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a b s t r a c t

In this contributionwe study the spectrum of periodic traveling gravity waves on a two-dimensional fluid
of finite depth. We extend the stable and highly accurate method of Transformed Field Expansions to the
finite depth case in the presence of both simple and repeated eigenvalues, and then numerically simu-
late the changes in the spectrum as the wave amplitude is increased. We also calculate explicitly the first
non-zero correction to the flat-water spectrum, which we observe to accurately predict the stability (or
instability) for all amplitudes within the disc of analyticity of the spectrum. In addition to computations
of the spectrum, we also compute the radius of the disc of analyticity of the spectrum—the amplitude
boundary beyond which neither the asymptotics nor the TFE method is applicable. We observe an insta-
bility which is analytically connected to the flat state for kh ∈ (0.855, 1).

Published by Elsevier Masson SAS.
1. Introduction

The potential flow equations arise in a wide array of fluid me-
chanical problems, for instance, tsunami propagation, the motion
of sandbars, and pollutant transport. Traveling wave solutions of
these equations have the ability to propagate energy, momentum,
and passive scalars (e.g., pollutants) around the world’s oceans. In
this study the spectral stability of such solutions under the influ-
ence of gravity in finite depth is considered.

This problem has a rich history of both numerical and asymp-
totic investigations, and the Annual Review of Fluid Mechanics is
filledwith articles summarizing various aspects of the field (see [1]
for a particularly relevant andwell-written example). The field has
roots as early as Stokes, who first expanded periodic traveling wa-
ter waves as a function of the wave slope in 1845 [2], an approach
which has since become commonplace (see, e.g., [3–5]).

Regarding dynamic stability of these waveforms, real progress
began in the 1960s with the discovery of the Benjamin–Feir insta-
bility [6] and, of particular relevance to the current study, the am-
plitude expansions which led to the development of the Resonant
Interaction Theory (RIT) by Phillips [7] and Benney [8] (for an ex-
cellent review of the history of RIT see [9]). In RIT, the dynamics
of the solution are predicted, asymptotically in the wave slope, by
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equations for the amplitudes of a small set of resonantly interacting
frequencies, called triad or quartet equations (based on the num-
ber of frequencies in the interaction). For traveling water waves,
RIT predicts the existence and growth rates of instabilities at fre-
quencies which satisfy such interactions. Numerical studies have
computed instabilities in the neighborhood of these resonances
[10–13]. In the language of these numerical studies, the even in-
teractions (quartets, sextets, etc.) are referred to as Class I instabil-
ities while the odd interactions (triads, quintets, etc.) are referred
to as Class II instabilities. We find that an eigenvalue’s dependence
on amplitude is characterized by the type of resonant interaction
in which the eigenfunctions’ frequencies take part.

To our knowledge, all stability studies to date concerning trav-
eling wave solutions of the full water wave problem are numeri-
cal in nature. Further, almost all of these entail the linearization of
thewaterwave equations about a fixed travelingwave solution fol-
lowed by the numerical approximation of the resulting eigenvalue
problem. Please see the classic results of [14,15] and the more re-
cent computations of [16–18,13] for these ‘‘Direct Numerical Sim-
ulations’’ (DNS) of the spectral stability problem.

By contrast to the aforementioned DNS, the authors have em-
barked on an investigation of spectral stability using a rather differ-
ent philosophy. In short, the spectrum of the water wave operator
linearized about an analytic family of traveling waves is also ana-
lytic [19,20,5] (for simple eigenvalues) so that the eigenpair (λ,w)
can be expanded in the strongly convergent Taylor series

λ = λ(ε) =

∞
n=0

λnε
n, w = w(x; ε) =

∞
n=0

wn(x)εn,
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where ε is a wave height/slope parameter. These {λn, wn} have
been approximated using the stable and highly (spectrally) accu-
rate method [21] of ‘‘Transformed Field Expansions’’ (TFE) which
was used to such great effect by one of the authors with F. Re-
itich [20,5] to simulate the underlying traveling waves. We re-
fer the interested reader to [5] in particular for demonstrations of
the capabilities of the TFE approach versus other Boundary Per-
turbation Methods including its favorable operation counts, lack
of substantial numerical ill-conditioning, and applicability to large
traveling wave profiles via numerical analytic continuation.

