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Traveling gravity water waves in two and three dimensions
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Abstract

This paper discusses the bifurcation theory for the equations for traveling surface water waves, based on the formulation of
Zakharov [58] and of Craig and Sulem [15] in terms of integro-differential equations on the free surface. This theory recovers the
well-known picture of bifurcation curves of Stokes progressive wavetrains in two-dimensions, with the bifurcation parameter
being the phase velocity of the solution. In three dimensions the phase velocity is a two-dimensional vector, and the resulting
bifurcation equations describe two-dimensional bifurcation surfaces, with multiple intersections at simple bifurcation points.
The integro-differential formulation on the free surface is posed in terms of the Dirichlet–Neumann operator for the fluid
domain. This lends itself naturally to numerical computations through the fast Fourier transform and surface spectral methods,
which has been implemented in Nicholls [32]. We present a perturbation analysis of the resulting bifurcation surfaces for
the three-dimensional problem, some analytic results for these bifurcation problems, and numerical solutions of the surface
water waves problem, based on a numerical continuation method which uses the spectral formulation of the problem in surface
variables. Our numerical results address the problem in both two and three dimensions, and for both the shallow and deep water
cases. In particular we describe the formation of steep hexagonal traveling wave patterns in the three-dimensional shallow water
regime, and their transition to rolling waves, on high aspect ratio rectangular patterns as the depth increases to infinity.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

In this paper we give an analysis of traveling or progressive wave solutions to the problem of free surface water waves.
This is the problem for the Euler equations of an ideal fluid with a free surface, evolving under the influence of gravity in a
fluid domain of infinite horizontal extent and of depthh, where 0< h� ∞. We work with the Hamiltonian formulation of the
problem due originally to Zakharov [54], which can be written as integro-diferential equations on the free surface [18], involving
the Dirichlet–Neumann operator for the fluid domain. In the two-dimensional case, we consider solutions that are periodic in
the horizontal variable, and in the three-dimensional case we consider solutions that are doubly-periodic in the two horizontal
variables. These are bifurcation problems, with the bifurcation parameter being the horizontal phase velocity of the solution.
In the two-dimensional problem the analysis gives the classical bifurcation branches of parametrized curves of solutions that
have been studied since the time of Stokes [45]. In three dimensions the bifurcation parameter is two-dimensional, and our
analysis describes solution branches in the form of bifurcation surfaces. Our goals are to describe the structure of the bifurcation
branches, at least in a neighborhood of simple bifurcation points, and to numerically compute traveling wave solutions along
these branches, using numerical continuation methods and their higher dimensional analogs [1,53]. Where possible we continue
branches of solutions up to large amplitude and large steepness, and in particular in the two-dimensional case we compute up
to the Stokes wavetrain of extremal form.
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The contributions of this paper include, first of all, a perturbation analysis of the bifurcation problem for traveling surface
water waves. For the two-dimensional problem, this analysis is well known, and dates essentially to the work of Stokes [45].
The perturbation calculation for the three-dimensional problem is new, and is particularly interesting as it describes the structure
of the basic bifurcation surfaces of solutions and their intersections in a neighborhood of a simple bifurcation point. Secondly,
we present numerical computations of certain interesting classes of two and three-dimensional traveling surface water waves.
For this purpose we have developed a surface spectral method based on the surface integral formulation for the Euler equations,
along the lines of [18], and using descriptions of the Dirichlet–Neumann operator that are given in [18,32,33]. And thirdly, we
give analytic results on the structure of the set of solutions to bifurcation problems with multiple parameters, as in the three-
dimensional case, which describes the form of the intersection of bifurcation surfaces in a neighborhood of a simple bifurcation
point. In resonant cases the bifurcation is no longer simple, and the structure of solutions can be different, nonetheless we
expect that solution branches will continue to exist, due to the Hamiltonian form of the problem [15] and the close relation of
the problem to the resonant Lyapunov center theorem. The details of the numerical method are described in Nicholls [33], and
some of the basic results on shallow water hexagonal waves and rolling waves, on high aspect ratio rectangular patterns in deep
water waves are outlined in Nicholls [34].

In the two-dimensional case the problem of traveling surface water waves fits into the usual framework of a bifurcation
problem with one-dimensional parameter space, for which one seeks solutions in the form of bifurcation branches of one-
dimensional curves. These have been extensively studied with perturbation methods, and there have been many rigorous
analytic results of existence of bifurcation branches, starting with the perturbative results of Nekrasov [31], Levi-Civita [27] and
Struik [46]. A rigorous study of global aspects of the bifurcation theory, including a sketch of the global picture of the bifurcation
branches, and an analysis of the extreme form of traveling wave solutions including the famous Lipschitz singularity at the
stagnation point at the highest crests, has been undertaken by Amick and Toland [2]. Contributions to the theory of stability
of these solution branches include the work of Plotnikov [38] on the solitary wave, and the extension of this analysis to the
periodic case by Buffoni, Dancer and Toland [6].

There have been many numerical studies of the two-dimensional problem as well, and we mention in particular the following:
Chen and Saffman [9,10] found secondary branches of subharmonic bifurcations in deep water (h= +∞) which are continued
up to solutions for which some or all of the crests have Lipschitz continuous peaks, see also [26,50–52]. Zufiria described higher
order subharmonic bifurcations of solutions, ultimately computing branches of non-symmetric wave profiles of three or more
times the original period; these were in the context of deep water [56] and in long wave models with finite depth [55]. Detailed
studies of the singular crest in the Stokes ‘wave of extremal form’ have often been studied in the context of the solitary wave; we
cite in particular Tanaka [49], Hunter and Vanden Broeck [23] and Longuet-Higgins and Tanaka [28]. The results above show
that the Lipschitz crested wave of extremal form on a bifurcation curve is neither the solution in the family with maximal phase
velocity c nor the solution with the largest slope|η|C1. The phenomenon of a turning point in the amplitude-phase velocity
plane, often placed quite high on the bifurcation branch, above which the phase speeddecreaseswith the amplitude of the
solution, is known as the ‘Tanaka instability’ [49]; this is precisely the subject of the rigorous analysis of Plotnikov [38] and
Buffoni, Dancer and Toland [6]. An article by Dias and Kharif [19] in the Annual Review of Fluid Mechanics gives an extensive
bibliography and description of the details of this work.

In our work in the two-dimensional case, the bifurcation analysis and the application of numerical continuation methods
recovers the branch of the Stokes periodic wavetrain, starting from the initial bifurcation point from uniform flow, and continuing
up the branch to wave profiles of extremal form with the famous Lipschitz singular crest of angle 2π/3. This branch exhibits
the Tanaka phenomenon. We also observe subharmonic bifurcation from this branch of solutions, which themselves extend to
surface profiles of extremal form, with alternating smooth and Lipschitz singular crests. We note that along the main secondary
bifurcation branch that we have studied in detail, the phase speed of the solutiondecreases uniformlyalong the branch with
increasing amplitude. This extends the picture described in Chen and Saffman [9] to the finite depth regime, it gives portions
of the bifurcation picture of the small amplitude bifurcation diagram described by Zufiria [55,56], and it is consistent with the
numerical observations of Baesens and MacKay [4] on the behavior of the phase speed as a function of amplitude. Despite the
fact that our methods are designed for general two- and three-dimensional problems, and are not specialized to resolve the form
of a Lipschitz crest, nonetheless the numerical solutions converge quite well, even up to the solutions of extremal form.

The three-dimensional problem is less extensively studied, and the theory of traveling wave solutions is still incomplete,
either from the point of view of perturbation theory, numerical simulations or rigorous analysis. It has a basic feature that is
different from the two-dimensional case, in that solutions occur in the form of two-dimensional bifurcation surfaces, and the
singularity of the intersection of such surfaces at simple bifurcation points is more complex. This fact seems not to have been
recognized until recently [15]. Particular curves on these bifurcation surfaces can be specified by restricting solutions under
special conditions of symmetry, such as symmetric diamonds or reflection symmetry orthogonal to the direction of propagation.
For example, there are recent results of formal perturbation analysis given in Bridges, Dias and Menasce [5], describing certain
classes of steady three-dimensional water wave patterns, which are in this category of special curves of solutions. The paper
gives a cohesive analysis which describes in a uniform manner the classes of doubly-periodic short crested steady waves and
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oblique traveling waves (or Stokes wavetrains). These are, however, not all of the solutions, and a priori restrictions on the
phase velocity omit information such as the dimension and the connectivity of solution branches. There have been extensive
numerical studies of three-dimensional surface water waves throughout the 1980’s and 1990’s, for examples we cite the articles
of Meiron, Saffman and Yuen [30], Roberts [40], Roberts and Peregrine [41], Saffman and Yuen [42]. In cases of surface water
waves in finite but relatively shallow depth, for which the periodic fundamental domainT ⊆ R2(x) has large aspect ratio, and
is oriented approximately orthogonally to the phase velocityc ∈ R2(c), solutions exhibit a number of nonlinear effects, one
of which is that periodic wave fields tend to form hexagonal patterns. This has been studied in the long-wave KP asymptotic
regime by Hammack et al. [22,21], and by several approaches to approximating Euler flow by Milewski and Keller [29] and by
the present authors [33,15]. Recent results include the experimental and numerical work of Kimmoun, Branger and Kharif [25],
who consider three-dimensional surface waves over symmetric diamond periodic fundamental domains (see [39]) which in most
cases have aspect ratio approximately unity, and the experimental observations of Hammack and Henderson [8] in which the
aspect ratio of the fundamental domain is one of the experimental parameters.

In the present paper we describe the character of the bifurcation surfaces in a neighborhood of a simple bifurcation point,
and we present a number of numerical calculations of the bifurcation surfaces, mapping a neighborhood of the bifurcation point
in essentially pseudo-geodesic polar coordinates. In contrast to the many rigorous results on the existence of two-dimensional
gravity waves, there are very few results in the three-dimensional case, due to the fact that the governing partial differential
equations exhibit the problem of small divisors. In the case that surface tension is an included physical effect, the problem
becomes more regular, and there have been several rigorous results in this setting, namely by Reeder and Shinbrot [39], Craig
and Nicholls [15] and Groves and Mielke [20].

Our numerical methods for the three-dimensional traveling wave problem are based on the surface spectral method.
Calculations can be performed on arbitrary periodic fundamental domains, and we report in this paper on a number of our
examples of such. For the most part the three-dimensional numerical calculations in this paper focus on problems of large aspect
ratio traveling waves, which can be thought of as nonlinear superpositions of two two-dimensional wavetrains intersecting at
an oblique angle. In shallow water, with very oblique intersection, these solutions are compatible with the KP scaling regime,
and indeed the solutions that we obtain which are of moderate steepness are comparable to the wave tank experiments and KP
modeling of Hammack et al. [22,21]. Our numerical solutions can be extended to very steep hexagonal waves, separating large
and very flattened troughs, again exhibiting the robustness of the method (however, see [35–37]).

