUATION 239
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FIG. 4. Contour plotofy(x) vsx (h= & R=110 =

One further direction for our three dimensional numerics is to try to reproduce some ot
other wave forms seen by Milewski and Keller [15]. We would also like to reproduce th
results concerning resonant interactions between primary waves and their subharmor
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