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Summary. The motion of the free surface of an ideal fluid under the effects of grav-
ity and capillarity arises in a number of problems of practical interest (e.g. open-ocean
pollutant transport, deep-sea oil platform design, and the generation and propagation of
tsunamis), and, consequently, the reliable and accurate numerical simulation of these
“water waves” is of central importance. In a pair of recent papers the author, in collabo-
ration with F. Reitich (Proc. Roy. Soc. Lond., A, 461(2057): 1283–1309 (2005); Euro. J.
Mech. B/Fluids, 25(4): 406–424 (2006)), has developed a new, efficient, stable and high-
order Boundary Perturbation scheme (the method of Transformed Field Expansions) for
the robust numerical simulation of traveling solutions of the water wave equations. In this
paper we extend this Boundary Perturbation technique to address the equally important
topic of dynamic stability of these traveling wave forms. More specifically, we describe,
and provide the theoretical justification for, a new numerical algorithm to compute the
spectrum of the linearized water-wave problem as a function of a parameter, ε, meant to
measure the amplitude of the traveling wave. In order to demonstrate the utility of this
new method, we also present a sample calculation for two-dimensional waves in water
of infinite depth subject to quite general two-dimensional perturbations.

1. Introduction

The motion of the surface of an ideal fluid under the influence of gravity and capil-
larity, known as the Water Wave Problem, is one of the oldest and most fundamental
in fluid mechanics. Successful modeling techniques for this problem are important in
applications such as open-ocean pollutant transport, deep-sea oil platform design, and
the generation and propagation of tsunamis. In a pair of recent papers [NR05], [NR06],
the author, in collaboration with F. Reitich, has developed a new, efficient, stable, and
high-order Boundary Perturbation scheme (based upon rigorous mathematical analysis)
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for the robust numerical simulation of traveling solutions of the water wave equations.
In this paper we extend this Boundary Perturbation technique (the method of Trans-
formed Field Expansions) to address the equally important topic of dynamic stability of
these traveling wave forms. More specifically we describe, and provide the theoretical
justification for, a new numerical algorithm to compute the spectrum of the linearized
water-wave problem as a function of a parameter, ε, meant to measure the amplitude of
the traveling wave.

The question of stability of traveling water waves has received a great deal of atten-
tion, and a full account of the results known to date is well beyond the scope of this
paper; we refer the reader to one of the excellent survey papers available on the sub-
ject, e.g. Dias & Kharif [DK99]. These results can be classified not only by the type
of basic traveling wave they consider but also by the class of permitted perturbations
which may grow or decay from this equilibrium state. For example, the seminal work of
Benjamin and Feir [BF67], Zakharov [Zak68], and Longuet–Higgins [LH78a], [LH78b]
focused upon two-dimensional (one depth dimension and one propagation dimension)
Stokes waves and the evolution of two-dimensional perturbations from these. By con-
trast, the calculations of Chen and Saffman [CS85] and MacKay and Saffman [MS86]
focus upon three-dimensional perturbations of two-dimensional traveling waves, while
Ioualalen et al., e.g. [IKR99], [IO02], consider three-dimensional perturbations of three-
dimensional patterns, the “short-crested waves.” Another means of classification is the
periodicity requirements of the traveling wave and/or perturbation: e.g. if the traveling
wave is periodic, must the perturbation be periodic with respect to the same period cell?
Finally, these results must specify a notion of stability: nonlinear, linear, or spectral? In
this work we will consider traveling waves that can be generated by the algorithm of
Nicholls and Reitich [NR05], [NR06] (e.g. periodic Stokes waves in two dimensions
and periodic short-crested waves in three dimensions) and quite general Bloch periodic
(or quasiperiodic) perturbations which need not have the same (or any) periodicity as
the traveling wave. Additionally, the method considers the spectrum of the water wave
problem linearized about these solutions and thus constitutes a study of spectral stability.

While there are still many open questions regarding the stability of traveling water
waves, some general statements can be made. As Zakharov showed [Zak68], the water
wave problem is a Hamiltonian system so that, among other things, the energy of the
system is conserved. Furthermore, as the problem is time-reversible, the best stability
that one can expect is weak stability (that small disturbances will remain small, i.e.
neutral stability) and not strong stability (where small disturbances decay exponentially
fast, i.e. asymptotic stability). In the context of a spectral stability analysis, this notion
of weak stability is characterized by the spectrum of the linearization of the dynamical
water-wave problem about a traveling solution being pure imaginary. As we shall see
(Section 4.3), in the case of trivial traveling waves (“flat water”), this spectral stability
analysis can be worked out explicitly and the entire spectrum is purely imaginary, though
the issue of resonance does arise.

Of course we are primarily interested in nontrivial traveling profiles. A straight-
forward approach to determining stability is to linearize the water wave problem about
an approximate traveling wave (computed, e.g., by [NR06]) and to approximate the
spectrum via a numerical eigensolver. This linearization/eigensolve approach has been
investigated by Ioualalen et al. [IKR99], [IO02] and is an active line of research being
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pursued by the author in collaboration with W. Craig using a stabilized numerical scheme.
However, this method does ignore some of the information available to us regarding the
traveling waves. In particular, it was shown in [CN00] (see also [RSh81], [NR05]) that
traveling waves come in branches (two dimensions) or surfaces (three dimensions), which
can be specified by a parameter ε that is meant to represent wave height or wave slope.
Furthermore, these branches/surfaces were shown to be jointly analytic with respect to
not only the spatial variables but also the parameter ε [NR05]. In the linearization/eigen-
solve procedure outlined above, this information is used solely to compute the basic
traveling wave and information regarding the dependence of the spectrum upon ε is lost.
The point of view of this paper is that viewing the spectrum as an (analytic) function of
the parameter ε gives valuable insights into the nature of the onset of instability in this
problem.

Adopting this latter point of view, one can imagine the spectrum “moving” smoothly
as a function of the branch/surface parameter ε; this is guaranteed by our new theorem
(Theorem 5.2) for generic choices of perturbation. The question now arises: Can spectrum
on the imaginary axis (e.g. at ε = 0) move into the right-half of the complex plane,
resulting in instability of the base traveling wave? MacKay and Saffman [MS86], using
the Hamiltonian structure of the water wave problem, showed that a necessary (though not
sufficient) condition for eigenvalues to move off the imaginary axis is that they collide.
(A sharper, though still not sufficient, condition can be given with their observation that
this collision must occur between eigenvalues of opposite Krein signature [MS86].) This
observation is important for us, as we propose to measure the strength of an instability
by finding, for each configuration (i.e. choice of Bloch periodic perturbation), the value
of ε of the first eigenvalue collision.

It is well known that collisions can occur in the linear problem, i.e. there may be
eigenvalues of multiplicity higher than one for ε = 0. These instances of resonance have
been the subject of a great deal of research [DK99] and represent an easily identified
source of potential instability (though not all such collisions give rise to instability; see
[MS86] Section 4 for traveling waves). Unfortunately, due to the nature of our scheme
as it is currently formulated, we are unable to address configurations that feature these
resonances (i.e. higher multiplicity of the eigenvalues). While this may, on the surface,
appear to be a shortcoming of our approach, it is a reflection of the somewhat imprecise
nature of our instability criterion (and that of [MS86], [IKR99], [IO02]): collision of
eigenvalues. If we choose this as our test, then in a resonant configuration, instability
already exists at ε = 0 and more finely tuned techniques must be brought to bear upon
the problem. However, if we are in a (generic) nonresonant configuration, then, as we
shall see in Section 6, our new method can be used to give reliable and highly accurate
estimates of the onset and strength of instabilities in traveling water waves.

The outline of the paper is as follows: In Section 2 we review the equations of motion
of the water wave problem, while in Section 3 we recall a change of variables that we have
found very useful in establishing analyticity results for boundary value and free boundary
problems, as well as for their numerical simulation. Section 4 discusses the spectral
stability analysis that we have in mind, where we show how one can incorporate the
solutions of Nicholls and Reitich [NR06] into a robust, high-order numerical procedure to
deduce information regarding their spectral stability. In Section 5 we give the analyticity
result upon which our new numerical scheme is based, and in Section 6 we give some
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preliminary results for two-dimensional waves subject to two-dimensional perturbations.
We conclude with remarks and future directions in Section 7, and in Appendix A we
discuss existence and uniqueness aspects of the linear estimate which permits us to
establish the analyticity theorem.