The difference between the shallow and deep water regimes appears already at ratios of depth to wavelength in the direction
of aroundh/L∼ 1/10. Our numerical calculations of large aspect ratio traveling waves have almost a rectangular contour plot,
rather than the hexagons seen in the shallow water calculations. Cross-sections of the fluid surface in the direction of propagation
do not exhibit the characteristic flattening of troughs and sharpening of crests as in the shallow water case, although there is some
asymmetry. Transverse to the direction of motion there is significant broadening, however, giving rise to quite dramatic patterns
of rolling waves with crests almost completely aligned orthogonal to the direction of propagation, with crests of one row aligned
with the troughs of the adjacent rows, in a periodic array with a long transverse spatial period. These computations are consistent
with the deep water traveling wave patterns observed by Henderson and Hammack in the three-dimensional wave tank of the
Pritchard Lab at Penn. State University [8]. In caseh= +∞ the natural model equation describing this asymptotic regime is
that of the two-dimensional cubic nonlinear Schrödinger equation [8], which describes many of the features of these solutions.
It does not, however, seem to describe the degree of crest sharpening and trough widening in the direction of propagation that
are seen in our numerical solutions.

The organization of this paper is as follows. Section 2 poses the Euler equations for traveling surface water waves and
describes the formulation of the problem in terms of Zakharov’s canonical conjugate variables as functions on the surface. Here
we also give the linearized analysis, and describe the basic points of bifurcation from uniform flow. In Section 3 we describe our
principal results for the two-dimensional problem, including the branch of Stokes traveling wavetrains, its solutions of extremal
form, and our calculations of secondary bifurcation branches. We also demonstrate the criterium for spectral convergence in
this setting. Section 4 is concerned with the three-dimensional bifurcation problem, and a description of the bifurcation surfaces
of solutions in a neighborhood of a simple bifurcation point. Finally, Section 5 is given over to a description of our numerical
simulations of three-dimensional traveling waves. Our computations include (1) traveling waves whose fundamental domain
is nonrectangular, (2) full bifurcation surfaces of traveling waves, giving a continuum of solutions connecting an oblique two-
dimensional traveling wave, through a three-dimensional symmetric pattern, and by inference continuing to a two-dimensional
oblique pattern traveling in the reflected oblique direction, (3) hexagonal traveling water waves in a shallow water regime, and
(4) the analogous large aspect ratio rectangular waves in the deep water case.

Using these methods we have attempted to calculate crescent shaped solutions in the three-dimensional case, with only
partial success to date, and we plan to report on this effort in a subsequent publication. Two appendices are included, in which a
recurrence formula is given for the Taylor expansion of the Dirichlet–Neumann operator, and the coefficients of the perturbation
analysis for bifurcation surfaces are computed.



618 W. Craig, D.P. Nicholls / European Journal of Mechanics B/Fluids 21 (2002) 615–641

2. Traveling wave solutions of the water wave problem

We consider the evolution of the free surface of an incompressible, inviscid, irrotational fluid, of constant depth−h where
0< h� +∞. The infinite depth caseh= +∞ is specifically included. The problem that we address in this paper is with zero
surface tension, although our numerical method can in principle be extended to include this effect. To fix nomenclature we refer
to the water wave problem with an(n− 1)-dimensional surface and one vertical dimension as then dimensional problem; this
paper discusses both the casesn= 2 and 3.

2.1. Surface integral formulation

An ideal fluid inside the domainS(η) = {(x, y) ∈ Rn | −h� y � η(x, t)} with free surfacey = η(x, t) is described by the
system of equations of motion for a fluid under the influence of gravity,

∆ϕ = 0 in − h < y < η(x, t), (1a)

∂yϕ = 0 aty = −h, (1b)

∂tη+ ∇xη · ∇xϕ − ∂yϕ = 0 aty = η(x, t), (1c)

∂tϕ + 1

2
|∇ϕ|2 + gη= 0 aty = η(x, t). (1d)

The velocity within the fluid is given byu = ∇ϕ, andg is the acceleration of gravity. We impose lateral periodic boundary
conditions with respect to a latticeΓ ⊆ Rn−1; in two-dimensions this means that the surface will be parameterized by a
fundamental domain that is an intervalT = [0,L], and in three dimensions by a fundamental domainT = R2/Γ , effectively a
parallelogram inR2. The latticeΓ of spatial periods can be arbitrary, and in particular it need not be rectangular.

Eq. (1) gives the classical formulation of the water wave problem. We will work with an equivalent surface integral
formulation of the water wave problem, whose derivation is discussed in detail in Craig and Sulem [18], Nicholls [32],
and Nicholls [33]. The origin of this formulation is in Zakharov’s observation that the free surfaceη(x, t) and the velocity
potential at the free surfaceξ(x, t) = ϕ(x,η(x, t), t) are canonical conjugate variables for a Hamiltonian form of the water
wave problem [54]. Working in these variables, Craig and Sulem introduced the Dirichlet–Neumann operator [18], mapping
Dirichlet data for harmonic functions to Neumann data at the free surface, which is defined by,

G(η)ξ = (
1+ |∇xη|2

)1/2∇ϕ ·N(η). (2)

HereN(η) is the unit exterior normal to the free surface andϕ satisfies the boundary value problem

∆ϕ = 0, −h < y < η(x, t), (3a)

∂yϕ = 0 aty = −h, (3b)

ϕ
(
x,η(x, t)

)= ξ(x), (3c)

ϕ(x + γ,y, t)= ϕ(x, y, t) for all γ ∈ Γ. (3d)

Expressing the velocity potential and its derivatives on the free surface in terms ofξ andG(η)ξ , the following set of equations
is equivalent to (1):

∂tη = G(η)ξ, (4a)

∂t ξ = −gη− 1

2(1+ |∇xη|2)
[|∇xξ |2 − (

G(η)ξ
)2 − 2

(
G(η)ξ

)∇xξ · ∇xη+ |∇xξ |2|∇xη|2 − (∇xξ · ∇xη)2
]
. (4b)

This is a Hamiltonian system with Hamiltonian

H(η, ξ)= 1

2

∫
T

ξG(η)ξ + gη2 dx,

a fact which appears in the bifurcation analysis for traveling waves in several instances. The right-hand side of (4) contains an
expression for variations of the Dirichlet integralδη 1

2

∫
T ξG(η)ξ dx with respect to the fluid domainS(η), which is a nontrivial

computation [18] related to the Hadamard variational formula.
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2.2. Traveling wave solutions

We introduce the phase velocity vectorc ∈ Rn−1 into Eqs. (4) as a parameter. The details of the derivation of the equations
for traveling wave solutions are given in Nicholls [33]; the resulting equations are expressed as

F(η, ξ, c)= 0,

where

F1(η, ξ, c)= gη+ [c · ∇x ]ξ + 1

2(1+ |∇xη|2)
[|∇xξ |2 − (

G(η)ξ
)2 − 2

(
G(η)ξ

)∇xξ · ∇xη

+ |∇xξ |2|∇xη|2 − (∇xξ · ∇xη)2
]
, (5a)

F2(η, ξ, c)= −[c · ∇x ]η+G(η)ξ. (5b)

It is natural to use a bifurcation analysis to study solutions of the systemF(η, ξ, c) = 0.
As usual, the first step is to linearizeF = 0 about the trivial solution(η, ξ, c)= (0,0, c), and to determine the null space of

∂uF(0,0, c), where

A(c)= ∂uF(0,0, c) =
(

g c · ∇x
−c · ∇x G0

)
. (6)

Under Fourier transform the linear operatorA(c) is block diagonal, in 2× 2 blocks of the form

Âk(c)=
(

g ic · k
−ic · k |k| tanh(h|k|)

)
, (7)

wherek are wave numbers in the latticeΓ ′ conjugate to the latticeΓ of the spatial periods. From this expression, the null space
and the bifurcation points are determined by the solutions(c, k) of the dispersion relation

∆(c, k)= g|k| tanh
(
h|k|)− (c · k)2 = 0, (8)

and the associated null vectors are,

ψ1(c, k)=
(
c · k cos(k · x)
−g sin(k · x)

)
, ψ2(c, k)=

(
c · k sin(k · x)
g cos(k · x)

)
. (9)

Whenn = 2, for fixed k0 ∈ Γ ′ one can always find a unique (up to sign) phase velocityc satisfying∆(c, k0) = 0, and
therefore we are in a situation of simple bifurcation. In three dimensions, for a fixed wave vectork1 ∈ Γ ′, the equation
∆(c, k1)= 0 determines two parallel lines of solutions, consisting of a particular solution pair±c0, plus all parametersc ∈ R2

such that(c±c0)⊥ k1. Given any two independent wave vectorsk1, k2 ∈ Γ ′ it is always possible to find a phase velocity vector
c(0) for which∆(c(0), kj )= 0, j = 1,2 (in fact there are four choices, the intersections of the above pairs of lines). As well it

is possible that otherkj ∈ Γ ′, kj �= ±k1,±k2 will also satisfy∆(c(0), kj )= 0, and one can have multiplicityp > 2. For fixed

phase velocityc(0), if the wave numbers±k1,±k2, . . . ,±kp ∈ Γ ′ are those which satisfy∆(c(0), kj )= 0, thenA(c(0)) has a
2p dimensional null space. The situations wherep > 2 correspond to cases of bifurcation points of higher multiplicity, which
are cases of resonance for Eq. (5).

3. Bifurcation curves of two-dimensional gravity waves

The numerical techniques to obtain nontrivial traveling wave solutions of the water wave problem using the surface integral
formulation given in Eq. (5) have been described in Nicholls [33]. The procedure can be summarized for the two-dimensional
water wave problem; given an initial choice of a wave numberk0 in the conjugate latticeΓ ′, there is a bifurcation pointc(0)

(actually two points) which satisifies∆(c(0), k0)= 0. Using a version of the continuation method described in [1] and [24], one
follows the bifurcation branch emanating from the trivial solution branch atc(0). The solutions are normalized, in view of the
naturalS1 translational symmetry of the problem, by insisting the tangent vector to the initial branch of solutions is given by
the solutions of the linear equations(

η0(x)

ξ0(x)

)
= r

(
(c(0)k0)cos(k0x)

−g sin(k0x)

)
. (10)
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This serves to fix the phase. A numerically converged solution of problem (5) is expected to be quite close to the solution (10),
with nearby phase velocityc. This principal bifurcation branch is the numerical approximation of the well-known Stokes
wavetrain, computed in the coordinates given by the method. As one moves along the bifurcation branch to higher amplitudes,
the solutions of (5) will become “nonlinearizations” of (10), and will develop the characteristic long shallow troughs and
sharply peaked crests of the Stokes wavetrain. According to continuation theorems in bifurcation analysis and to the theory of
the numerical method, this branch will continue until the point that either the solutions develop singularities or else return to
connect to the initial trivial solution branch.