To put the present contribution into context we summarize our
previous results:

• In [19] it was demonstrated that the spectrum of the water
wave operator linearized about periodic traveling waves is an-
alytic as a function of ε near simple eigenvalues.

• In [22] a TFE implementation of the theorem in [19] was used
to numerically study the ‘‘evolution’’ of the spectrum for two-
dimensional gravity waves in deep water. The role of singulari-
ties (in the Taylor series) in development of instability from the
simple eigenvalue case was investigated.

• In [23] some conjectures regarding singularities in the spectrum
and instability were resolved by comparing with a DNS of the
spectrum in the gravity wave case.

• In [24] the TFEmethodwas extended to include repeated eigen-
values and applied to deep-water gravity waves. RIT was used
to find candidates for the ‘‘first’’ instabilities, those which arise
at smallest wave slope.

• In [21] a rigorous numerical analysis of the TFE recursions was
studied in a wide array of contexts, including the spectral sta-
bility problem.

• In [25] the TFE approach was extended to include the effect
of surface tension. In deep water, triad instabilities were com-
puted which are analytic in amplitude for fixed Bloch parame-
ter.

In the present study we augment this line of results by:

• Extending the TFE method to the case of a fluid of finite depth.
• Computing exactly the first non-zero correction to the spec-

trum,

λ = λ0 + ε2λ2 + · · · .

• Predicting the amplitude of instabilities and eigenvalue colli-
sions using second order asymptotics.

• Estimating the radius of the disc of analyticity of the spectrum
{λ,w} = {λ(ε), w(x; ε)} from our numerical computations.

The ultimate result, the radius of the disc of analyticity, sets our
method apart from direct numerical simulations of the spectrum.
This radius highlights both the strengths andweaknesses of the ap-
proach. Boundary perturbation methods are limited in applicabil-
ity by their radius of convergence; the TFEmethod cannot compute
instabilities at amplitudes larger than this radius. Although the TFE
method cannot compute these large amplitude instabilities, it does
provide a mechanism for detecting their location, namely at the
amplitudes and Bloch parameters at which the series loses analyt-
icity [23]. The radius also gives an upper bound for the amplitude
range over which asymptotic approximations, such as those pre-
sented here, may be expected to approximate the spectrum.

It is well known that small amplitude instabilities arise from
collisions of flat state eigenvalues with opposite Krein signature
[10]. Our method computes such instabilities as a series in am-
plitude with fixed Bloch parameter. Typical instabilities occur in
bands of Bloch parameters whose width grows with amplitude
[12,17]. We compute finite amplitude instabilities within these
bands when the bands include the resonant Bloch parameters. We
also compute the locations of these bands of Bloch parameters via
the radius of convergence of our amplitude expansions. Based on
our results, we conclude that in order for a boundary perturba-
tionmethod to compute all instabilities at any finite amplitude, the
methodmust allow the Bloch parameter to vary with amplitude. If
not, only very special instabilitieswill be computable—thosewhich
occur at the same Bloch parameter at all amplitudes. An exam-
ple of such an instability is presented for kh ∈ (0.855, 1). Small
amplitude asymptotics of the spectrum of the deep-water prob-
lem with amplitude-dependent Bloch parameters are calculated
in [26]; these asymptotics are consistent with the conclusions pre-
sented here.

The paper is organized as follows: in Section 2we introduce the
water wave problem, followed by the TFE method for the spectral
stability problem in Section 2.1, and the concept of Bloch period-
icity (Section 2.2). In Section 2.3, we discuss the computation of
the leading order spectrum, which we divide into cases based on
the resonant character of the repeated eigenvalue. There are no
triad interactions for two-dimensional water waves without sur-
face tension, and we begin our discussion of degenerate quartet
resonances in Section 2.4, followed by non-degenerate quartet res-
onances in Section 2.5. In Section 3 we present our numerical re-
sults including the radius of the disc of analyticity of the spectrum,
as well as a computed instability. Conclusions and future areas of
research are discussed in Section 4.

2. Spectral stability of traveling water waves

In this work we apply a perturbative approach to the spectral
stability problem for water waves to compute the spectrum to all
orders. The leading order correction to the flat state spectrum is
exactly calculated and the general order correction is computed
numerically. Two independent formulations are used for these
computations. The exact leading order results are calculated in a
classic Taylor expansion about the mean level, similar to the mod-
els in [27,28]. For computing the general order correction, classical
Boundary PerturbationMethods have been observed to be numeri-
cally unstable in certain configurations. Consequently, we have se-
lected the Transformed Field Expansions (TFE) approach [22–24]
which executes a domain-flattening change of variables before ex-
pansion. This TFEmethod, justified analytically in [19] and, numer-
ically, in [21], will be briefly presented in the following sections.
Unlike the aforementioned classical Boundary Perturbation algo-
rithms, the TFE method is both strongly convergent and numeri-
cally stable.