2. Equations of Motion

As mentioned in the introduction, we shall consider the motion of the free interface above
an ideal (inviscid, irrotational, incompressible) fluid under the influence of capillarity
and gravity. If the fluid occupies the d-dimensional (d = 2, 3) domain

Sh,η = {x ∈ Rd−1 | −h < y < η(x, t)},
with mean depth h and free surface η = η(x, t), the equations of motion are known to
be [Lam93]:

�ϕ = 0 in Sh,η, (1a)

∂yϕ = 0 at y = −h (1b)

∂tη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η (1c)

∂tϕ + 1

2
|∇ϕ|2 + gη − σ�xη − σH(η) = 0 at y = η, (1d)

where ϕ = ϕ(x, y, t) is the velocity potential (
v = ∇ϕ), H is the (modified) curvature:

H(η) := divx

[
∇xη√

1+ |∇xη|2

]
−�xη,

and g and σ are constants of gravity and capillarity, respectively. Water of infinite depth
can be accommodated by replacing (1b) with

∂yϕ→ 0 as y→−∞, (1e)

and these equations are also supplemented with initial conditions

η(x, 0) = η0(x), ϕ(x, η0(x), 0) = ξ0(x), (1f)

where it suffices (by elliptic theory) to specify ϕ only at the surface. Boundary conditions
must also be enforced to guarantee the existence of a unique solution; these can be
periodic, Dirichlet, Neumann, or Robin, or can decay at infinity. For simplicity we
will consider the classical periodic boundary conditions with respect to some lattice
 ⊂ Rd−1, i.e.

η(x + γ, t) = η(x, t), ϕ(x + γ, y, t) = ϕ(x, y, t) ∀γ ∈ ;
this lattice generates the conjugate lattice of wavenumbers [Mie97],

′ := {k ∈ Rd | k · γ ∈ (2π)Z,∀γ ∈ }.
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If we change coordinates to a reference frame translating uniformly with speed c ∈
Rd−1 in the x-direction, then the governing equations become (for water of finite depth)

�ϕ = 0 in Sh,η, (2a)

∂yϕ = 0 at y = −h, (2b)

∂tη + c · ∇xη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η, (2c)

∂tϕ + c · ∇xϕ + 1

2
|∇ϕ|2 + gη − σ�xη − σH(η) = 0 at y = η, (2d)

η(x, 0) = η0(x), (2e)

ϕ(x, η0(x), 0) = ξ0(x), (2f)

again with periodic boundary conditions.

2.1. A Transparent Boundary Condition

We can greatly reduce the size of the problem domain, Sh,η, for (2) with the introduction
of a “transparent boundary condition” [NR05], [NR06]. This boundary condition not
only is important for computational considerations (significantly reducing the domain
to be discretized), but also permits a uniform statement of the water wave problem over
all depths including the infinite depth case. To begin we consider a hyperplane y = −a
such that −h < −a < |η|L∞ . We next consider the augmented version of (2)

�v = 0 in Sa,η (3a)

∂tη + c · ∇xη + ∇xv · ∇xη − ∂yv = 0 at y = η (3b)

∂tv + c · ∇xv + 1

2
|∇v|2 + gη − σ�xη − σH(η) = 0 at y = η (3c)

η(x, 0) = η0(x) (3d)

v(x, η0(x), 0) = ξ0(x) (3e)

∂yv = ∂yw at y = −a (3f)

�w = 0 − h < y < −a (3g)

v = w at y = −a (3h)

∂yw = 0 at y = −h; (3i)

again, deep water can be simulated if (3i) is replaced by

∂yw→ 0 as y →−∞. (3j)

The solutions of (3) are equivalent to those of (2) in that ϕ = v in Sa,η and ϕ = w in
{−h < y < −a}. We now gather (3g)–(3i):

�w = 0, −h < y < −a, (4a)

w(x,−a) = ψ(x), (4b)

∂yw(x,−h) = 0, (4c)
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where we have denoted the generic Dirichlet data at y = −a by ψ(x), and we note that
(4) has the exact solution:

w(x, y, t) =
∑
k∈′

ψ̂k
cosh(|k| (y + h))

cosh(|k| (h − a))
eik·x ,

where ψ̂k is the kth Fourier coefficient ofψ(x). To close the system of equations (3a)–(3f)
for v we must, in (3f), compute ∂yw given v(x,−a) = w(x,−a) = ψ(x), i.e. compute
the Dirichlet–Neumann operator (DNO):

T (a)[ψ] := ∂yw(x,−a) =
∑
k∈′
|k| tanh((h − a) |k|)ψ̂keik·x ,

which, if we define D := −i∇x , gives rise to the Fourier multiplier notation:

T [ψ] := |D| tanh((h − a) |D|)[ψ].

We note that this entire discussion can be repeated for the case of deep water (h = ∞)
using (3j); in this case T = |D|.

With this notation we can, upon setting v = ϕ, equivalently state (2) (for arbitrary
depth) as

�ϕ = 0 in Sa,η, (5a)

∂yϕ − T [ϕ] = 0 at y = −a, (5b)

∂tη + c · ∇xη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η, (5c)

∂tϕ + c · ∇xϕ + 1

2
|∇ϕ|2 + gη − σ�xη − σH(η) = 0 at y = η, (5d)

η(x, 0) = η0(x), (5e)

ϕ(x, η0(x), 0) = ξ0(x). (5f)

3. Change of Variables

A useful technique in the analysis and simulation of free boundary problems such as
the water wave problem, (5), is a change of variables. Typically, in two-dimensional
simulations (d = 2) a conformal transformation can be effected that, among other things,
preserves the homogeneous structure of (5a). However, this technique does not extend to
three dimensions (d = 3), so instead we employ a “domain flattening” transformation,
which has proven quite useful in establishing analyticity results for boundary value and
free boundary problems [NR01a], [NR01b], [NR03], [NR04a], [NR04b],

x ′ = x, y′ = a

(
y − η(x, t)
a + η(x, t)

)
, t ′ = t. (6)

We note that these coordinates are by no means novel and are known as σ -coordinates
in the atmospheric science community [Phi57] and the C-method in electromagnetics
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[CMR80], [LCGP99]. It is not hard to see that derivatives transform as

(a + η)∇x = (a + η)∇x ′ − (∇x ′η)(a + y′)∂y′ ,

(a + η)divx = (a + η)divx ′ − (∇x ′η) · (a + y′)∂y′ ,

(a + η)∂y = a∂y′ ,

(a + η)∂t = (a + η)∂t ′ − (∂t ′η)(a + y′)∂y′ .