This section of the paper reports on our bifurcation calculations for the Stokes wavetrain and several secondary bifurcation
branches. Starting from the point at which a solution branch bifurcates from the trivial solution, we have been able to follow the
branch of Stokes waves up very close to the wave of extremal form, with a Lipschitz singularity at their crest with the opening
angle of 2π/3 predicted by Stokes. Furthermore, the numerical method seeks secondary bifurcation points along any branch of
solutions, and can in principle follow any such solution branches. Without undertaking an exhaustive study of the connected
continuum of the multiple secondary bifurcation branches of the Stokes wavetrain, we have pursued several such secondary
bifurcation branches up to their own limiting forms, at which some of the crests develop the famous 2π/3 Lipschitz singularity.

The bifurcation problem for two-dimensional traveling gravity water waves has been the object of very much study over
many decades, both for the spatially periodic Stokes wavetrain and for solitary waves. Our work on the subject of two-
dimensional traveling water waves has several purposes. The original goal was to test our surface integral formulation and
the numerical methods in this challenging but quite well understood setting. Because the relevant singular integrals are well
approximated by Fourier transform based methods, the surface integral formulation has essentially the computational and
memory storage costs of a one-dimensional problem in spatial resolution, and furthermore the approach is able to take advantage
of the spectral character of the computation and the efficiency of the fast Fourier transform. These computations are able
to include many Fourier modes and encompass a full de-aliasing procedure. With our method, we are able to make explicit
estimates of the rate of convergence of our solutions to solutions of the Euler flow. Our computations allow us to obtain details
of their secondary bifurcations and their approach to the limiting Stokes waves of extremal form. A fact to emphasize is that
the numerical method is not one that is designed for nor particularly specialized to resolve Lipschitz singularities, despite the
theoretical fact [11] that the Dirichlet–Neumann operator depends analytically upon the functionη in the Lipschitz topology. It
surprized us to some extent that the computations that we undertook were able to resolve the Stokes waves of limiting form to
a high degree, and we take this as a sign of the robustness of the approach.

3.1. The Stokes wavetrain

Our first computation is of the bifurcation branchB1, a branch of solutions originating on the set of trivial solutions from
the bifurcation pointc(0), the solution family described by Stokes. We setg = 1, and we initially choseh= 0.1, andL= 1 to
obtain a realistic aspect ratio for the fluid domain. With these choices, the bifurcation point for the solutions with fundamental
periodL is given by

c(0) =
√

tanh((0.1)2π)

2π
∼ 0.297712. (11)

There is an upper bound [17] for the amplitudea = |η|L∞ of a solution in terms of the phase velocity, given by

a � c2

2g
= a)(c), (12)

which we note is independent of the fluid depthh. Equality is achieved only for the wave of extremal form with the Lipschitz
crest. In Fig. 1 we have a plot of the bifurcation branch in terms of the norm of solutiona = |η|L∞ and the phase velocityc.
For reference, the plot also includes the graph of the functiona)(c) describing the phase velocity of solutions of extremal form.
The intersection of these two curves gives the values of the amplitudeaextremaland phase velocitycextremalof the solution of
extremal form. Solution profiles for the wave of extremal form of the bifurcation branchesB2 andB21 are given in the two
graphs in Fig. 2.

The principal bifurcation branchesB1 andB2 exhibit the Tanaka phenomenon of a turning point at the fastest traveling wave
of indicated period, which occurs high on the solution branch. For comparison, the wave of extremal form on branchB1 has
a numerically computed velocitycextremal= 0.334794 and amplitude|η|L∞ = aextremal= 0.56009h, while the fastest wave
has velocityc = 0.334983 and amplitude|η|L∞ = 0.55072h. We remark that the difference in height and velocity between the
tallest and the fastest Stokes waves is much more pronounced for periodic traveling waves than for the solitary wave [23,49],
and periodic Stokes wavetrains can apparently be as much as 0.2% faster at the solution of maximal phase velocity, as the
solution of extremal form.
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Fig. 1. Plot of the bifurcation curvesB1, B2 and the secondary bifurcation curveB21 in the phase speed-amplitude plane(a = |u|∞, c). We
include the upper bounda)(c). (L= 1, h= 1/10 andg = 1).

Fig. 2. Plots of the extremal waves on branchesB2 (top, cextremal= 0.334861), andB21 (bottom,cextremal= 0.334983);h= 1/10.

The upper bounda)(c) for the occurrence of Lipschitz singularities does not specify|η|L∞ for solutions of extremal
form, only a relationship between the amplitude and the phase velocity of such. Producing similar solution branches of two-
dimensional Stokes wavetrains with varying fundamental periodL, we explored the behavior of the amplitude (respectively, the
phase velocity) of the waves of extremal form on the principal bifurcation branch, for periodsL betweenL= 1 andL= 160.
A graph of the extremal amplitudeaextremal(L) as a function of fundamental periodL is given in Fig. 3. Note that the estimates
in [17] imply that a priori the extremal amplitude satisfiesaextremal� h, while for solitary waves they also imply the lower
boundh/2� aextremal.

3.2. Subharmonic secondary bifurcations

A second goal of the two-dimensional calculations is to study to some extent the secondary bifurcations of the problem of
two-dimensional traveling water waves. Seeking subharmonic secondary bifurcation points along given branches of solutions,
we produce a variety of bifurcation curves, whose extremal solutions are Lipschitz-singular crested waves of extremal form
with different character, and in particular with different phase velocities. The point of intersection of each bifurcation branch
and the extremal parabolaa)(c) from (12) changes with depthh, spatial periodL and acceleration of gravityg, with one
scaling relation between them, as we have described in the previous paragraph. We show that for fixedg, h andL this point of
intersection varies from one bifurcation branch to another, and that details of the patterns of crests differ. In particular, we have
calculated a branch of solutions of period 2L which bifurcates from the branch of Stokes wavetrains of periodL. Denoting the
simple bifurcation branch for spatial periodL by B1(L), that for period 2L by B1(2L) and the secondary bifurcation branch
stemming fromB1(L) at the point(c1, a1)= (0.283705,0.037527) by B21(L), we have calculated the phase velocities of the
extremal waves of the branchesB1(L) andB21(L) to becextremal

1 (L)= 0.284448 andcextremal
2 (L)= 0.282515, respectively.
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Fig. 3. Graph ofaextremal(L) as a function of wavelengthL.

Table 1
The computed phase velocity and amplitude of the extremal wave at the limit of several different
bifurcation branches. The error is defined by comparison ofcextremal

j
(nL) and aextremal

j
(nL) with the

relation (12): error =(cextremal
j

(nL))2/2− aextremal
j

(nL)

Branch Computed phase velocity Computed amplitude Error

B1(L) cextremal
1 (L)= 0.284448 aextremal

1 (L)= 0.040426 2.933× 10−5

B1(2L) cextremal
1 (2L)= 0.334794 aextremal

1 (2L)= 0.056009 3.451× 10−5

B21(L) cextremal
2 (L)= 0.282515 aextremal

2 (L)= 0.039868 3.936× 10−5

Principal features to notice are that (i) the extremal solution of branchB21(L) has alternately singular and regular crests, the
former of slightly higher amplitude than the latter, and (ii) that∂ac(a) < 0 along the entire secondary branchB21(L), which is
to say that the solution is quite markedly slowing as it increases in amplitude from the secondary bifurcation point.

In particular this solution branch does not experience a sequence of oscillations in the sign of the derivative of the phase
velocity asa increases, something that is generally indicative of subsequent further bifurcation points and exchanges of stability.
This is unlike the primary branch, for which∂ac(a) > 0 from the initial bifurcation point at the quiescent state all the way up
to a very high turning point near to the Stokes waves of extremal form.

3.3. Harmonic and superharmonic bifurcation

A third goal is to explicitly seek harmonic and superharmonic bifurcations from the principal branchesB1(L). Fixing a
depthh and spatial periodL, we systematically computed the Jacobian of the mappingF along the computed solution branches
B1(L), with L restricted explicitly to be the maximal allowed spatial period for the computation. As we use a continuation
method and a Newton scheme, this information is a natural output from the numerical computations. As long as the number of
Taylor series terms in the approximation for the operatorG(η) was sufficiently large (m� 3 is appropriate), the eigenvalues of
the Jacobian appeared to remain bounded away from zero along the entire branch, including after the turning of the solution
curve at the fastest wave. This is consistent with the numerical results of [9,10]. Additionally, the main result of Buffoni, Dancer
and Toland [6] is that the Morse index of solutions along the principal bifurcation branch diverges as the branch approaches the
solution of extremal form. This is due either to the existence of an infinite number of secondary harmonic or superharmonic
bifurcation points along the branch, or else to an infinite number of turning points. Our numerical evidence is for the latter case,
rather than the former.



W. Craig, D.P. Nicholls / European Journal of Mechanics B/Fluids 21 (2002) 615–641 623

3.4. The numerical method and a convergence study

This section is devoted to a description of the numerical method that we use in our experiments, and we also present the
results of a convergence study for two-dimensional traveling waves. In brief, the numerical method is a predictor-corrector
continuation technique [1] applied to the equations

FN,m(uN,m, cN,m)= 0,

where in these equationscN,m is an approximation to the wave speed, anduN,m = (ηN,m, ξN,m) is a vector of approximations
to the wave profile,η, and surface velocity potential,ξ , at theN equally spaced collocation points on the interval[0,L]. The
functionFN,m :R2N+1 → R2N is derived from theF presented at the beginning of Section 2.2, cf. (5), by a Fourier collocation
procedure [7]. This takes advantage of accurate approximations of the Dirichlet–Neumann operatorG(η) using the fast Fourier
transform. The operatorG(η) varyies analytically inη(x) ∈ Lip(Rn−1) as a mapping of function spacesH1(T)→ L2(T), this
is described in [11,16,15], and therefore it can be given by a convergent Taylor series.