The widely accepted model for the motion of waves on the sur-
face of a large body of water in the absence of surface tension or
viscosity are the Euler equations

φxx + φzz = 0, z < εη, (1a)
φz = 0, z = −H (1b)
ηt + εηxφx = φz, z = εη, (1c)

φt +
ε

2


φ2
x + φ2

z


+ η = 0, z = εη, (1d)

where η is the free-surface displacement and φ is the velocity po-
tential. These equations describe the motion of an inviscid incom-
pressible fluid undergoing an irrotational motion. System (1) has
been non-dimensionalized as in [27,24]. We assume that the wave
slope, ε = A/L, is small (A is a typical amplitude and L, the charac-
teristic horizontal length, is chosen in the non-dimensionalization
so that thewaves have spatial period 2π ). Also, the vertical dimen-
sion has been non-dimensionalized using the wavelength, so the
quantity H is non-dimensional (H = kh). As we will later use kj
for wavenumbers of eigenfunctions, we abandon the standard no-
tation kh in favor of simply H .

In this work, we simulate the spectrum using the TFE approach
of [20,22,24,25]. To describe the TFE approach, we recall the stan-
dard (see, e.g., [24]) truncation of thewaterwave domain to {−a <



B. Akers, D.P. Nicholls / European Journal of Mechanics B/Fluids 46 (2014) 181–189 183
z < εη}, with −H < −a, and the equivalent formulation of the
governing equations (1):
φxx + φzz = 0, −a < z < εη, (2a)
φz − T [φ] = 0, z = −a, (2b)
ηt + εηxφx = φz, z = εη, (2c)

φt +
ε

2


φ2
x + φ2

z


+ η = 0, z = εη, (2d)

where the order-one Fouriermultiplier (a DNOat y = a) is given by

T [ψ(x)] = T


k

ψ̂keikx


:=


k

|k| tanh(|k|(H − a))ψ̂keikx;

here ψ̂k is the k-th Fourier coefficient of ψ(x)

ψ(x) =


k

ψ̂keikx.

2.1. Transformed field expansions

To specify the TFE recursionswe consider the domain-flattening
change of variables

x′
= x, z ′

= a

z − εη

a + εη


,

which are known as σ -coordinates [29] in atmospheric science
and the C-method [30] in the electromagnetic theory of gratings.
Defining the transformed potential

u(x′, z ′) := φ


x′,
(a + εη)z ′

a
+ εη


,

system (2) becomes, upon dropping primes,
uxx + uzz = F(x, z; u, εη), −a < z < 0, (3a)

uz − T [u] = J(x; u, εη), z = −a, (3b)

ηt − uz = Q (x; u, εη), z = 0, (3c)

ut + η = R(x; u, εη), z = 0, (3d)
where the precise forms for F , J , Q , and R are reported in [27]. The
important feature of these inhomogeneities is that if u = O(ε)
(noting that we already have εη = O(ε)) then they are O(ε2).

To study the spectral stability problem associated with solu-
tions (ū, η̄) traveling at speed c , we use the standard ansatz
u(x, z, t) = ū(x + ct, z)+ v(x + ct, z)eλt

η(x, t) = η̄(x + ct, z)+ ζ (x + ct)eλt

and, upon insertion into (3), quadratic products of the perturba-
tions v and ζ are neglected. Next, the eigenvalues λ and the eigen-
functions ζ and v are also expanded as a power series in ε. Such a
procedure in the Transformed Field Expansions formulation of the
water wave problem yields

vn,xx + vn,zz = F̃n(x, z), −a < z < 0, (4a)

vn,z − Tvn = J̃n(x), z = −a, (4b)

λ0ζn + c0ζn,x − vn,z = Q̃n(x)− cn−1ζ1,x − λn−1ζ1, z = 0, (4c)

λ0vn + c0vn,x + ηn = R̃n(x)− cn−1v1,x − λn−1v1, z = 0. (4d)

The exact formula for the F̃n, J̃n, Q̃n and F̃n appears in [22,19,23,24],
and we direct the motivated reader to the (tedious) details pro-
vided therein.