Setting

u(x ′, y′, t ′) = ϕ(x ′, (a + η)y′/a + η, t ′),
we can rewrite (5a) as

�′u = F(x ′, y′; η, u),
where

F = divx ′
[
F (1)

]+ ∂y′F
(2) + F (3), (7a)

and

−a2 F (1) = 2aη∇x ′u + η2∇x ′u − a(a + y′)(∇x ′η)∂y′u

− (a + y′)η(∇x ′η)∂y′u, (7b)

−a2 F (2) = −a(a + y′)∇x ′η · ∇x ′u − (a + y′)η∇x ′η · ∇x ′u

+ (a + y′)2 |∇x ′η|2 ∂y′u, (7c)

−a2 F (3) = −a∇x ′η · ∇x ′u − η∇x ′η · ∇x ′u + (a + y′) |∇x ′η|2 ∂y′u. (7d)

Equation (5b) transforms to

∂yu(x ′,−a)− T [u(x ′,−a)] = J (x ′; η, u),
where

a J = ηT [u]. (8)

Equations (5c) and (5d) transform to

∂t ′η + c · ∇x ′η − ∂y′u = Q(x ′; η, u) at y′ = 0,

∂t ′u + c · ∇x ′u + gη − σ�x ′η = R(x ′; η, u) at y′ = 0,

where

− aQ = η∂t ′η + η(c · ∇x ′η)+ a(∇x ′η) · ∇x ′u + η(∇x ′η) · ∇x ′u − a |∇x ′η|2 ∂y′u, (9)

and

− a2 R = 2aη∂t ′u + η2∂t ′u − a2(∂t ′η)∂y′u − aη(∂t ′η)∂y′u

+ 2aη(c · ∇x ′u)+ η2(c · ∇x ′u)− a2(c · ∇x ′η)∂y′u − aη(c · ∇x ′η)∂y′u

+ 1

2
a2 |∇x ′u|2 + aη |∇x ′u|2 + 1

2
η2 |∇x ′u|2 − a2∇x ′η · ∇x ′u∂y′u

− aη∇x ′η · ∇x ′u∂y′u + 1

2
a2 |∇x ′η|2 (∂y′u)

2 + 1

2
a2(∂y′u)

2 + 2agη2 + gη3

− 2σaη�x ′η − ση2�x ′η − σa2 H(η)− 2σaηH(η)− ση2 H(η). (10)
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To summarize, after the change of variables (6), (5) can be restated (dropping primes)
as

�u(x, y) = divx
[
F (1)(x, y; η, u)]+ ∂y F (2)(x, y; η, u)

+ F (3)(x, y; η, u), in Sa,0, (11a)

∂yu(x,−a)− T [u(x,−a)] = J (x; η, u), (11b)

∂tη(x, t)+ c · ∇xη(x, t)− ∂yu(x, 0, t) = Q(x; η, u), (11c)

∂t u(x, 0, t)+ c · ∇x u(x, 0, t)+ gη(x, t)− σ�xη(x, t) = R(x; η, u), (11d)

where F (1), F (2), and F (3) are given in (7), and J , Q, and R are defined in (8), (9), and
(10), respectively. These are supplemented with the initial conditions (5e) and (5f), and
periodic boundary conditions, each of which are trivially transformed.

4. Spectral Stability Analysis

To begin our spectral stability analysis, we consider a traveling wave solution of (1), i.e.
a steady solution

(ū, η̄, c̄) = (ū(x, y), η̄(x), c̄)

of (11). With this we seek solutions to the full problem (11) in a frame traveling with
speed c = c̄, of the form

u(x, y, t) = ū(x, y)+ δũ(x, y, t), η(x, t) = η̄(x)+ δη̃(x, t),
where δ � 1 measures the magnitude of the small perturbation of the traveling state.
Inserting this into (11) we find, to order O(δ), that the perturbations ũ and η̃ satisfy

�ũ = Fu(ū, η̄)[ũ]+ Fη(ū, η̄)[η̃], in Sa,0, (12a)

∂y ũ(x,−a)− T [ũ(x,−a)] = Ju(ū, η̄)[ũ]+ Jη(ū, η̄)[η̃], (12b)

∂t η̃(x, t)+ c · ∇x η̃(x, t)− ∂y ũ(x, 0, t) = Qu(ū, η̄)[ũ]+ Qη(ū, η̄)[η̃], (12c)

∂t ũ(x, 0, t)+ c · ∇x ũ(x, 0, t)+ gη̃(x, t)− σ�x η̃(x, t)

= Ru(ū, η̄)[ũ]+ Rη(ū, η̄)[η̃], (12d)

where u and η variations are denoted with subscripts,

Fu = divx [F (1)u ]+ ∂y F (2)u + F (3)u , Fη = divx [F (1)η ]+ ∂y F (2)η + F (3)η , (13a)

and

−a2 F (1)u [ũ] = 2aη̄∇x ũ + η̄2∇x ũ − a(a + y)(∇x η̄)∂y ũ − (a + y)η̄(∇x η̄)∂y ũ, (13b)

−a2 F (1)η [ũ] = 2aη̃∇x ū + 2η̄η̃∇x ū − a(a + y)(∇x η̃)∂y ū

− (a + y)η̃(∇x η̄)∂y ū − (a + y)η̄(∇x η̃)∂y ū, (13c)
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−a2 F (2)u [ũ] = −a(a + y)∇x η̄ · ∇x ũ − (a + y)η̄∇x η̄ · ∇x ũ

+ (a + y)2 |∇x η̄|2 ∂y ũ, (13d)

−a2 F (2)η [η̃] = −a(a + y)∇x η̃ · ∇x ū − (a + y)η̃∇x η̄ · ∇x ū − (a + y)η̄∇x η̃ · ∇x ū

+ 2(a + y)2∇x η̄ · ∇x η̃∂y ū, (13e)

−a2 F (3)u [ũ] = −a∇x η̄ · ∇x ũ − η̄∇x η̄ · ∇x ũ + (a + y) |∇x η̄|2 ∂y ũ, (13f)

−a2 F (3)η [η̃] = −a∇x η̃ · ∇x ū − η̃∇x η̄ · ∇x ū − η̄∇x η̃ · ∇x ū

+ 2(a + y)∇x η̄ · ∇x η̃∂y ū. (13g)

Additionally,

a Ju[ũ] = η̄T [ũ] (14a)

a Jη[η̃] = η̃T [ū], (14b)

and

−aQu[ũ] = a(∇x η̄) · ∇x ũ + η̄(∇x η̄) · ∇x ũ − a |∇x η̄|2 ∂y ũ, (15a)

−aQη[η̃] = η̄∂t η̃ + η̃(c · ∇x η̄)+ η̄(c · ∇x η̃)+ a(∇x η̃) · ∇x ū

+ η̃(∇x η̄) · ∇x ū + η̄(∇x η̃) · ∇x ū − 2a∇x η̄ · ∇x η̃∂y ū, (15b)

and

−a2 Ru[ũ] = 2aη̄∂t ũ + η̄2∂t ũ

+ 2aη̄(c · ∇x ũ)+ η̄2(c · ∇x ũ)− a2(c · ∇x η̄)∂y ũ − aη̄(c · ∇x η̄)∂y ũ

+ a2∇x ū · ∇x ũ + 2aη̄∇x ū · ∇x ũ + η̄2∇x ū · ∇x ũ

− a2∇x η̄ · ∇x ũ∂y ū − a2∇x η̄ · ∇x ū∂y ũ

− aη̄∇x η̄ · ∇x ũ∂y ū − aη̄∇x η̄ · ∇x ū∂y ũ

+ a2 |∇x ′ η̄|2 (∂y ū)(∂y ũ)+ a2(∂y ū)(∂y ũ) (16a)

−a2 Rη[η̃] = −a2(∂t η̃)∂y ū − aη̄(∂t η̃)∂y ū

+ 2aη̃(c · ∇x ū)+ 2η̄η̃(c · ∇x ū)− a2(c · ∇x η̃)∂y ū

− aη̃(c · ∇x η̄)∂y ū − aη̄(c · ∇x η̃)∂y ū

+ aη̃ |∇x ū|2 + η̄η̃ |∇x ū|2 − a2∇x η̃ · ∇x ū∂y ū

− aη̃∇x η̄ · ∇x ū∂y ū − aη̄∇x η̃ · ∇x ū∂y ū + a2∇x η̄ · ∇x η̃(∂y ū)2

+ 4agη̄η̃ + 3gη̄2η̃ − 2σaη̃�x η̄ − 2σaη̄�x η̃ − 2σ η̄η̃�x η̄ − σ η̄2�x η̃

− σa2 Hη(η̄)[η̃]− 2σaη̃H(η̄)− 2σaη̄Hη(η̄)[η̃]

− 2σ η̄η̃H(η̄)− σ η̄2 Hη(η̄)[η̃]. (16b)

We now posit “spectral stability” forms for ũ and η̃,

ũ(x, y, t) = eλtv(x, y), η̃(x, t) = eλtζ(x),
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so that the values of λ determine the spectral stability of the traveling waves (ū, η̄):
Re{λ} > 0 for any λ implies spectral instability, Re{λ} ≤ 0 for all λ implies weak
spectral stability, and Re{λ} < 0 for all λ implies strong spectral stability. Inserting
these into (12) we find that v and ζ satisfy