G(η)=
∞∑
j=0

Gj (η), (13)

where the Taylor polynomialsGj (η) are operators which are homogeneous of degreej in η. It furthermore turns out that
these Taylor polynomials can be computed recursively, in terms of concatenations of multiplication by powers ofη(x), and the
Fourier multipliersD = −i∂x and i tanh(h|D|). Because of this form of the expansion, it is useful to represent functions on the
periodic fundamental domainT = Rn−1/Γ in terms of their Fourier series expansionξ(x)=∑

k∈Γ ′ ξ̂ (k)eik·x , whereΓ ′ is the
dual lattice toΓ .

Our numerical approximation ofG(η) consists of the Taylor series ofG(η) about the pointη= 0, truncated at orderm� 0
in order to retainm terms in the Taylor expansion of the Dirichlet–Neumann operator, cf. (37):

G(m)(η)=
m∑
j=0

Gj (η). (14)

The structure of the recursion formula implies that the action of the Taylor polynomialsG(η)ξ in the approximation (14) can
be calculated through alternate operations of multiplication and Fourier multiplication (multiplication operations on the Fourier
series). This method was implemented in [18,32,33], and in the latter reference it is described in detail.

The computations that appear in this article have been performed using an innovation on this spectral approach to
approximateG(η). The Dirichlet–Neumann operator is self-adjoint onL2(T), so that the adjoint formula to that appearing
in [18,32] is equally valid. The resulting recursion formulae allows one to compute the approximationsG(m)(η)ξ with vector
operations onξ(x), instead of having to store the matrix components of the approximation of the full operatorsGj (η). The
procedure allows for faster calculations which in addition allows for higher accuracy, as one can include more components in
the approximations ofη(x) andξ(x). In principle, the computation ofG(m)(η)ξ(x) usingN Fourier modes to approximate
η(x) andξ(x) with full de-aliasing takesCm2N log(mN) operations. In practice, we use full de-aliasing withN ∼ 256n−1 and
m ∼ 5 when calculatingG(m)(η)ξ(x). Further details of this surface spectral method are given in [33], and the details of this
new form of a recursion formula forG(η) are given in Appendix A.

In order to test the robustness of our numerical scheme we have designed the following convergence study. We computed
two-dimensional traveling wave solutions from the trivial branch to three points (denoted (A), (B), and (C)) along the branch
B1 at roughly one-third, two-thirds, and nine-tenths of the way to the Stokes critical solution, see Fig. 4. In order to uniformly
compare solutions corresponding to different values of the discretization parametersm andN , all adaptive step-sizing [1,33] is
suppressed as these features are extremely sensitive to changes in parameter. While this is not the procedure used to achieve the
numerical results presented above, it does present a more stringent challenge for the numerical method. In particular, smaller
step sizes are no longer allowed in difficult portions of the bifurcation curve.

Given the spectral nature of our discretization scheme and the analytic behavior of the Dirichlet–Neumann operator, ifu is
the exact solution one should expect the following estimate on differences inL∞-norms to be true∣∣|uN,m|L∞ − |u|L∞

∣∣� C eαN eβm (15)

for α,β < 0. While this precise relationship cannot be tested directly as the exact solution is unknown, we decided to test
the following relationship comparing approximate solutions against a “well-resolved” solution corresponding to a computation
with N = 96 andm= 5:

εn(N,m)≡
∣∣|uN,m|L∞ − |u96,5|L∞

∣∣� C eαnN eβnm (16)
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Fig. 4. Test points (A), (B), (C) along the bifurcation branchB1.

Fig. 5. Log-linear plots ofε(N,3) (left) andε(64,m) (right) for the point (A) along the branchB1.

for N < 96 andm< 5. One can also measure the difference between an approximate speed and a well-resolved calculation of
the speed, i.e., test the relationship

εc(N,m)≡ |cN,m − c96,5| � C eαcN eβcm (17)

for N < 96 andm < 5. Computations ofεn and εc were carried out for various values ofN andm and the results are
presented in Fig. 5 for point (A), Fig. 6 for point (B), and Fig. 7 for point (C). In each figure one sees on the leftε(N,3)
for N = 16,24,32,48,64, while on the right we displayε(64,m) for m = 0,1,2,3,4. Notice that all figures use the same
vertical range so that a direct comparison of the absolute errors can be made: the errors obtainable at point (A) are significantly
less than those achievable at point (B) which, in turn, are much smaller than those made at point (C).

These results are further summarized in Tables 2 and 3. For the data presented in Table 2,m was held fixed at 3 andN was
allowed to vary from 16 to 64, and then a least squares fit was used to approximateαn andαc. We note that in each case the
exponent is negative (indicating convergence), however, as the final point is moved closer to the critical curve the magnitude
of theα’s, and thus the rate of convergence, decreases. For the data presented in Table 3,N was held fixed at 64 andm was
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Fig. 6. Log-linear plots ofε(N,3) (left) andε(64,m) (right) for the point (B) along the branchB1.

Fig. 7. Log-linear plots ofε(N,3) (left) andε(64,m) (right) for the point (C) along the branchB1.

Table 2
Spectral convergence constants with fixedm= 3 for the
norm test (16) and the wave speed test (17) whereN was
allowed to range fromN = 16,24,32,48,64

Test point αn αc

(A) –0.0710183 –0.0706612
(B) –0.0839919 –0.0743555
(C) –0.0550863 –0.0433343

allowed to vary from 0 to 4, and then a least squares fit was used to approximateβn andβc . Again, in each case the exponent
is negative, however, as the final point is moved closer to the critical curve the magnitude of theβ ’s decreases.
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Table 3
Spectral convergence constants with fixedN = 64 for
the norm test (16) and the wave speed test (17) wherem

was allowed to range fromm= 0,1,2,3,4

Test point βn βc

(A) –2.75245 –3.43524
(B) –1.18788 –1.82533
(C) –0.722927 –1.37035

4. Three-dimensional bifurcation surfaces

Our next consideration is the problem of three-dimensional surface water waves, for which the free surface is doubly periodic
in the horizontal variablesx = (x1, x2) ∈ R2. The question of traveling waves is again a bifurcation problem, where one seeks
a solution(η, ξ) to Eq. (5), along with a phase velocity vectorc = (c1, c2). One of the points that we are making is that this
bifurcation problem possesses a two-dimensional parameter space, and this has the consequence that the interesting bifurcation
points occur for values ofc for which there are at least two linearly independent solutions of the linearized problem (6). A simple
bifurcation is one in which the multiplicity of solutions to the linearized problem is exactly two. Solutions to the nonlinear
problem occur in the typical form of bifurcation branches which are two-dimensional surfaces rather than one-dimensional
curves, and the structure of the set of solutions is more interesting than for problems with one bifurcation parameter. For
numerical continuation methods this poses a difficulty in that, unlike arc-length parametrization for curves, surfaces have no
canonical method of parametrization. For the numerical results in this paper, we either map out portions of a bifurcation surface
in (essentially) geodesic polar cordinates, or else we choose to follow certain distinguished curves in the bifurcation surfaces
under consideration, using the more standard continuation method for bifurcation curves. At bifurcation points with higher
number of solutions to the linearized problem, there is a further theory of multiplicity of solution branches which is described
in [15] (at least in the case that surface tension is included in the problem) which is based on the Hamiltonian form of the water
wave equations.

For the three-dimensional problem, solutions of (5) are defined on a periodic fundamental domainT = R2(x)/Γ , where
Γ is a lattice of translations ofR2(x). This is to say that solutions(η(x), ξ(x)) are taken to satisfy the condition that
(η(x + γ ), ξ(x + γ )) = (η(x), ξ(x)) for all translationsγ ∈ Γ , and this sets the boundary conditions on the lateral sides of
the fluid domain. The fundamental domainT need not be rectangular, indeed our numerical method allows for any latticeΓ ,
and this is important when considering solutions which have special resonance relations, or with particular symmetries, such
as symmetric diamonds. Along with this flexibility of choice of fundamental domain, the phase velocity vectorc is part of the
solution, and it must be kept in mind that it cannot be assumed to have any a priori geometrical relationship with the latticeΓ ,
except in particularly symmetric situations. In addition, the momentum of the solutions, which is given by the expression
I = (I1, I2), where

I1(η, ξ)=
∫
T

ξ∂x1ηdx, I2(η, ξ)=
∫
T

ξ∂x2ηdx, (18)

need not be parallel to the phase velocityc of that solution, and again it cannot be assumed to have an a priori relationship
with Γ .

The degree of nonlinearity in the resulting wave field can be gauged in terms of the maximal slope|η|Lip , and as in the
two-dimensional case the principal nonlinear effects include the change in phase velocity as a function of amplitude, and the
appearance of sharper crests and wider broadened troughs. These nonlinear features are however markedly different in the two
cases of deep water and shallow water short-crested waves. In shallow water, the solutions with relatively large aspect ratio
fundamental domains tend to form hexagonal structures, that is to say they have a wide and flat trough which is effectively
surrounded by a six sided ridge. The two highest sides of the ridge are oriented perpendicularly to the phase velocity vectorc,
and are the result of the nonlinear superposition of two two-dimensional wavetrains at an oblique angle. In deep water, the
large flat trough is no longer present, and the traveling wavetrains take the form of an alternating series of rolls oriented in the
direction of motionc. Even for nonlinear wavetrains of considerable steepness, the profile of the solution in a plane aligned
with the direction of motion is not far from sinusoidal. However in directions orthogonal toc, these solutions have very long,
flattened profiles, either along crest or trough, with periodically spaced transition regions between the two which are of order
one. The description of the difference between shallow water and deep water three-dimensional traveling wavetrains is the topic
of the paper [34] and is one of the principal topics of the present article. As well, it is one of the subjects of focus of our current
research program [8], which gives a number of related experimental, numerical and theoretical results on its web page.
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The main point that we would like to make in this section is that the existence of these traveling waves is not an isolated
phenomenon, but rather (1) the family of short-crested waves is connected continuously to obliquely traveling Stokes waves,
through a two-dimensional bifurcation surface, (2) there exist families of solutions of the water wave problem which vary
continuously from short-crested waves to large aspect ratio hexagonal patterns as one varies the depth of the fluid region, and
(3) at a pointc0 of simple bifurcation from the trivial solution(η, ξ)= 0 there are four solution surfaces which intersect atc0
in a certain canonical pattern, the trivial branchc= 0 and three other nontrivial solution branches.

The paper [30] poses a question for the three-dimensional water wave problem which can be restated as to whether
traveling waves are uniquely specified by the fundamental domainT and the wave height, or if not, at least are
solutions with these specifications isolated. The answer is that this is not so, that in fact solutions do not occur in
one-dimensional bifurcation curves but rather in two-dimensional bifurcation surfaces, and in general will never be
isolated.