2.2. Bloch periodicity

Now, a question of fundamental importance arises: Which
boundary conditions should (v, ζ ) satisfy? If, as we assume here,
the traveling wave is periodic then it is natural to assume that
(v, ζ ) is as well. However, this restrictive (superharmonic) condi-
tion will only tell us the part of the story [14] and we need a more
general class to recover instabilities (e.g., the Benjamin–Feir insta-
bility [6]) towaves of longer periods [15]. It is standard in these sta-
bility studies to consider Bloch (quasi) periodicity [31,32]: if (ū, η̄)
are periodic with respect to the lattice Γ ⊂ Rd,

ū(x + γ , z) = ū(x, z), η̄(x + γ ) = η̄(x), ∀γ ∈ Γ ,

then we impose the condition

v(x + γ , z) = eip·γ v(x, z), ζ (x + γ ) = eip·γ ζ (x),
p ∈ Rd, ∀γ ∈ Γ .

We note that this permits perturbations of quite general period-
icities (e.g., if d = 1 and waves are 2π-periodic, then p = 1/2
permits (v, ζ )which are 4π-periodic) and even those that are not
periodic. Fortunately, it is well-known [31] that, due to period-
icity of the spectrum, it suffices to consider a bounded subset of
the Bloch (quasi) periods p. For instance, for 2π-periodic functions
(d = 1) one only need consider the set {0 ≤ p < 1} of Bloch (quasi)
periods.

2.3. The leading order spectrum

To further investigate the capabilities of the TFE formulation for
simulating the spectrum of the linearizedwater wave operator, we
compute exactly the first nonzero correction to the flat state spec-
trum. A cubic truncation of the potential flow equations was used
as a vehicle for this derivation, into which a third-order Stokes ex-
pansion was derived as in [24], yielding the traveling Stokes wave

η̄ = εeix + ε2

E2e2ix + E0


+ · · · + ∗, (5a)

ū = ε
i
c0

eix + ε2

F2e2ix + F0


+ · · · + ∗, (5b)

c = c0 + εc1 + ε2c2 + · · · , (5c)

where ∗ refers to the complex conjugate of the preceding terms.
The coefficients in (5) are known, see [33,34], and have been con-
firmed via rederivation to be

c0 =


tanh(H),

c1 = 0,

c2 = −
c0

2L̂(1)2


(1 − c20L̂(1))


4L̂(1)− L̂(2)( 32 L̂(1)2 −

1
2 )

L̂(2)− 4c20

− (L̂(1)2 − 1)


+ (4 − L̂(2)L̂(1))

×
2L̂(1)− c20 (3L̂(1)2 − 1)

L̂(2)− 4c20
− 4L̂(1)2


,

E2 =
1

L̂(1)(4c20 − L̂(2))


4L̂(1)− L̂(2)


3
2

L̂(1)2 −
1
2


,

F2 =
1

L̂(1)(4c20 − L̂(2))


2iL̂(1)

c0
− ic0


3L̂(1)2 − 1


,

E0 =
c20
2


1 −

1

L̂(1)2


F0 = 0,

where L is the operator induced by z-derivatives on the free sur-
face, with Fourier symbol L̂(k) = |k| tanh(|k|H). Notice that the
traveling solution in finite depth (H < ∞) has nonzero mean
E0 ≠ 0. One could alternatively choose the potential to include a
term proportional to x or t and force the mean to be zero; see [35].



184 B. Akers, D.P. Nicholls / European Journal of Mechanics B/Fluids 46 (2014) 181–189
The spectrum is then determined by substitution of the Stokes
wave (5) and

ζ = ζ0 + εζ1 + ε2ζ2 + · · · , (6a)

v = v0 + εv1 + ε2v2 + · · · , (6b)

λ = λ0 + ελ1 + ε2λ2 + · · · , (6c)

into the spectral stability problem, either (4) or an equivalent cu-
bic truncation [28,24]. It is a classical calculation to show that
λ0(k) = iω[k] − ic0k, where ω[kj]2 = |kj| tanh(H|kj|). Notice that
there are two choices of sign for ω[k]; it need not be positive. The
corrections λ1 and λ2 have been computed when λ0 has multiplic-
ity one (where ζ0 is supported at wavenumber k1) and when λ0
has multiplicity two (where ζ0 is supported at wavenumbers k1
and k2). When the kernel of the linear operator has dimension two,
there are three cases, whichwe categorize by the type of resonance
(using the naming convention of RIT) that occurs between the fre-
quency of the Stokes wave k0 = 1 and the frequencies of the per-
turbation k1 and k2. These cases are triads, |k1 − k2| = 1, quartets,
|k1 − k2| = 2, and higher order resonances, |k1 − k2| > 2.