�v = Fu(ū, η̄)[v]+ Fη(ū, η̄)[ζ ], in Sa,0, (17a)

∂yv(x,−a)− T [v(x,−a)] = Ju(ū, η̄)[v]+ Jη(ū, η̄)[ζ ], (17b)

[λ+ c · ∇x ] ζ(x)− ∂yv(x, 0) = Qu(ū, η̄, λ)[v]+ Qη(ū, η̄, λ)[ζ ], (17c)

[λ+ c · ∇x ] v(x, 0)+ [g − σ�x ] ζ(x)

= Ru(ū, η̄, λ)[v]+ Rη(ū, η̄, λ)[ζ ]. (17d)

In this case, Fu , Fη, Ju , and Jη remain identical (with (ũ, η̃) replaced by (v, ζ )). However,

−aQu[v] = a(∇x η̄) · ∇xv + η̄(∇x η̄) · ∇xv − a |∇x η̄|2 ∂yv, (18a)

−aQη[ζ ] = λη̄ζ + ζ(c · ∇x η̄)+ η̄(c · ∇xζ )+ a(∇xζ ) · ∇x ū

+ ζ(∇x η̄) · ∇x ū + η̄(∇xζ ) · ∇x ū − 2a∇x η̄ · ∇xζ∂y ū, (18b)

and

−a2 Ru[v] = 2aλη̄v + λη̄2v

+ 2aη̄(c · ∇xv)+ η̄2(c · ∇xv)− a2(c · ∇x η̄)∂yv − aη̄(c · ∇x η̄)∂yv

+ a2∇x ū · ∇xv + 2aη̄∇x ū · ∇xv + η̄2∇x ū · ∇xv

− a2∇x η̄ · ∇xv∂y ū − a2∇x η̄ · ∇x ū∂yv

− aη̄∇x η̄ · ∇xv∂y ū − aη̄∇x η̄ · ∇x ū∂yv

+ a2 |∇x η̄|2 (∂y ū)(∂yv)+ a2(∂y ū)(∂yv), (19a)

−a2 Rη[ζ ] = −a2(λζ )∂y ū − aη̄(λζ )∂y ū

+ 2aζ(c · ∇x ū)+ 2η̄ζ(c · ∇x ū)− a2(c · ∇xζ )∂y ū

− aζ(c · ∇x η̄)∂y ū − aη̄(c · ∇xζ )∂y ū

+ aζ |∇x ū|2 + η̄ζ |∇x ū|2 − a2∇xζ · ∇x ū∂y ū

− aζ∇x η̄ · ∇x ū∂y ū − aη̄∇xζ · ∇x ū∂y ū + a2∇x η̄ · ∇xζ(∂y ū)2

+ 4agη̄ζ + 3gη̄2ζ − 2σaζ�x η̄ − 2σaη̄�xζ − 2σ η̄ζ�x η̄ − σ η̄2�xζ

− σa2 Hη(η̄)[ζ ]− 2σaζH(η̄)− 2σaη̄Hη(η̄)[ζ ]

− 2σ η̄ζH(η̄)− σ η̄2 Hη(η̄)[ζ ]. (19b)

4.1. Bloch Theory

The final specification we make for our spectral stability problem (17), which we now
write abstractly as

A(x, y)[(v, ζ )] = λ(v, ζ ), (20)
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is the boundary conditions that v and ζ must satisfy. For guidance we follow the “Gen-
eralized Principle of Reduced Instability” developed by Mielke [Mie97], which was
inspired by the Bloch theory of Schrödinger equations with periodic potentials [RS78].
This method allows us to consider perturbations

(v, ζ ) ∈ H 2(R× [−a, 0])× H 2(R),

or even

(v, ζ ) ∈ H 2
lu(R× [−a, 0])× H 2

lu(R),

which are the Sobolev spaces built upon the class of uniformly local L2 functions [Mie97].
The Generalized Principle of Reduced Instability distills this general setting to the study
of the “Bloch waves,” e.g.

ζ(x) = eip·x Z(x),

where Z ∈ H 2(R/) and  is the lattice of periodicity for the linear operator A =
A(ū(x, ·), η̄(x), c̄) in the x-variable.

Since Z ∈ H 2(R/), it suffices to consider p ∈ P(′), the fundamental cell of
wavenumbers (e.g., if  = (2π)Z, then ′ = Z, and P(′) = [0, 1]). Thus we are left
with the spectral problem [Mie97]

Ap[(V, Z)] = λ(V, Z),

cf. (20), where Ap is the “Bloch operator”

Ap := e−i p·xA[eip·x (V, Z)].

The crucial spectral identity (see [Mie97], Theorems 2.1 and A.4) is

L2-spec(A) = L2
lu-spec(A) = closure

( ⋃
p∈P(′)

spec(Ap)

)
. (21)

Thus, we can obtain information about stability with respect to all of these perturbations
by simply considering

(V, Z) ∈ H 2((R/)× [−a, 0])× H 2(R/)

with p ∈ P(′) appearing as a parameter [Mie97].
Mielke makes the remark that, while the sets that appear in (21) are equal, their types

are quite different. For example, L2
lu-spec(A) is point spectrum, while L2-spec(A) may

contain essential spectrum (see [Mie97], Remark 1 after Theorem 2.1). Importantly,
each of the Bloch operators Ap is elliptic and defined on the bounded spatial domain
P()× [−a, 0], where P() is the fundamental period cell. Thus eachAp is a Fredholm
operator of index zero with compact resolvent, implying that spec(Ap) is point spectrum.

Before leaving this discussion, we point out that this Bloch analysis is equivalent to
considering the linear operator A acting on “Bloch periodic” (quasiperiodic) functions
v(x, y) and ζ(x) that satisfy the “Bloch boundary conditions”:

v(x + γ, y) = eip·γ v(x, y), ζ(x + γ ) = eip·γ ζ(x), ∀γ ∈ .
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Notice that if p is a rational number, then these functions will be periodic with respect
to the lattice . Such functions can be expanded as

ζ(x) =
∑
k∈′

ζ̂kei(k+p)·x , (22a)

v(x, y) =
∑
k∈′

v̂k(y)e
i(k+p)·x , (22b)

which we use extensively in the rest of this paper.

4.2. Transformed Field Expansions

In [NR05] we showed that solutions of (1) exist in branches (in two dimensions) and
surfaces (in three dimensions), dependent on the perturbation parameter ε ∈ Rd−1. For
the sake of computational complexity (computing the full surface of solutions is quite
expensive and a sequence of branches typically suffices) and simplicity, we focus upon
a one-dimensional parameter ε ∈ R which gives rise to strongly convergent expansions
of the form

ū(x, y, ε) =
∞∑

n=1

ūn(x, y)εn, η̄(x, ε) =
∞∑

n=1

η̄n(x)ε
n, c̄(ε) =

∞∑
n=0

c̄nε
n.

We shall show in Section 5 that the linearized quantities (v, ζ, λ) also depend (strongly)
analytically upon ε and can similarly be expanded as

v(x, y, ε) =
∞∑

n=0

vn(x, y)εn, ζ(x, ε) =
∞∑

n=0

ζn(x)ε
n, λ(ε) =

∞∑
n=0

λnε
n. (23)

Inserting these expansions into (17), we realize the “Transformed Field Expansions”
(TFE) recursions:

�vn = Fn, in Sa,0, (24a)

∂yvn(x,−a)− T [vn(x,−a)] = Jn, (24b)

[λ0 + c0 · ∇x ] ζn(x)− ∂yvn(x, 0) = Qn − λnζ0(x)−
n−1∑
l=1

λn−lζl(x), (24c)

[λ0 + c0 · ∇x ] vn(x, 0)+ [g − σ�x ] ζn(x)

= Rn − λnv0(x, 0)−
n−1∑
l=1

λn−lvl(x, 0). (24d)

where

F := Fu(ū, η̄)[v]+ Fη(ū, η̄)[ζ ],

J := Ju(ū, η̄)[v]+ Jη(ū, η̄)[ζ ],

Q := Qu(ū, η̄)[v]+ Qη(ū, η̄)[ζ ]− (c − c0)∇xζ,

R := Ru(ū, η̄)[v]+ Rη(ū, η̄)[ζ ]− (c − c0)∇xv(x, 0),
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and

(F,J ,Q,R) =
∞∑

n=1

(Fn,Jn,Qn,Rn)ε
n.