Consider a fundamental domainT ⊆ R2(x), in nonresonant cases where there are only two wave vectorsk1, k2 with
coincident phase velocity. Locally in a neighborhood of a simple bifurcation pointc0, the solution set consists of the
trivial branch, two families of two-dimensional Stokes wavetrain solutions whose basic wave vectors are respectivelyk1
and k2, and a third bifurcation surface consisting of fully three-dimensional traveling wave solutions. This is the analog of
simple bifurcations with one parameter, where in a neighborhood of a bifurcation point there are two families of bifurcation
curves; these are often the trivial branch and the nontrivial one-dimensional bifurcation branch. We find that a sufficient
set of parameters for a local description of the set of fully three-dimensional traveling wave solutions consists of the two
components of the momentum, at least for small amplitudes. This situation is the analog of simple bifurcation in one parameter
problems. It could also happen that the momentum alone does not supply sufficiently many parameters to locally uniquely
describe the solution set; this will happen in neighborhoods of intersections of several of the bifurcation surfaces of this
picture.

4.1. Simple bifurcation theory with multiple parameters

In this section we will describe a multiple parameter bifurcation analysis of the system (5), outlining the method for the case
of simple bifurcation with multiple parameters. The system of Eqs. (5) is written in the abstract form

F(η, ξ ; c)=
(
F1(η, ξ, c)

F2(η, ξ, c)

)
= 0, (19)

whereF(η, ξ ; c) is the nonlinear functional which describes the right-hand side of (5). Its linearization about the quiescent
solution(η, ξ)= 0 is given in (6). When the linearized equation has two or more linearly independent solutions respecting the
periods of the fundamental domainT, then the phase velocityc is a bifurcation point. The null space is always even dimensional,
for reasons having to do with the Hamiltonian structure of the problem, we will take its dimension to be 2p. Given a wave vector
k and a phase velocityc satisfying the dispersion relation

∆(k, c)= g|k| tanh
(
h|k|)− (c · k)2 = 0, (20)

the resulting null space contains the two eigenfunctionsψ1(c, k), ψ2(c, k) in (9). To start the discussion of bifurcation
phenomena, suppose thatp = 1; then the bifurcation branch of nontrivial solutions consists of two-dimensional Stokes
waves, which are constant in some horizontal direction. Such bifurcation points inn � 3 are never isolated, since the
dispersion relation (20) depends uponc through the quantity(c · k)2, and for fixedk this defines a line of bifurcation
points in the parameter spaceR2(c) (actually two lines, one for each direction of propagation). For two independent wave
vectors k1 and k2 (and choosing the directions of propagation) the two resulting lines meet in a pointc(0) at which
the linearized equation (6) has at least a four-dimensional solution space, containingψj (c

(0), k1), ψj (c
(0), k2), j = 1,2,

of (9). If p = 2 this constitutes the situation of simple bifurcation. It also could be the case thatp � 3, meaning
that there are additional linearly independent solutions, associated toψj (c

(0), k) for the other possible solutionsk of

∆(c(0), k) = 0. In the neighborhood of these points the bifurcation analysis is more difficult, and of course more
interesting.

Let us take up the casep = 2, which describes the simplest three-dimensional short-crested wave patterns. The system of
Eqs. (5) is split by projectionP onto the range of the linearized operator in (6), and its complementary projectionQ, which by
abuse of notation can be considered the projection onto the linear span

X1 = span
(
ψ1
(
c(0), k1

)
,ψ2

(
c(0), k1

)
,ψ1

(
c(0), k2

)
,ψ2

(
c(0), k2

))
of the solutions of the homogeneous linear equation (6). The system of Eqs. (5) is equivalent to

QF = 0 and PF = 0. (21)
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The first of these is the bifurcation equation, essentially the compatibility condition for the solution of (5). The Lyapunov–
Schmidt decomposition consists in writing all vector functionsu= (η, ξ)T = v +w, wherev =Qv ∈X1 is in the null space,
andw = (I −Q)u is the remainder, and one expects that the second equation

PF
(
v +w(v, c), c) = 0 (22)

is solvable forw =w(v, c), at least locally near the bifurcation point. In reality, for the case of the water wave problem without
surface tension this is a small divisor problem, and there are considerable analytic issues that arise (these are avoided with
surface tension [15]). These issues aside, under the hypothesis thatp < +∞, this procedure in principle reduces the problem
to theQ-equation, which is a finite dimensional mapping fromX1 × R2p(c)→ Y1, R2p(v)× R2(c)→ R2p . We note that the
dimensions of the null spaceX1 and the co-rangeY1 coincide, due to the structure of the original equations (5).

Under the assumption that we havep= 2, the minimal interesting dimension, all the solutions of the linear equation (6) are
given by

v = a1ψ1
(
c(0), k1

)+ b1ψ2
(
c(0), k1

)+ a2ψ1
(
c(0), k2

)+ b2ψ2
(
c(0), k2

)
, (23)

for (a1, a2, b1, b2) ∈ R4(v). There is however a redundancy in the bifurcation problem (21) having to do with the invariance of
the equations under translations in the planeR2(x). Because of the periodic boundary conditions this is a two-torus symmetry,
given explicitly by the transformationTα(x1, x2)= (x1 +α1, x2 +α2) substituted into (23). The redundancy can be eliminated
by the normalizationb1 = b2 = 0, which is tantamount to the restriction to solution componentsη which are even andξ which
are odd with respect to the two reflectionsR1 : (k1 · x)→ −(k1 · x), (k2 · x)→ (k2 · x) andR2 : (k1 · x)→ (k1 · x), (k2 · x)→
−(k2 · x). This property under reflection is preserved by the nonlinear mappingsQF and PF, and therefore the bifurcation
problem (21) can be reduced to the problem of finding zeroes of the mappingQF :R2(p−1)(v)× R2(c)→ R2(p−1). The same
redundancy of a two-torus symmetry from the translational invariance of the equations occurs for any dimension of the null
space 2p.

Returning to the casep = 2, we consider the bifurcation equation (21), denotingQF(v+w(v, c))= f (a, c) a vector function
of four independent variables,a ∈ R2(a) andc ∈ R2(c). Inspecting the bifurcation point(0, c(0)), we find thatf (a, c) satisfies

f (0, c)= 0,

∂af (0, c
(0))= 0,

∂
γ
c f (0, c)= 0 for all γ � 1.

Expressingf in the basis given in (23), the Taylor series expansion about the bifurcation point(a, c)= (0, c(0)) has the form

f (a, c)=


(

2g(c(0)·k1)

(c(0)·k1)
2+g2

)
a1(c

(0) − c) · k1(
2g(c(0)·k2)

(c(0)·k2)
2+g2

)
a2(c

(0) − c) · k2

+O
(|a|2)+O

(∣∣c(0) − c∣∣2|a|). (24)

Near the bifurcation point(a, c) = (0, c(0)) the set of solutions to (5) does not locally form a manifold, but rather a transversal
intersection of several smooth solution surfacesSj , possessing distinct tangent planesT (Sj ) at the bifurcation point. By

inspection of the set of solutions off (a, c) = 0 in a neighborhood of the bifurcation point(0, c(0)), we have the following
local description of the solution set of (5).

Theorem 4.1.Consider solutions of(5) with periodic fundamental domainT. Assume that

(1) the point(v, c)= (0, c(0)) is a bifurcation point, and
(2) the spaceX1 of linear solutions of(6) is four dimensional(that is,p = 2).

Then in a neighborhood of the bifurcation point(0, c(0)) the set of solutions can be described by four two-dimensional
analytic surfacesS0, S1, S2, S3 within the four-dimensional spaceR2(a)× R2(c). At the bifurcation point the tangent planes
T (Sj ), j = 1,2,3,4 to these surfaces do not coincide, and are such thatT (S0) ∩ T (S3) andT (S1) ∩ T (S2) are both points,
andT (S0) ∩ T (S1), T (S0)∩ T (S2), T (S1)∩ T (S3) andT (S2)∩ T (S3) are lines.

The surfaceS0 = (0, c) for c ∈ R2(c) is the trivial branch of solutions, withT (S0) = (0, c) as well. The surfaceS1 has
tangent planeT (S1)= {a2 = 0, (c(0) − c) · k1 = 0}, and it is formed of a branch of two-dimensional Stokes periodic traveling
wave solutions with phase velocity normal to the crests = c · k1, with an arbitrary phase velocity component tangential to the
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crest. The surfaceS2 is similar;T (S2) = {a1 = 0, (c(0) − c) · k2 = 0}, andS2 consists of the two-dimensional Stokes waves
with phase velocitys = c · k2 normal to the crest, and arbitrary phase velocity component tangential to the crest.

Finally, the truly three-dimensional short-crested waves form the surfaceS3. The tangent space isT (S3)= {(c(0)− c) · k1 =
0, (c(0) − c) · k2 = 0}, and the surface is parametrized by the two amplitudes(a1, a2) ∈ R2(a) of the null space. This surface
intersects the familyS0 of trivial solutions in the point(0, c(0)) alone. These solution families unfortunately lie naturally within
a four-dimensional spaceR2(a)× R2(c) and therefore are less easily visualized than bifurcation curves. Nonetheless one can
see thatS3 provides a connecting surface of three-dimensional short-crested waves which intersect both the surfaces of two-
dimensional Stokes wavesS1 andS2 in one-dimensional curves.

This result is comparable to the main theorem of the paper [15], where the resonant casep > 2 is also considered. In such
resonant situations, one is guaranteed at leastp−1 distinct solutions for every choice of the horizontal momentum, by a theorem
that is analogous to the resonant Lyapunov center theorem. The solutions are thus parametrized by their momentum, in at least
p− 1 many solution families, although the smoothness of these families is not implied, and in general does not hold true.

4.2. Perturbation analysis of nonresonant short-crested waves

It is possible to determine the nature of the bifurcation surfacesS1, S2 and particularlyS3 to higher order, using a formal
perturbation calculation. SinceS1 and S2 consist of two-dimensional Stokes waves with phase velocity effectively in the
directions ofk1 andk2, these are well characterized by two-dimensional perturbation analysis (starting with Stokes himself [45])
and the real interest is in the description ofS3. The Ansatz for our perturbation analysis has the following form,(

η

ξ

)
= ε

(
η(1)

ξ (1)

)
+ ε2

(
η(2)

ξ (2)

)
+ ε3

(
η(3)

ξ (3)

)
+O

(
ε4), (25)

with phase velocity

c= c(0) + ε1c(1) + ε2c(2) +O
(
ε3). (26)

From our knowledge of the null space ofA(c(0)), keeping in mind the type of solution we seek, we set,(
η(1)

ξ (1)

)
= a1ψ1

(
c(0), k1

)+ a2ψ1
(
c(0), k2

)
, (27)

where(a1, a2) ∈ R2(a) are amplitude parameters andψ1 is given by (9). Using this Ansatz in the full traveling wave water
wave problem (5) and equating terms at various powers ofε one can find relationships that describe the termsc(j). We begin
with order one.