A quick calculation reveals that if λ0(k1) = λ0(k2), then

ω[k1] − ω[k2] = c0(k1 − k2).

As we consider the change in the spectrum for fixed Bloch param-
eter as (ū, η̄) are varied, the wavenumbers of the flat state eigen-
functions are of the form kj = nj + p, with nj ∈ Z and p ∈ R. Thus
the difference k1 − k2 ∈ Z, and since k0 = 1 and ω[k0] = c0, this
condition can be written as

k1 − k2 − mk0 = 0 and ω[k1] − ω[k2] − mω[k0] = 0. (7)

Thus the existence of a flat state eigenvalue collision (i.e., repeated
eigenvalues) implies the existence of a pair of frequencies which
are resonant withm instances of the Stokes wave frequency k0. Be-
cause the sign onω is arbitrary, andω depends only on themodulus
of k, it is common to see the equations in (7) with many choices of
signs, at the cost of possible redefinitions of the signs of the kj and
ω[kj]; see for example [36]. The equations in (7) describe a reso-
nance between the Stokes wave and the perturbations, motivat-
ing our description of the spectrum based on RIT. In the following
sections we observe that the finite amplitude behavior of these
collisions depends critically on the value of m. For water waves
without surface tension there are no triad resonances; see [25] for
a discussion of triad instabilities of deep-water gravity–capillary
waves. We begin the discussion of resonant instabilities with the
case where the wavenumbers of the perturbations differ by two,
i.e., quartets.

2.4. Degenerate quartets

When the perturbations wavenumbers do not participate in a
triad interaction then λ1 = 0 [25]. In this case, the wavenumbers
are part of a quartet and the leading correction to the flat state
spectrum is O(ε2). Generally, finding solutions to Eq. (7) with the
same Bloch parameter is non-trivial; however one can always find
a quartet by settingm = 0,

k0 − k0 + k1 − k1 = 0 with
ω[k0] − ω[k0] + ω[k1] − ω[k1] = 0. (8)

We refer to this solution as a degenerate quartet, where the
wavenumber at k1 interacts with k0 and itself. This interaction is
degenerate in two senses, first it is a quartet with only two dis-
tinct wavenumbers. Second, Eq. (8) is satisfied trivially at every
value of k1. It is this interaction that determines the leading order
correction to λ0 at every simple eigenvalue, as well as at repeated
eigenvalues inwhich thewavenumbers have difference larger than
twice the Stokeswave frequency. Since the Stokeswavehas k0 = 1,
the latter case refers to waves with |k2 − k1| > 2. These two cases
have the same asymptotics because when perturbation frequen-
cies differ by more than twice the Stokes wave frequency, they do
not interact with each other to O(ε2). In carrying out the asymp-
totics, the leading order eigenfunction, at O(1), is supported at k1
and k2. The next corrections to the eigenfunctions have predictably
broader support, at O(ε) the wavenumbers in the correction are
within ±k0 of the kj, at O(ε2) the eigenfunction has wavenumbers
within±2k0 of the kj, etc. AtO(εn), thewavenumbers interact only
if their frequency difference is less than nk0. As a result, to O(ε2),
eigenvalues of multiplicity two whose frequencies differ by more
than two behave as two decoupled simple eigenvalues.

For these degenerate quartets, aswell as for simple eigenvalues,
the leading order correction to the flat state spectrum is

λ2 =
iω[k1]

2
T1 −

1
2
t1, (9)

where t1 is the coefficient of the harmonic eik1x in the equation for
ζ2, at O(ε2), and T1 is the coefficient of eik1x in the equation for v2,
whose formulas are

t1 = ik1


c2 + i(k1 + 1)Γ +

1 −
γ+

1

c0
−
γ−

1

c0

+ E0ik1
λ0 + ic0k1

L̂(k1)
− 2

L̂(1)
c0

+ ik1(λ0 + ic0k1)



T1 =


ic2k1(λ0 + ic0k1)

L̂(k1)
−

i(k1 + 1)
c0

Γ +

1

−
iL̂(k1 + 1)L̂(1)

c0
Γ +

1 +
4L̂(1)
c20

− 2

+ L̂(k1 + 1)(λ0 + ic0(k1 + 1))Γ +

1 − γ+

1 L̂(1)

− γ−

1 L̂(1)+ E0(λ0 + ic0k1)2 − 2
ik1(λ0 + ic0k1)

c0

− 2
ik1L̂(1)(λ0 + ic0k1)

c0L̂(k1)
+

k21(λ0 + ic0k1)2

L̂(k1)


.