These TFE recursions not only permit the direct estimation of the quantities {vn, ζn, λn}
(Theorem 5.2), but also lead to a stable, high-order algorithm for the numerical study of
the dynamic stability of traveling water waves (see Section 6).

4.3. Zeroth Order

Before proceeding to the estimation of the {vn, ζn, λn} (Theorem 5.2), we focus upon the
recursions, (24), at order zero. Besides providing the basis for our algorithm, this case
also reproduces the classic stability calculation of the trivial solutions. In this case the
right-hand side of (24) is zero, and we find that solutions of (24a) satisfying the Bloch
boundary conditions have the form

v0(x, y) =
∑

k

{Ake|k+p|y + Bke−|k+p|y}ei(k+p)·x .

Equation (24b) demands that

v0(x, y) =
∑

k

Ck{βke|k+p|y + αke−|k+p|y}ei(k+p)·x ,

where

αk := {1− tanh((h − a) |k + p|)} e−a|k+p|,

βk := {1+ tanh((h − a) |k + p|)} ea|k+p|.

The boundary conditions imply that

ζ0(x) =
∑

k

ζ̂0,kei(k+p)·x ,

while (24c) and (24d) give

Mkwk = 0, ∀k ∈ ′, (25)

for the matrix/vector pair

Mk :=
(
λ0 + ic0 · (k + p) − |k + p| (βk − αk)

g + σ |k + p|2 (λ0 + ic0 · (k + p))(βk + αk)

)
, wk :=

(
ζ̂0,k

Ck

)
.

(26)
Clearly (25) delivers only nontrivial solutions when the matrix Mk is singular for some
wavenumber k ∈ ′; this occurs when the (scaled) determinant function,

�(k, p; λ0, c0, g, h, σ ) :=

(λ0 + ic0 · (k + p))2(βk + αk)

+ (g + σ |k + p|2) |k + p| (βk − αk)

βk + αk

= (λ0 + ic0 · (k + p))2

+ (g + σ |k + p|2) |k + p| tanh(h |k + p|), (27)
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is equal to zero. Given that (p, c0, g, h, σ ) are fixed, for a given κ ∈ ′, we solve for the
unique (up to sign) λs

0(κ), s = ±1, such that �(κ, p; λs
0, c0, g, h, σ ) = 0, i.e.

λs
0(κ) = i

[−c0 · (κ + p)+ sωκ+p
]
, (28)

where

ω2
k := (g + σ |k|2) |k| tanh(h |k|). (29)

Since all of the λs
0(κ) are purely imaginary, we recover the classical weak stability result

for trivial traveling water waves. In this case we find solutions of (25) of the form

ζ̂0,κ = τ |κ + p| (βκ − ακ), Cκ = τ(λ0 + ic0 · (κ + p)),

for any τ ∈ C. In particular, taking τ = ρeiθ for real ρ and θ , we find the solutions

ζ0(x) = ρ |κ + p| (βκ − ακ)ei((κ+p)·x+θ), (30a)

v0(x, y) = ρ(λ0 + ic0 · (κ + p)){βκe|κ+p|y + ακe−|κ+p|y}ei((κ+p)·x+θ), (30b)

which, together with λ0 = λs
0, are the starting point for our algorithm.

We remark that since, at order zero, the linear operator associated with (24) is constant
coefficient, a simple Fourier analysis could replace the discussion above. However, we
have included the preceding calculation with general Bloch boundary conditions to set
the stage for the analysis of Section 5.

5. Analyticity

In this section we provide the proof of the analyticity of the spectral data (v, ζ, λ) as a
function of ε provided that the parameter p lies in a permissible set of nonresonant values
(see (31)). Before presenting this, we briefly review some notation which is necessary
to state our results.

Recalling the representations (22a) and (22b) for functions satisfying our Bloch
boundary conditions, we define the Bloch L2-based Sobolev spaces

H s
p := {u ∈ L2 | ‖u‖H s

p
<∞},

s ∈ Z, where

‖u(x, y)‖2
H s

p
:=

s∑
j=0

∑
k∈′
〈k + p〉2s−2 j

∫ 0

−a

∣∣∂ j
y ûk(y)

∣∣2 dy,

and 〈k + p〉 =
√

1+ (k + p)2. Note that if f = f (x) depends on x alone, then the
space H s

p can be defined for any s ∈ R by the norm

‖ f (x)‖2
H s

p
:=
∑
k∈′
〈k + p〉2s | f̂k |2.

Of course, if we set p = 0, then we recover the classical L2-based Sobolev spaces H s .
Finally, we note the following algebra property for H s

p [Ada75].
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Lemma 5.1. If s > d/2, then u ∈ H s and v ∈ H s
p imply that the product (uv) ∈ H s

p
and

‖uv‖H s
p
≤ M ‖u‖H s ‖v‖H s

p

for a constant M = M(d, s, p) depending only on d, s, and p.

We now turn to the restriction of our theory, namely that certain “resonant” configu-
rations must be excluded. To see why this is the case, recall that, to start our algorithm,
for a fixed set of parameters (, p, c0, g, h, σ ) we can select, for every κ ∈ ′, a unique
(up to sign) value λs

0(κ) such that

�(κ, p; λs
0, c0, g, h, σ ) = 0,

cf. (27). As we shall see (Lemma 5.5), if �(k, p) �= 0 for all k �= κ , then (24) can be
uniquely solved at any order n and our theorem follows. Viewing p as the adjustable
“configuration parameter,” we define the set of permissible, “nonresonant” p, for a fixed
κ , by

�κ() := {p ∈ P(′) | �(k, p; λs
0, c0, g, σ ) �= 0 ∀ k ∈ ′\{κ}} . (31)

Regarding the resonant p �∈ �κ(), we point out that while they do play an important
role in the study of stability of capillary-gravity waves, they are not generic (the di-
mensionality of the set of resonant p is strictly less than that of the set of nonresonant
ones) and represent quite a different type of instability, i.e. one that is independent of
the shape of the waveform. Ultimately, we view these resonant values as particularly
strong instabilities (corresponding to collision of eigenvalues at ε = 0), which require
a more subtle analysis than our current formulation permits, and instead we focus upon
the nonresonant configurations featuring a dependence upon the traveling waveform that
we can detect.

We now present our main result.

Theorem 5.2. Given (κ, , p, c0, g, h, σ ) and any integer s > d/2, provided that p ∈
�κ(), if, for n ≥ 1,

‖ūn‖H s+2≤C0
Bn

(n + 1)r
, ‖η̄n‖H s+5/2≤C0

Bn

(n + 1)r
, |c̄n−1|≤C0

Bn−1

(n + 1)r
, (32)

for any r > d − 1 and some positive constants C0, B, then for n ≥ 0 the solutions
{vn, ζn, λn} of (24), starting with (28) and (30), satisfy

‖vn‖H s+2
p
≤ K0

Dn

(n + 1)r
, ‖ζn‖H s+5/2

p
≤ K0

Dn

(n + 1)r
, |λn| ≤ K0

Dn

(n + 1)r
, (33)

for positive constants K0 and D. In other words, provided that p is a permissible Bloch
period and the traveling waveform is parametrically analytic, then the spectral data is
also parametrically analytic.

Remark 5.3. We note that Theorem 4.2 of [NR05] justifies the hypothesis (32), which,
for d > 2, requires that σ > 0.
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As with other related work on analyticity properties of boundary value and free
boundary problems [NR01a], [NR04a], [NR05], [HN05], [NT06], we work by induction
in the perturbation order n. The key inductive lemma is now presented.