Proposition 4.2. By equating the Taylor coefficients ofF(u, c) = 0 at order ε1 one arrives at the following equation for
(η(1), ξ (1))T,(

g c(0) · ∇x
−c(0) · ∇x G0

)(
η(1)

ξ (1)

)
=
(

0

0

)
. (28)

Sinceψ1(c
(0), kj ) ∈X1 this is consistent with the choice of(η(1), ξ (1))T of (27).

At second order we get the following system, which will imply thatc(1) = 0.

Proposition 4.3.Equating terms in the expansion ofF(u, c)= 0 at orderε2 one arrives at the following system for(η(2), ξ (2))T,(
g c(0) · ∇x

−c(0) · ∇x G0

)(
η(2)

ξ (2)

)
=
(−c(1) · ∇xξ(1) − 1

2

(|∇xξ(1)|2 + (G0ξ
(1))2

)
c(1) · ∇xη(1) −G1(η

(1))ξ (1)

)
. (29)

Enforcing the solvability condition we deduce thatc(1) = 0 and that,

η(2) = M(0)+M(2k1)cos(2k1 · x)+M(2k2)cos(2k2 · x)
+M(k1 + k2)cos

(
(k1 + k2) · x

)+M(k1 − k2)cos
(
(k1 − k2) · x

)
(30)

and

ξ(2) = N(2k1)sin(2k1 · x)+N(2k2)sin(2k2 · x)
+N(k1 + k2)sin

(
(k1 + k2) · x

)+N(k1 − k2)sin
(
(k1 − k2) · x

)
. (31)
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The coefficientsM(k), N(k) (k �= k1, k2) are quadratic polynomial functions of the amplitudesa(j), j = 1,2, which are given
in AppendixB.

The condition onc(1) comes from a Fredholm alternative. The inner product of the right-hand side with each of the null vectors
shows thatc(1) · k1 = 0 andc(1) · k2 = 0, implyingc(1) = 0 by the independence ofk1 andk2.

The previous result is not surprising as bifurcation branches often intersect in such a tangential fashion. Meaningful higher
order information comes from the third order analysis.

Proposition 4.4.At orderε3 one finds the system for(η(3), ξ (3))T,(
g c(0) · ∇x

−c(0) · ∇x G0

)(
η(3)

ξ (3)

)
=
(−c(2) · ∇xξ(1) − (∇xξ(1)) · (∇xξ(2))− (G0ξ

(1))(G0ξ
(2)+G1(η

(1))ξ (1))

c(2) · ∇xη(1) −G1(η
(2))ξ (1)−G1(η

(1))ξ (2)−G2(η
(1))ξ (1)

)
. (32)

Enforcing the solvability condition we deduce thatc(2) satisfies the following pair of linear equations,

k1 · c(2) = −(c(0) · k1)v1 + gw1

2a1g(c
(0) · k1)

, (33a)

k2 · c(2) = −(c(0) · k2)v2 + gw2

2a2g(c
(0) · k2)

. (33b)

The coefficientsv1, v2, w1, andw2 are cubic polynomials ina(j), j = 1,2, which are given in AppendixB.

In principle the expressions for the coefficients(η(3), ξ (3)) can be derived from Proposition 4.4. The apparent singularity
in (33a) (respectively (33b)) asa1 tends to zero (respectivelya2) has to do with the intersection of the bifurcation surfacesS1
andS3 (respectivelyS2 andS3), which is in fact regular. Inspection of the formulae shows that the expressions forc(2) · k1 are
well defined fora2 = 0, which describes the surfaceS2, and furthermore the limitsc(2) · k1, c(2) · k2 exist asa2 tends to zero,
for fixeda1 �= 0. The analog statement holds for the intersection ofS2 andS3.

4.3. Numerical calculations of short-crested wave bifurcation surfaces

The continuation method for numerical bifurcation theory is not naturally designed to construct bifurcation surfaces, and
it has to be modified for the task. In particular at a bifurcation point(0, c(0)) there is a full tangent planeT (S3) of possible
initial vectors(a1, a2) from which to generate a parameter family of solutions. Furthermore one needs to know the behavior
of the phase velocityc = c(a), at least to lowest order. Our method of calculation is to set an initial tangent direction
V ∈ R2(a), and use a one-dimensional continuation method to construct a curve in the bifurcation surfaceS3 parametrized by
(pseudo-)arclength, for which the amplitude parameters satisfy(a1, a2)= σV . VaryingV through the unit circle in the tangent
spaceT (S3) will in principle describe the bifurcation surface in (pseudo) geodesic polar coordinates about the bifurcation point
(0, c(0)). In order to determine the initial phase velocityc∼ c(0) + σ2c(2) we use the formulae (33a) and (33b).

In practice this means that we start the continuation method at the bifurcation point(0, c(0)) stemming from the fundamental
domainT with the desired wave numbersk) ∈ Γ ′, and then follow a path(a1(σ ), a2(σ ), c1(σ ), c1(σ )), where(a1(σ ), a2(σ ))=
σV , and at the initial step(

c1(σ )

c2(σ )

)
∼
(
c
(0)
1 + c(2)1 σ2

c
(0)
2 + c(2)2 σ2

)
. (34)

We have performed an initial calculation to exhibit the capabilities of this method of tracing out the bifurcation surface. We
chose a fundamental domainT to be the parallelogram with side lengthsR = 1, with two of its interior anglesΘ = π/3, for

whichc(0) ∼ (0.506457,0.292403)T. We took the initial amplitudes in the directionV = (1,2)T, for which arctan(c(2)2 /c
(2)
1 )∼

0.97024π gives the increment of phase velocity. This numerical calculation displays both the flexibility of the method toward
computations on fundamental domains which are not rectangular, and to pick the initial nonlinear corrections to the phase
velocity. A contour plot of a solution of reasonable amplitude and steepness that results from these runs is given in Fig. 8, for
which we setN1 =N2 = 24, m= 4, g = 1, andh= 0.1.
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Fig. 8. Contour plot ofη(x1, x2) versusx1 andx2 on a skew fundamental domain (Θ = π/3,R = 1, a1 = 1, a2 = 2).

4.4. Small divisor problem

There are many rigorous existence proofs for traveling water waves in the two-dimensional case, with or without surface
tension, dating from the work of Levi-Civita [27] and Nekrasov [31]. In contrast to this, the three-dimensonal problem without
surface tension exhibits the phenomenon of small divisors, and this has implications for any theoretical results on the problem.
Indeed to date, the rigorous existence theory for three-dimensional multiply periodic traveling water waves is open.

In the problem of traveling water waves onT = Rn−1/Γ , for n � 3, analytic difficulties associated with solving (19) can
occur in two places. One is that there may be infinitely many solutionsk ∈ Γ ′ to the dispersion relation (20), resulting in a
Lyapunov–Schmidt decomposition with null spaceX1 which is infinite dimensional. This corresponds to the problem of having
to satisfy infinitely many simultaneous compatibility conditions. More seriously however is the second problem, associated
with inverting the nonlinear equation (22) on the complementX⊥

1 of the null space. The linearized operator around the trivial

solution, in a basis of Fourier modes onL2(T), is expressed as

∂uF(0,0; c)= diag2×2Âk(c), (35)

whereÂk(c) is given in (7). Thus the spectrum of the linear problem is the closure of the setΣ(c)=⋃
k∈Γ ′ {µ+(k),µ−(k)},

with

µ±(k)= g+G0(k)

2

(
1±

√
1− 4∆(k, c)

(g+G0(k))
2

)
, (36)

whereG0(k) = |k| tanh(h|k|) and∆(k, c) = gG0(k) − (c · k)2. In order to exhibit the small divisor problem in the present
setting, we will show that the setΣ(c) is dense on a ray on the real axis, which in particular includes the pointµ= 0. It follows
that the linearized operator∂uF is not boundedly invertible fromX⊥

1 ⊆ Hr(T) to Y⊥
1 ⊆ Hs(T) for any choice of Sobolev

spacesHr(T), Hs(T). It follows that Eq. (22) cannot be solved directly by a standard implicit function theorem.

Proposition 4.5.Letn� 3. For any latticeΓ ⊆ Rn−1 and for anyc ∈ Rn−1, the setΣ(c) is dense in the ray(−∞, g] ⊆ R. In
particular the pointµ= 0 lies in the closureΣ(c).

Proof. Consider the curvesΓA ⊆ R2(k) defined by

ΓA = {
k: ∆(k, c)=A(G0(k)+ g

)}
.

Along ΓA we have(g−A)G0(k)− gA= (c · k)2 � 0, and thusΓA is unbounded as long as−∞<A< g. We will show that
for suchA, in aR-tubular neighborhood ofΓA the eigenvaluesµ−(k)∼ A as|k| → ∞. WhenR is large enough so that the
tubular neighborhood contains infinitely many lattice points ofΓ ′, this implies thatA ∈ Σ(c). In particular, it suffices to take
R > diam(T′), whereT′ is any fundamental domain for the dual torusR2(k)/Γ ′.

Along an unbounded component of the curveΓA itself, we have
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µ−(k) = g +G0(k)

2

(
1−

√
1− 4∆(k, c)

(g+G0(k))
2

)
= g +G0(k)

2

(
1−

√
1− 4A(G0(k)+ g)

(g+G0(k))
2

)

∼ G0(k)+ g)
2

(
2A

G0(k)+ g

)
=A.

Furthermore, the unbounded components of the curvesΓA are asymptotic to the parabolas

(c · k)2 = (g−A)|k|
whose semiminor axes are aligned withc. Given any two other constantsA1<A<A2< g, the distance between their repective
curvesΓA1 andΓA2 is increasing as|k| → ∞. Therefore given any radiusR and givenκ ∈ ΓA, the ballBR(κ) lies in between
the curvesΓA1 andΓA2 as long as|κ| is taken sufficiently large. This concludes the proof.✷

In principle, the presence of small divisors could make the behavior of our numerical scheme very difficult to control.
However in practice, and for most of the relevant phase velocity vectorsc, small divisors are relatively rare, despite the fact
that they are dense according to Proposition 4.5. Over typical Fourier collocation discretizations of our spatial domain, which
comprise up to 256× 256 points in a region ofΓ ′ ⊆ R2(k), and with typical computations of the bifurcation pointc0, we
have not encountered small eigenvalues under the tolerance of approximately 10−3. The numerical scheme appears to converge
for a good way along the bifurcation surfaces as long asN andm (the highest retained degree of Taylor polynomial in our
approximation forG(η)) are fixed. Nonetheless, we do not expect an expression for the full perturbation series expansion of
a solution surface to converge, or even to represent an asymptotic series, a similar phenomenon to that encountered in KAM
theory, as well as in the theory of standing waves (see Concus [13]).