The coefficients γj and Γj are the coefficients of ei(k1±1)x in the so-
lutions ζ2 and v2 respectively, with formulas
γ±

j
Γ ±

j


=

1
(ω[kj] ± ω[k0])2 − (ω2[kj ± k0])

×


i(ω[kj] ± ω[k0])A±

j + L̂(kj ± k0)B±

j
i(ω[k1] ± ω[k0])B±

j − A±

j


,

where the A±

j and B±

j are the projections of the forcing terms in the
equations for ζ2 and v2 on the modes ei(kj±1)x:

A+

j = i(kj + 1)


ikj(λ0 + ic0kj)

L̂(kj)
−

1
c0


,

A−

j = i(kj − 1)


ikj(λ0 + ic0kj)

L̂(kj)
−

1
c0


,

B+

j =


i(L̂(kj)L̂(1)− kj)

λ0 + ic0kj
c0L̂(kj)

+ (λ0 + ic0kj)2 − L̂(1)


,

B−

j =


i(−L̂(kj)L̂(1)− kj)

λ0 + ic0kj
c0L̂(kj)

+ (λ0 + ic0kj)2 − L̂(1)


.

Inspection of the formulae for t1 and T1 reveals that λ2 in Eq. (9)
is pure imaginary. Simple eigenvalues, and repeated eigenvalues
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whose eigenfunction’s wavenumbers differ by more than two, do
not lead to instability at this order of approximation in amplitude.
Quintet resonances, often labeled as being between frequencies
k = p + M and k = p − M − 1 with M = 1, fall into this cate-
gory [10,12].With this labeling, quintets have frequency difference
2M + 1 = 5; thus to O(ε2) they do not lead to instability. Our nu-
merical results suggest that quintet resonances have a pure imag-
inary spectrum throughout the disc of analyticity of the spectrum.

In previous studies, quintet instabilities have been computed,
which grow in amplitude with a scaling O(ε3) [12,13]. We find
that quintet resonances, and those of higher order, do not gener-
ate instabilities which are analytic in amplitude for the fixed Bloch
parameter. Instead, quintet instabilities have Bloch parameters p
which vary with amplitude, ε. This phenomenon is typically re-
ported as a movement of the bands of instability in Bloch parame-
ter space, for example in Fig. 5 of MacKay & Saffman [10], in which
we can observe that the bands of instability, at finite amplitude,
do not include the resonant Bloch parameters, at zero amplitude.
The need to adaptively choose the Bloch parameter as amplitude
varieswasmore recently pointed out in [13]. Trichtchenko and De-
coninck are currently pursuing a direct numerical study for water
waves with surface tension which computes the location of insta-
bilities as functions of both p and ε [37].

2.5. Quartet resonances

Quartets which may lead to instability, to O(ε2), occur at re-
peated eigenvalues where the frequencies differ by exactly twice
the Stokes wave frequency, 2k0,

k1 − k2 = 2k0 with ω[k1] + ω[k2] = 2ω[k0].

For these quartets, the correction to the flat state eigenvalue is de-
termined from the root of a quadratic,

λ2 =
1
2
(P2,2 + P1,1)±

1
2


(P2,2 − P1,1)2 + 4P1,2P2,1, (10)

where the Pi,j are defined as

P1,1 =
iω[k1]

2
T1 −

1
2
t1, P1,2 =

iω[k1]
2

T4 −
1
2
t4,

P2,1 =
iω[k2]

2
T5 −

1
2
t5, P2,2 =

iω[k2]
2

T2 −
1
2
t2.