Lemma 5.4. Given an integer s > d/2, suppose that, for n ≥ 1,

‖ūn‖H s+2≤C0
Bn

(n + 1)r
, ‖η̄n‖H s+5/2≤C0

Bn

(n + 1)r
, |c̄n−1|≤C0

Bn−1

(n + 1)r
, (34)

for any r > d − 1 and some positive constants C0, B; and

‖vn‖H s+2
p
≤K0

Dn

(n + 1)r
, ‖ζn‖H s+5/2

p
≤K0

Dn

(n + 1)r
, |λn|≤K0

Dn

(n + 1)r
, (35)

for all n < N, then

‖FN‖H s
p
≤ K0 K1

DN−1

(N + 1)r
, ‖JN‖H s+1/2

p
≤ K0 K1

DN−1

(N + 1)r
,

‖QN‖H s+1/2
p
≤ K0 K1

DN−1

(N + 1)r
, ‖RN‖H s+1/2

p
≤ K0 K1

DN−1

(N + 1)r
,

for some positive constant K1 and D ≥ q B where q > 1.

Proof. For brevity we restrict our attention to one of the most challenging terms to be
estimated on the right-hand side of (24),

IN := −1

a

N−1∑
m=0

m∑
l=0

λlζm−l η̄N−m,

which appears as the first term in the expansion ofQη,N , cf. (18). This term is particularly
difficult because the unknowns appear in a nonlinear fashion (the product of λ with ζ ).
All other terms can be handled with a similar method using the techniques presented
here.

Using the algebra property (Lemma 5.1), we estimate

‖IN‖H s+1/2
p
≤ 1

a

N−1∑
m=0

m∑
l=0

M |λl | ‖ζm−l‖H s+1/2
p
‖η̄N−m‖H s+1/2

≤ K0
M K0C0

a

N−1∑
m=0

[
m∑

l=0

(m + 1)r

(l + 1)r (m − l + 1)r

]

×Dm B N−m 1

(m + 1)r (N − m + 1)r
,

where we have used (34) & (35). If we define  d−1 by

 d−1 :=
m∑

l=0

(m + 1)r

(l + 1)r (m − l + 1)r
<∞,
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cf. [NR03] (proof of Lemma 7), then

‖IN‖H s+1/2
p
≤ K0

M K0C0 d−1

a
B

DN−1

(N + 1)r

×
[

N−1∑
m=0

(N + 1)r

(m + 1)r (N − m + 1)r

(
B

D

)N−m−1
]

≤ K0

(
M K0C0 

2
d−1

a
B

)
DN−1

(N + 1)r
,

provided that B/D < 1/q for any q > 1. In this case,

‖IN‖H s+1/2
p
≤ K0 K1

DN−1

(N + 1)r
,

provided

K1 ≥
M K0C0 

2
d−1

a
B.

The second lemma required is an elliptic estimate that is very similar in spirit to one
presented in [NR05]. In fact, since the methods for establishing it are nearly identical to
those presented in [NR05] (Lemma 4.5), we state the result without proof. However, the
issue of solvability and uniqueness of solutions is sufficiently different that we comment
on these issues in Appendix A.

Lemma 5.5. Given (κ, , p, c, g, h, σ ), where p ∈ �κ(), and an integer s ≥ 0, if
F ∈ H s

p(Sa,0), J ∈ H s+1/2
p (P()), Q ∈ H s+1/2

p (P()), and R ∈ H s+1/2
p (P()), then

there exists a solution (v, ζ, µ) of

�v(x, y) = F(x, y), −a < y < 0, (36a)

∂yv(x,−a)− T [v(x,−a)] = J (x), (36b)

[λ+ c · ∇x ] ζ(x)− ∂yv(x, 0) = Q(x)− µqκei(κ+p)·x , (36c)

[λ+ c · ∇x ] v(x, 0)+ [g − σ�x ] ζ(x) = R(x)− µrκei(κ+p)·x , (36d)

v(x + γ, y) = eip·γ v(x, y), ∀γ ∈ , (36e)

ζ(x + γ ) = eip·γ ζ(x), ∀γ ∈ , (36f)

where

qκ := τ |κ + p| (βκ − ακ), (37a)

rκ := τ(λ0 + ic0 · (κ + p))(βκ + ακ), (37b)

cf. (30). In addition, if we require that∫
P()

ζ(x)eiκ·x dx = 0, (38)
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then the solution is unique and satisfies

‖v‖H s+2
p
≤ Ce{‖F‖H s

p
+ ‖J‖H s+1/2

p
+ ‖Q‖H s+1/2

p
+ ‖R‖H s+1/2

p
}, (39a)

‖ζ‖H s+5/2
p
≤ Ce{‖F‖H s

p
+ ‖J‖H s+1/2

p
+ ‖Q‖H s+1/2

p
+ ‖R‖H s+1/2

p
}, (39b)

|µ| ≤ Ce{‖F‖H s
p
+ ‖J‖H s+1/2

p
+ ‖Q‖H s+1/2

p
+ ‖R‖H s+1/2

p
}, (39c)

for some constant Ce = Ce(d, s, p) > 0.

We are now in a position to prove Theorem 5.2.

Proof. (Theorem 5.2) We work by induction and begin at order n = 0. We recall that
we have already chosen our solution at zeroth order, (28) and (30), and simply select

K0 := max{‖v0‖H s+2
p
, ‖ζ0‖H s+5/2

p
,
∣∣λs

0

∣∣}.
We now assume (33) for all n < N , and note that, due to Lemma 5.5, we can estimate

‖vN‖H s+2
p
≤ Ce{‖FN‖H s

p
+ ‖JN‖H s+1/2

p
+ ‖QN‖H s+1/2

p
+ ‖RN‖H s+1/2

p
},

‖ζN‖H s+5/2
p
≤ Ce{‖FN‖H s

p
+ ‖JN‖H s+1/2

p
+ ‖QN‖H s+1/2

p
+ ‖RN‖H s+1/2

p
},

|λN | ≤ Ce{‖FN‖H s
p
+ ‖JN‖H s+1/2

p
+ ‖QN‖H s+1/2

p
+ ‖RN‖H s+1/2

p
}.

From the inductive estimate, Lemma 5.4, we have that

‖vN‖H s+2
p
≤ Ce4K0 K1

DN−1

(N + 1)r
,

‖ζN‖H s+5/2
p
≤ Ce4K0 K1

DN−1

(N + 1)r
,

|λN | ≤ Ce4K0 K1
DN−1

(N + 1)r
,

and we are done, provided that D ≥ 4Ce K1.

6. Two-Dimensional Numerical Results

In this section we describe a numerical implementation of the TFE recursions (24) and
report upon a study of the stability of two-dimensional traveling gravity waves (Stokes
waves) on deep water to general (Bloch periodic) two-dimensional disturbances. As we
mentioned earlier, this configuration has been well studied in previous research (see the
survey article of Dias and Kharif [DK99] and its extensive list of references for a sample),
so we present these results here merely to indicate the capabilities of our new method.

6.1. Numerical Method

We now specialize to the case of deep water (h = ∞), two dimensions (d = 2), and zero
capillarity (σ = 0). Furthermore, we will nondimensionalize by choosing g = 1 and
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[0, 2π ] as the fundamental period cell for our traveling wave; therefore, the wavenumbers
k are the integers. We recall from [NR05] that to find a branch of nontrivial traveling
waves one must, for a chosen wavenumber k̄, find a (zeroth order) velocity c̄0 ∈ Rd−1

such that �(c̄0, k̄) = 0, where

�(c, k) := (c · k)2 − ω2
k ,

and ωk is defined in (29). It is not hard to show that in the present configuration (h = ∞,
d = 2, g = 1, σ = 0) the velocity is

c̄0 =
√

1/|k̄|,
while the (linear) free surface has, in the traveling frame, the form

η̄1(x) = C cos(k̄x).