In the case of nonzero surface tension, the problem is more regular, there are no small divisors, and there are several
rigorous results of existence [39,15,20]. In particular an analysis of three-dimensional traveling water waves with surface
tension, including the case of resonance and multiple bifurcation branches, appears in the second of these references.

5. Hexagonal wave patterns

In this section we will focus on numerical calculations of three-dimensional short crested traveling wave patterns which
are computed on large aspect ratio periodic fundamental domains. That is, the width of the fundamental domainT(Γ ) in the
direction of propagationc is small when compared to the length of the domain transverse to the direction of propagation. It
is in this geometrical setting that Hammack et al. [21,22] observe hexagonal surface wave patterns in wave tank experiments
in shallow water, which they show correspond very well to genus two solutions of the KP equation with appropriately chosen
parameters.

Our first point in this section is to compute surface water waves for the full Euler equations in the shallow water regime.
As per the bifurcation results of this paper, these solutions occur in bifurcation surfaces, and their principal components consist
of two two-dimensional traveling wave fields intersecting at an oblique angle. The principal results are that our numerical
simulations of the Euler equations with shallow depthh = 0.01 give wave patterns which are very similar to those observed
by Hammack et al. These are of intermediate steepness, with flattened troughs and with prominant zig–zag ridges connecting
an alternating field of principal crests, illustrated in Figs. 9 and 10. Additionally, our calculations are able to be continued to
wave patterns of very large steepness, exhibiting large and very flat troughs and a very well defined pattern of alternating crests
connected by ridges. A typical calculation on a fundamental domain with aspect ratio 1: 11 is shown in Figs. 11 and 12 which
is for depthh= 0.01. Similar computations have been given in Nicholls [34].

We also show that the bifurcation surfaceS3 containing these solutions is in fact a connecting surface between two distinct
families of two-dimensional Stokes wavetrains traveling at oblique angles to each other. Points on this bifurcation surface can
be parametrized by the two amplitudes of the two principal Fourier modes contributing to solutions on this branch of solutions,
which we are denotinga1 anda2. A curve on the bifurcation surfaceS3 for whicha1 = a2 gives rise to solutions whose phase
velocity c and momentum(I1, I2) are parallel to thex1-axis, which is the case in Figs. 9 and 11. With the same fundamental
domainT(Γ ) we have traced out a portion of the bifurcation surfaceS3, letting the ratio of the two amplitudesa2/a1 = ρ

vary from one to zero. Forρ = 0 this results in the bifurcation curve of Stokes wavetrain solutions, progressing at an angle
arctan(1/11) to thex1-axis. The Fig. 13 plots a piece of the surfaceS3, projected onto the three-dimensional parameter space
(c1, c2,‖u‖2) (recall thatS3 naturally lies in the four-dimensional parameter spaceX1 × R2

c ). Fig. 14 gives a succession of
snapshots of solutions on this surface, at points for whichρ varies from one to zero, fixing the amplitude|a|. As is evident,
the pattern moves from a case in which the contributions of the two wave trains are equal, through a set of solutions which are
biased towards one of the two, to finally a two-dimensional Stokes periodic traveling wave. The momentum of the family of
solutions moves continuously from being parallel to thex1-axis to a limiting value normal to the crests of the Stokes waves.
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Fig. 9. Contour plot of a moderately steep hexagonal wave withh= 0.01.

Fig. 10. Graph in perspective of a moderately steep hexagonal wave withh= 0.01. The vertical scaling is not exaggerated.

The second point exhibited by our numerical simulations of the full Euler equations is the fundamental dependence of the
form of traveling wave solutions on the depth of the fluid domain. In the shallow water case 0< h� 1, the solutions are well
modeled by the KP equation for moderate steepnesses, and have very definite hexagonal form. In contrast, for deep water the
wave field is instead suited for a description by modulation theory and/or Zakharov’s equations for an asymptotic description
of nonlinear surface waves. Our numerical calculations show that there is a very strong tendency toward solutions in the form
of families of long-crested rolls aligned in the direction of propagation, with both troughs and crests very elongated in the
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Fig. 11. Contour plot of a steep hexagonal wave withh= 1/100.

Fig. 12. Plot in perspective of a steep hexagonal wave withh= 1/100. The vertical scale is not exaggerated.

direction transverse to the phase velocity. In the direction of propagation however, these waves are only slightly deformed
from a simple cosine profile, changing phase byπ as one moves one’s point of view along thex2-axis through transition
regions. There is only a slight tendency for sharpening of crests and broadening of troughs in these solutions. The degree of
nonlinearity of these wave patterns is to be judged by the flatness of the troughs and crests in the transverse direction. We see this
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Fig. 13. Plot of a projection of the bifurcation surface, tangent toT (S3), with axes‖u(x)‖L2 vs.c= (c1, c2) (h= 1/100).

Fig. 14. Plots ofη(x) vs.x on the bifurcation surfaceS3, varyingϑ = arctan(a2/a1) from π/4 to 0, while fixing the amplituder =
√
a2

1 + a2
2.

The profile in the first figure is that of Fig. 9, with exagerated vertical scaling.
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Fig. 15. Plots of traveling waves on an identical domain, ash is varied from 0.01 to+∞ (h= 0.01,0.1,1 and+∞). The first figure is that of
Fig. 11.

shape dominating the characteristic form of traveling wave patterns (on the fundamental domainT(Γ ) of aspect ration 1: 11)
already for depthsh= 0.1, and their form changes only slightly as we increaseh to infinity; this is illustrated in Fig. 15. This
phenomenon is reported in the paper by Nicholls [34], and it is consistent with the wave tank experiments of J. Hammack and
D. Henderson, and the observations of our focused research group [8] in work that is currently in progress. The transition region
between hexagonal shapes, whereh∼ 0.01 on our fundamental domain, and rolls, which are already dominant forh= 0.1, is
an interesting area for investigation, and we feel that it merits further attention, through experimental as well as numerical work.

6. Conclusion

This paper develops a picture of the theory of two and three-dimensional periodic traveling water waves, from the viewpoint
of perturbation analysis and numerical computations. In the two-dimensional case we recover the classical form of the Stokes
traveling wavetrain, using the Hamiltonian formulation of the problem given in [18,54]. This includes bifurcation branches
of solutions extending up to the Stokes solutions of extremal form, as well as secondary bifurcations. In three dimensions
we develop an analogous theory of bifurcation of traveling waves from the constant state, arising from bifurcation points
identified through solutions of the linearized equation. One of the main points that we make is that traveling wave solutions
in three dimensions are expected to occur in general in two-dimensional bifurcation surfaces, arising from bifurcation points
corresponding to two linear wavetrains with independent wavevectors. The structure of families of solutions near a simple
bifurcation point is more complicated than for problems of simple bifurcation with one parameter, comprising a number of
intersecting nontrivial solution surfaces as well as the surface describing the quiescent state. In cases of bifurcation points of
higher multiplicity, solution families are expected to exist as given by the variational arguments of [15]. These are parametrized
locally by the two components of the horizontal momentum, at least at nonsingular points of the bifurcation surface.
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Our three-dimensional numerical computations have mostly focused on fundamental domains with relatively large aspect
ratio. The resulting doubly periodic traveling wave solutions have different characteristics in the case of shallow water as
compared with the deep water case. In shallow water, periodic traveling waves tend to form large flat troughs separated by
steep and well localized ridges, giving rise to a pattern of hexagons in the free surface profile. This result is compatible with
the experimental observations and KP modeling of [22,21]. In contrast, in deep water the periodic traveling waves tend to form
long rolls aligned perpendicularly to the phase velocity. In the direction of motion, the variation in the height of the free surface
is not far from sinusoidal, however in the direction orthogonal to this, the crests and troughs are significantly elongated. The
transition regime in depth between these two cases is still under investigation.

A third traveling wave phenomenon of interest is the formation of crescent-shaped patterns in periodic wave fields in resonant
situations in which there are more than two wave vectorskj with the same linear phase velocity vectorc(0). The resulting
wave patterns are very beautiful, exhibiting alternating peaked crests and cols along a principal ridge, with crescent-shaped
cirques trailing behind each crest. This phenomenon has been observed experimentally by Su et al. [47], Su [48] and Collard
and Caulliez [12], and attempts to simulate this phenomenon numerically have appeared in Meiron et al. [30], Milewski and
Keller [29], and more recently by Shrira, Badulin and Kharif [44] and Annakov and Shrira [3] (see the recent review article by
Dias and Kharif [19]). The photographs in [47] and [48] showed at least two different cases of crescent-shaped waves, both of
which possess crests in the solution which are not individually symmetric under reflection of the solution in a plane orthogonal
to the phase velocity. In one case the solution had co-existing crescent-shaped features facing forwards with almost identical
crescent-shaped features facing backwards. In the second and more highly nonlinear case, all of the crescent-shaped features are
facing forwards. It is expected that these solutions are closely related to a five-wave resonance in the water wave Hamiltonian,
as well as the instability of the Stokes wavetrain for large momenta [14]. The bifurcation problem for such crescent-shaped
traveling waves is resonant, the null space of the linearized operator has higher than the minimum dimension, and there are
extra parameters to determine in order to pick out the nonlinear solution branches which originate tangentially to this null
space. Because of this, the numerical calculations of these solution branches are more difficult, and though it is an appealing
problem, we have not yet been successful in applying our method to this case.