Again, for the purposes of nondimensionalization, we set k̄ = 1 so that c̄0 = 1.
Before continuing, let us consider the set of permissible configurations for our algo-

rithm. For every p ∈ P(′)we would like to study the evolution of λs(κ; ε) as a function
of ε for all κ ∈ ′. Due to the resonance we described in Section 5, this is not possible
for our algorithm as it is currently formulated, so we restrict our attention to the set of
p ∈ �() where

�() :=
⋂
κ∈′

�κ(),

cf. (31). To exhibit the size of�(), in Figure 1 we plot, for 400 equally spaced p ∈ [0, 1],
the values of

�s
min(p) := min

k,κ∈INx ,k �=κ
�(k, p; λs

0(κ), c0, g, h, σ ), s = ±1, (40)

where INx := [−Nx /2, Nx /2−1], and Nx = 64. While we see that the values p = 0, 1/4,
3/4 are forbidden (p = 1 will reproduce the case p = 0 as the spectral data is periodic
in p [Mie97]), the set �() admits all other values of p.

Our numerical scheme is a Fourier(collocation)/Chebyshev(tau)/Taylor algorithm
[GO77], [CHQZ88], [NR01b], [NR06] applied to the system of equations (24). Briefly,
this amounts to approximating the unknowns (v, ζ, λ) by

v(N ,Nx ,Ny)(x, y, ε) :=
N∑

n=0

Nx /2−1∑
k=−Nx /2

Ny∑
l=0

v̂k,l
n Tl

(
2y + a

a

)
ei(k+p)xεn, (41a)

ζ (N ,Nx )(x, ε) :=
N∑

n=0

Nx /2−1∑
k=−Nx /2

ζ̂ k
n ei(k+p)xεn, (41b)

λ(N )(ε) :=
N∑

n=0

λnε
n, (41c)

where Tl is the lth Chebyshev polynomial. We determine the (v̂k,l
n , ζ̂

k
n , λn) from (24)

(together with the solvability and uniqueness considerations outlined in Appendix A) and



388 D. P. Nicholls

0 0.2 0.4 0.6 0.8 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p

Λ
m

in

 

 

Λ1
min

Λ−1
min

Fig. 1. Plot of �1
min(p) and �−1

min(p), cf. (40), for Nx = 64 and 400
p equally spaced in [0, 1].

the Fourier collocation (x variable) and Chebyshev tau (y variable) methods. Of course
all of this depends on the faithful computation of the basic traveling wave (ϕ̄, η̄, c̄),
which we perform using the stable, high-order TFE method developed by Nicholls and
Reitich [NR05], [NR06]. In the experiments of this section we have set a = 1/2, N = 30,
Nx = 64, and Ny = 32 for the computation of both the traveling waveform (ϕ̄, η̄, c̄) and
the perturbation (v, ζ, λ).

Before proceeding, we note that there is an alternative method to sum the Taylor
series (in ε) appearing in (41). It is well known that Padé approximants [BGM96] have
remarkable properties of approximation for a large class of functions when applied to their
Taylor series, not only within their disk of convergence, but also well outside (provided
that there are no obstructing singularities present). In a practical implementation this
generally means that a Padé approximation will not only converge faster where the
Taylor series converges, but it may even converge for values of ε where the Taylor
series diverges. We have found this technique useful in a wide range of applications (e.g.
[NR03], [NR04b]), and we use it here again.

6.2. Computational Complexity

Given our numerical approximation (41) to the problem (17), we can now comment on
the computational complexity of our algorithm. We find both that the implementation of
our new method is almost identical to that of Nicholls and Reitich [NR06] for traveling
waves, and that the computational cost, for a fixed p, is the same:

O(N Nx log(Nx )Ny log(Ny)+ N 2 Nx Ny);
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the first term reflects the fast Fourier/Chebyshev solve at every perturbation order, while
the second accounts for the time to assemble the right-hand sides Fn , etc. (see (24)).

If we wish to compute P Bloch periods p then the total cost of this approach is

O(P N Nx log(Nx )Ny log(Ny)+ P N 2 Nx Ny).

Given the (Nx × Ny) Fourier–Chebyshev coefficients v̂k,l , to compute the full spectrum
for any given value of ε we require only a Taylor (or Padé) summation of N terms. Thus,
for P-many periodicities, the cost of producing the spectrum for a particular nonlinear
wave (a fixed ε) is

O(P N Nx Ny).

From this we realize that the total cost for the full spectrum for P-many Bloch period-
icities and M-many nonlinear waves is given by

O(P N Nx log(Nx )Ny log(Ny)+ P N 2 Nx Ny + M P N Nx Ny). (42)

Notice that the computation of the spectral data is a post-processing step and that the
parameter M does not appear in the base cost of our algorithm. Note also that if the
transparent boundary parameter a is chosen small, then Ny need not be chosen excessively
large. If the parameters Nx , Ny , and N are of comparable size, say N , and if M � N (a
finely resolved evolution of the spectrum), then the cost of our method is dominated by
O(M P N 3).

We can now contrast this with alternative approaches, in particular the linearization/
eigensolve approach mentioned in the introduction. For this the dominant cost is the
eigensolve, which has computational complexity O(L3) if the linearization matrix has
dimension (L × L) [GVL96]. The size of the linearization matrix associated with (17)
is L = Nx Ny , so that the cost, for P-many Bloch periodicities, is

O(P(Nx Ny)
3).

Importantly, this must be completely recomputed for each nonlinear wave, so that the
cost of computing the full spectrum for M-many nonlinear waves is

O(M P(Nx Ny)
3);

if, again, Nx and Ny are of comparable size, say N , then the total complexity isO(M P N 6)

which is clearly disadvantaged when compared with our new approach, (42). We should
note that the method of Ioualalen et al. [IKR99], [IO02] features matrices of size (Nx×Nx )
so that the total cost of their algorithm is

O(M P N 3
x ),

which compares more favorably with the complexity of our new method (42). However,
we point out that not only may Ny be chosen quite small in our method, but the method of
Ioualalen et al. is quite unstable (see the calculations of [NR06]), calling their very relia-
bility into question. Furthermore, if all that is desired are the growth rates, λ, then our new
approach will merely have complexity O(M P N ) (once the Fourier/Chebyshev/Taylor
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Fig. 2. Plot of Im{λ1(1; ε)} for Nx = 64, Ny = 32, and N = 30.

series are computed), while the cost of the linearization/eigensolve method remains the
same.

Finally, in three dimensions each of these cost estimates remains the same save that
Nx must be replaced by N1 × N2 where Nj is the number of collocation points in the xj

direction. For our new method this multiplies the cost of our method by N2 log(N2), while
the linearization/eigensolve method has complexity multiplied by N 3

2 , which renders it
completely uncompetitive.

6.3. Numerical Results

To display the capabilities of our method, we begin by focusing on a particular choice of
p = 1/10 ∈ �(), and perturbation wavenumber κ = 1. In Figure 2 we display a plot
of Im{λ1(1; ε)} as a function of ε; we recall that, at ε = 0, this eigenvalue has the form

λ1
0(1) = i[−c0(1+ 0.1)+ ω1+0.1] ≈ −0.05119 i;

see (28). In this plot we see the smooth evolution of this eigenvalue as a function of ε in
the upward (imaginary) direction. Furthermore, throughout most values of the parameter
ε displayed, we feel that this calculation is highly resolved, as indicated in Figure 3. In
this figure we display a plot of the difference between curves of Im{λ1(1; ε)} for values
of N = 12, 18, and 24 and that of the most resolved curve (appearing in Figure 2) with
N = 30. For values of ε up to 0.005 it appears that full double-precision accuracy can
be achieved with N = 12 terms in the Taylor expansion, while ε ≤ 0.01 and ε ≤ 0.015
can be completely resolved with N = 18 and N = 24 terms, respectively.

One could imagine that, by simply increasing the perturbation order N (and corre-
spondingly increasing Nx and Ny to ensure high-order resolution), quite large values of ε
could be computed. However, as we display in Figure 4, there is a fundamental obstruc-
tion: collision of eigenvalues. In this figure we plot two curves, λ1(1; ε) and λ−1(−1; ε),
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which emanate, at ε = 0, from the eigenvalues

λ1
0(1) = i [−c0(1+ 0.1)+ ω1+0.1] ≈ −0.05119 i,

λ−1
0 (−1) = i [−c0(−1+ 0.1)− ω−1+0.1] ≈ −0.04868 i,

respectively. These are followed in a smooth fashion by our algorithm, with each pro-
gressing in the opposite (imaginary) direction towards each other. At a value of approx-
imately ε ≈ 0.034, these curves collide and we find that our computation rapidly loses
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Fig. 4. Plot of λ1(1; ε) and λ−1(−1; ε) for Nx = 64, Ny = 32, and
N = 30.
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Table 1. Values of εcross and
Im{λ(εcross)} as N is varied through val-
ues from 4 to 30.

N εcross Im{λ(εcross)}
4 0.03939 −0.050078
6 0.03695 −0.050111
8 0.03593 −0.050078

10 0.03538 −0.050095
12 0.03507 −0.050077
14 0.03485 −0.050091
16 0.03472 −0.050076
18 0.03461 −0.050093
20 0.03452 −0.050068
22 0.03455 −0.050063
24 0.03448 −0.050090
26 0.03443 −0.050078
28 0.03440 −0.050083
30 0.03438 −0.050080

convergence. In fact, this is the first collision of eigenvalues in this configuration (choice
of p), and we speculate that at this value of ε, say εcross, the expansions (23) cease to be
convergent. Furthermore, since our technique of Padé approximation ceases to be useful
beyond this point, we further theorize that there is a pole on the real axes of the complex
ε-plane at ε = εcross.

In an attempt to build confidence in our computation of this “crossing point” we show,
in Table 1, the numerical values of εcross as the perturbation order N is varied from 4
to 30. Additionally, we include the imaginary part of the eigenvalue where this crossing
takes place. We point out that by N = 30 we have convergence of εcross to within a tenth
of a percent, while Im{λ(εcross)} has converged to within a hundredth of a percent.

With confidence in our ability to compute “first crossing” values for the λ as a function
of ε for a particular choice of p, we present in Figure 5 a plot of εcross for a selection of p
representing the entire range [0, 1]. This plot indicates the “strength” of the instability at
each p in the sense that larger εcross indicates that larger (and more nonlinear) waves are
still (weakly) stable. Furthermore, we can identify a value of ε, say εcrit ≈ 0.0508, for
which sufficiently nonlinear (ε > εcrit) waves are unstable to perturbations of any Bloch
period. Finally, in Figure 6 we display the values of the imaginary part of the eigenvalue
λ at the first crossing Im{λ(εcross)}, and in Figure 7 we combine these last two plots (after
a rescaling) to elucidate how discontinuities in the value of εcross as a function of p can
be explained by the transition among “first cross” values of λ.

7. Conclusions and Future Directions

In this paper we have devised a novel method to investigate the stability of traveling
water waves in two and three dimensions. We provide a theoretical justification for
this algorithm via a rigorous analyticity theorem, and furthermore, the recursions used
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to establish this result translate directly into a numerical procedure for stability com-
putations. A two-dimensional implementation was used to investigate the stability of
two-dimensional gravity water waves on deep water to general two-dimensional pertur-
bations. Clearly, the first future direction for this work is to extend our computations
to three dimensions to consider the stability of “short-crested waves” to general three-
dimensional perturbations. Another interesting direction of future research would be to
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reformulate the algorithm in the presence of resonance to address the exceptional values
of the Bloch period which our current algorithm excludes.

Appendix A Comments on the Linear Estimate

In this appendix we comment on some of the key issues involved in establishing
Lemma 5.5. As the proof is quite similar to that of the “elliptic estimate” given in
the paper of Nicholls and Reitich [NR05], we will not provide all of the details. How-
ever, there are some important differences (particularly for a numerical implementation),
and we point those out here.

Due to the Bloch boundary conditions, (36e) and (36f), we can expand v and ζ as

v(x, y) =
∑
k∈′

v̂k(y)e
i(k+p)·x , ζ(x) =

∑
k∈′

ζ̂kei(k+p)·x .

Equations (36) demand that (v̂k, ζ̂k, µ) satisfy, for every k ∈ ′,

∂2
y v̂k(y)− |k + p|2 v̂k(y) = F̂k(y), −a < y < 0, (43a)

∂y v̂k(−a)− |k + p| tanh((h − a) |k + p|)v̂k(−a) = Ĵk, (43b)

[λ+ ic · (k + p)] ζ̂k − ∂y v̂k(0) = Q̂k − δk,κµqκ , (43c)

[λ+ ic · (k + p)] v̂k(0)+
[
g + σ |k + p|2] ζ̂k = R̂k − δk,κµrκ . (43d)
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As long as (k + p) �= 0, the solution of (43a) and (43b) can be written

v̂k(y) = Ck{βke|k+p|y + αke−|k+p|y} −
{

Ĵk

|k + p|βk
+ α̃k T2(−a)

2 |k + p|βk

}
e−|k+p|y

− 1

2 |k + p| {T1(y)+ T2(y)},

where

T1(y) = T1[F](y) :=
∫ y

−a
e|k+p|(s−y)F(s) ds,

T2(y) = T2[F](y) :=
∫ 0

y
e|k+p|(y−s)F(s) ds,

α̃k := (1− tanh((h − a)) |k + p|) .
Using these, we can resolve (43c) and (43d) into

Mkwk = bk, bk := (Q̃k, R̃k)
T , (44)

cf. (25), where Mk and wk are defined as

Mk :=
(
λ+ ic · (k + p) − |k + p| (βk − αk)

g + σ |k + p|2 (λ+ ic · (k + p))(βk + αk)

)
, wk :=

(
ζ̂k

Ck

)
,

cf. (26), and

Q̃k := Q̂k − δk,κµqκ −"k,

R̃k := R̂k − δk,κµrκ + (λ+ ic · (k + p))

|k + p| "k,

where

"k := Ĵk

βk
+ α̃k T2(−a)

2βk
+ T1(0)

2
.

By our condition of nonresonance (31), when k �= κ , the determinant function

�(k, p; λ, c, g, h, σ ) = (λ+ ic · (k + p))2 + (g+ σ |k + p|2) |k + p| tanh(h |k + p|),
cf. (27), is nonzero, and (44) is uniquely solvable; the resulting (ζk,Ck) can be used to
establish the elliptic estimates (39), cf. [NR05].

In the case k = κ (where κ has been chosen so that�(κ, p) = 0), the system (44) is,
of course, generally not uniquely solvable. However, since µ is yet to be determined, we
can use it, as we demonstrate below, to enforce the existence of a solution. Once this is
accomplished we will make an orthogonality demand that will deliver a unique solution.

Regarding existence of solutions, it is easy to show that in order for bκ to be in the
range of Mκ the following condition must be satisfied:

(λ+ ic · (κ + p)) (βκ + ακ)Q̃κ + |κ + p| (βκ − ακ)R̃κ = 0.
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Simplifying, we find that this is true if µ = nκ /dκ , where

nκ := (λ+ ic · (κ + p))(βκ + ακ){Q̂κ +"κ},

+ |κ + p|(βκ − ακ)
{

R̂κ + (λ+ ic · (κ + p))

|κ + p| "κ

}
,

dκ := (λ+ ic · (κ + p))(βκ + ακ)qκ + |κ + p|(βκ − ακ)rκ .
The choices of qκ and rκ given in (37) are meant to represent the Fourier coefficients

of ζ0(x) and v0(x, 0)—see (30)—and we can use them to further simplify dκ to

dκ = 2ρ(λ+ ic · (κ + p)) |κ + p| (β2
κ − α2

κ),

which can be shown to be nonzero. Now, to specify a unique solution, we use (38), i.e.
ζ̂κ = 0, so that ζ is orthogonal to ζ0(x) = qκ exp(i(κ + p) · x). Other choices can, of
course, be made (e.g. the Schwartz parameterization [Sch74]); however, we have found
this simple orthogonalization procedure to be quite effective.
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