We note that the analytic component of the proof of existence of doubly periodic traveling water waves without surface
tension is not complete, due to the presence of small divisors in the problem. A complete discussion of existence results for
doubly periodic solutions in the case of nonzero surface tension, including an analysis of the case of linear resonance and
resonant bifurcation, appears in [15].
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Appendix A. The Dirichlet–Neumann operator

In two-dimensions it is known that the Dirichlet–Neumann operator is analytic as a function ofη if the supremum norm and
Lipschitz norm ofη are bounded by a constant [11]. In generaln dimensions the same conclusion is true if the supremum norm
of the first derivatives ofη is bounded by a constant [16,32,15]. As a consequence, for relatively small|η|C1 we can writeG(η)
in terms of a convergent Taylor series expansion,

G(η)=
∞∑
j=0

Gj (η), (37)

where each termGj (η) of the Taylor series is homogeneous of degreej . The zeroth order term, corresponding to the case of a
quiescent fluidη= 0, is

G0ξ(x)= |Dx | tanh
(
h|Dx |

)
ξ(x), (38)

whereDx = −i∇x , [18]. A recursion formula for thej th term in this expansion is given in Craig and Sulem [18] in two-
dimensions, and the straightforward generalization to three andn dimensions was derived by Schanz [43] and Nicholls
[33], respectively. These formulae are useful from our perspective in their application to Fourier pseudospectral methods for
numerical approaches to the water wave problem. With periodic boundary conditions and the explicit appearance of Fourier
multiplier termsDx = −i∂x , |Dx | andG0 the method is not difficult to imagine, and the details are described in [18,33].
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It turns out that the formulae adjoint to that of [18] is more effective in computations of the Dirichlet–Neumann operator. The
point is that a recursive implementation of the calculation of the action ofGj (η)ξ can be implemented in terms of concatenations
of multiplication operations and Fourier multiplication operations onξ and onG)(η)ξ for ) < j , all of which are vector
operations. Expressions for the matrix components of the operatorG(η) itself need not be computed and stored. A naïve count
indicates that if the values of the vectorsG)(η)ξ for ) < j are in storage, then the number of operations that are necessary to
computeGj (η)ξ is (j + 1)× 3N × 2N log(N), whereN is the number of operations needed to perform a multiplication, and
N log(N) is the number of operations to perform a fast Fourier transform. In the present work we take advantage of this fact in
our numerical calculations. Using the adjoint formulae, the resulting recursion for the Dirichlet–Neumann operator is given as
follows: for j = 2r > 0,

G2r (η) = 1

(2r)!G0
(|Dx |2)r−1

Dx · η2rDx −
r−1∑
s=0

1

(2(r − s))!
(|Dx |2)r−sη2(r−s)G2s(η)

−
r−1∑
s=0

1

(2(r − s)− 1)!G0
(|Dx |2)r−s−1

η2(r−s)−1G2s+1(η), (39)

and, forj = 2r − 1> 0,

G2r−1(η) = 1

(2r − 1)!
(|Dx |2)r−1

Dx · η2r−1Dx −
r−1∑
s=0

1

(2(r − s)− 1)!G0
(|Dx |2)r−s−1

η2(r−s)−1G2s (η)

−
r−2∑
s=0

1

(2(r − s − 1))!
(|Dx |2)r−s−1

η2(r−s−1)G2s+1(η). (40)

Computations of the Dirichlet–Neumann operator via the adjoint formulae (39) and (40) are substantially faster and more
memory conservative that those in the matrix form of the original formulae forGl(η) of [18].

Appendix B. Coefficients from calculation of Section 4.2

This section resolves the coefficients presented in Section 4.2 which were generated by a straightforward, if somewhat
tedious, perturbation expansion to orders two and three respectively.

In regards to Proposition 4.3, the coefficientsM(k), N(k) (k �= k1, k2) are determined by the linear systems,(
g (c(0) · k)

(c(0) · k) |k| tanh(h|k|)
)(

M(k)

N(k)

)
=
(
P(k)

Q(k)

)
, (41)

where the only nonzero coefficientsP(k) andQ(k) are

P(0)= −1

4
g2[a2

1
(|k1|2 + Ĝ0(k1)

2)+ a2
2
(|k2|2 + Ĝ0(k2)

2)], (42a)

P(2k1)= −1

4
g2a2

1
[|k1|2 − Ĝ0(k1)

2], (42b)

P(2k2)= −1

4
g2a2

2
[|k2|2 − Ĝ0(k2)

2], (42c)

P(k1 + k2)= −1

2
g2a1a2

[
(k1 · k2)− Ĝ0(k1)Ĝ0(k2)

]
, (42d)

P(k1 − k2)= −1

2
g2a1a2

[
(k1 · k2)+ Ĝ0(k1)Ĝ0(k2)

]
, (42e)

and

Q(2k1)= ga2
1
(
c(0) · k1

)[|k1|2 − 1

2
Ĝ0(k1)Ĝ0(2k1)

]
, (43a)

Q(2k2)= ga2
2
(
c(0) · k2

)[|k2|2 − 1

2
Ĝ0(k2)Ĝ0(2k2)

]
, (43b)

Q(k1 + k2)= 1

2
ga1a2

{(
c(0) · k1

)[|k2|2 + (k1 · k2)− Ĝ0(k2)Ĝ0(k1 + k2)
]
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+ (
c(0) · k2

)[|k1|2 + (k1 · k2)− Ĝ0(k1)Ĝ0(k1 + k2)
]}
, (43c)

Q(k1 − k2)= 1

2
ga1a2

{(
c(0) · k1

)[−|k2|2 + (k1 · k2)+ Ĝ0(k2)Ĝ0(k1 − k2)
]

+ (
c(0) · k2

)[|k1|2 − (k1 · k2)− Ĝ0(k1)Ĝ0(k1 − k2)
]}
. (43d)

The calculations forP(k) andQ(k) are a straightforward application of double and half angle formulae. The solution formula
for M(k) andN(k) comes from solving the systemA(c(0))(M,N)T = (P,Q)T at each of the wave numbersk1 ± k2, 2k1 and
2k2.

In regards to Proposition 4.4, the coefficientsv1, v2, w1, andw2 are given by the following formulas.

v1 = 1

2
g

{
a1
[
2|k1|2 + Ĝ0(k1)Ĝ0(2k1)

]
N(2k1)+ a2

[|k2|2 + (k1 · k2)+ Ĝ0(k2)Ĝ0(k1 + k2)
]
N(k1 + k2)

+ a2
[−|k2|2 + (k1 · k2)− Ĝ0(k2)Ĝ0(k1 − k2)

]
N(k1 − k2)

− a1Ĝ0(k1)Q(2k1)− a2Ĝ0(k2)
[
Q(k1 + k2)+Q(k1 − k2)

]
− 1

2
g
[
a3

1
(
c(0) · k1

)|k1|2Ĝ0(k1)+ 2a1a
2
2
(
c(0) · k2

)
(k1 · k2)Ĝ0(k2)

]}
, (44a)

v2 = 1

2
g

{
a2
[
2|k2|2 + Ĝ0(k2)Ĝ0(2k2)

]
N(2k2)+ a1

[|k1|2 + (k1 · k2)+ Ĝ0(k1)Ĝ0(k1 + k2)
]
N(k1 + k2)

+ a1
[|k1|2 − (k1 · k2)+ Ĝ0(k1)Ĝ0(k1 − k2)

]
N(k1 − k2)

− a2Ĝ0(k2)Q(2k2)− a1Ĝ0(k1)
[
Q(k1 + k2)+Q(k1 − k2)

]
− 1

2
g
[
a3

2
(
c(0) · k2

)|k2|2Ĝ0(k2)+ 2a2
1a2

(
c(0) · k1

)
(k1 · k2)Ĝ0(k1)

]}
, (44b)

w1 = 1

2

{
2a1g

[|k1|2 − Ĝ0(k1)
2]M(0)+ a1g

[|k1|2 − Ĝ0(k1)
2]M(2k1)

+ a2g
[
(k1 · k2)+ Ĝ0(k1)Ĝ0(k2)

]
M(k1 + k2)+ a2g

[
(k1 · k2)− Ĝ0(k1)Ĝ0(k2)

]
M(k1 − k2)

+ a1
(
c(0) · k1

)[−2|k1|2 + Ĝ0(k1)Ĝ0(2k1)
]
N(2k1)

+ a2
(
c(0) · k2

)[−|k1|2 − (k1 · k2)+ Ĝ0(k1)Ĝ0(k1 + k2)
]
N(k1 + k2)

+ a2
(
c(0) · k2

)[−|k1|2 + (k1 · k2)+ Ĝ0(k1)Ĝ0(k1 − k2)
]
N(k1 − k2)+ 2a1g|k1|2Ĝ0(k1)S(0)

+ 1

2
a2g

[
(k1 · k2)Ĝ0(k1)− |k1|2Ĝ0(k2)

]
S(k1 + k2)+ 1

2
a2g

[
(k1 · k2)Ĝ0(k1)+ |k1|2Ĝ0(k2)

]
S(k1 − k2)

− Ĝ0(k1)
[
a1
(
c(0) · k1

)
Q(2k1)+ a2

(
c(0) · k2

)(
Q(k1 + k2)+Q(k1 − k2)

)]}
, (44c)

and finallyw2 is given by,

w2 = 1

2

{
2a2g

[|k2|2 − Ĝ0(k2)
2]M(0)+ a2g

[|k2|2 + Ĝ0(k2)
2]M(2k2)+ a1g

[
(k1 · k2)+ Ĝ0(k1)Ĝ0(k2)

]
M(k1 + k2)

+ a1g
[
(k1 · k2)− Ĝ0(k1)Ĝ0(k2)

]
M(k1 − k2)+ a2

(
c(0) · k2

)[−2|k2|2 + Ĝ0(k2)Ĝ0(2k2)
]
N(2k2)

+ a1
(
c(0) · k1

)[−|k2|2 − (k1 · k2)+ Ĝ0(k2)Ĝ0(k1 + k2)
]
N(k1 + k2)

+ a1
(
c(0) · k1

)[|k2|2 − (k1 · k2)+ Ĝ0(k2)Ĝ0(k1 − k2)
]
N(k1 − k2)+ 2a2g|k2|2Ĝ0(k2)S(0)

+ 1

2
a1g

[
(k1 · k2)Ĝ0(k2)− |k2|2Ĝ0(k1)

]
S(k1 + k2)+ 1

2
a1g

[
(k1 · k2)Ĝ0(k2)+ |k2|2Ĝ0(k1)

]
S(k1 − k2)

− Ĝ0(k2)
[
a2
(
c(0) · k2

)
Q(2k2)+ a1

(
c(0) · k1

)(
Q(k1 + k2)−Q(k1 − k2)

)]}
. (44d)

In these formulae we use the following abbreviations:

S(0)= 1

2

(
a2

1
(
c(0) · k1

)2 + a2
2
(
c(0) · k2

)2)
, (45a)

S(2k1)= 1

2
a2

1
(
c(0) · k1

)2
, (45b)
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S(2k2)= 1

2
a2

2
(
c(0) · k2

)2
, (45c)

S(k1 + k2)= a1a2
(
c(0) · k1

)(
c(0) · k2

)
, (45d)

S(k1 − k2)= a1a2
(
c(0) · k1

)(
c(0) · k2

)
. (45e)
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