The Pi,j are computed by enforcing solvability of the equations for
ζ3 and v3, i.e., the forcing terms in the equations for v3 and ζ3 are
orthogonal to the null space of the linear operator. The t4, t5 are the
coefficients of the harmonics ei(k2+2)x and ei(k1−2)x in the equation
for ζ3, while T4 and T5 are the corresponding coefficients of these
same harmonics in the equation for v3. These coefficients are

t4 = i(k2 + 2)


−
γ+

2

c0
+ 2iF2 + E2

λ0 + ic0k2
L̂(k2)

ik2

−
L̂(1)
c0

+
1
2
(λ0 + ic0k2)ik2


,

t5 = i(k1 − 2)


−
γ−

1

c0
− 2iF̄2 + Ē2

λ0 + ic0k1
L̂(k1)

ik1

−
L̂(1)
c0

+
1
2
(λ0 + ic0k1)ik1


,

and

T4 =


−L̂(1)γ−

2 −
2k2F2(λ0 + ic0k2)

L̂(k2)

+ L̂(2)F2(λ0 + ic0k2)+ E2(λ0 + ic0k2)2 + 2ic0L̂(2)F2 − 1
Fig. 1. The radius of the disc of analyticity (maximum allowable ε) of the spectrum
is numerically estimated as a function of depth H and Bloch parameter p. The first
non-canceled pole of the Padé expansion is used as an estimate of the radius, as
in [24]. A quartet resonance is marked with plus signs; a quintet resonance is
markedwith circles. As a result of the discretization (in depth and Bloch parameter),
all flat state eigenvalues are simple. The Benjamin–Feir instability causes
modulational instability, and small disc of analyticity, near p = 0 aboveH = 1.363.
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+
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−
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.

Excepting that here the formulas are more complicated, these cor-
rections are determined by the same procedure as that in [24,25],
in which the calculations of λ2 in infinite depth appear.

Examining the coefficients in (10) reveals that the Pi,j are pure
imaginary, and thus stability is determined, to O(ε2), by the dis-
criminant in Eq. (10). We have calculated the correction λ2 at a
family of quartet resonant eigenvalues, marked by plus signs in
Fig. 1, and observe instability at O(ε2) only for H ∈ (0.855, 1).
The real and imaginary parts of this correction are reported in the
left panel of Fig. 3.

The TFE method, employed to find the general order correction
to the flat state spectrum, begins by calculating the leading or-
der corrections based on the same solvability conditions as in the
above exact calculation. At later orders, the values of λn are deter-
mined by linear equations, which are solvable for general n; thus,
formally, a solution exists. In the next section we present the nu-
merical results of thismethod, including the radius of convergence,
in amplitude, of the series expansion of the eigenvalues.

3. Numerical results

In this section we summarize the results of our numerical sim-
ulations of the spectrum of finite depth gravity waves. These sim-
ulations are based on the finite depth extension of the numerical
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Fig. 2. The spectrum computed with the TFE method (solid curves are a Padé summation and dotted lines are the Taylor summation) at H = 0.5 and p ≈ 0.1065 is
compared to direct numerical simulation (DNS), marked by circles. This spectrum is pure imaginary in the neighborhood of ε = 0, no instability is computed within the
disc of analyticity of the TFE method. At this Bloch parameter there is a finite amplitude instability near ε = 0.05; near this value the DNS and TFE results begin to disagree.
Left: two simple eigenvalues of opposite Krein signature collide at finite amplitude. The TFE solution converges to the DNS through the first collision of these eigenvalues, a
collision which leads to neither instability nor loss of analyticity. Right: a multiplicity two eigenvalue, where two opposite Krein signature eigenvalues collide at ε = 0, is
evolved in amplitude and compared to the corresponding DNS.
method developed in [5,24,27,25]. The spectrum is computed as an
analytic function of amplitude for the fixed Bloch parameter and
depth. The domain of applicability of the method is examined by
approximating the radius of the disc of analyticity of the spectrum.
The spectrum itself is examined,with particular focus on the role of
resonances in determining spectral stability. We observe that the
spectrum is predominately pure imaginary; we observe a quartet-
based instability only forH ∈ (0.855, 1). This is in stark contrast to
the gravity–capillary case, where analytic instabilities are common
due to the existence of resonant triads [25].

Our current results suggest that there are small amplitude in-
stabilities, for example those of [13], which our method cannot
compute. These instabilities have Bloch parameters which vary
with amplitude and are not analytic in amplitude for fixed Bloch
parameter. In the context of the TFE method, such instabilities
manifest as a radius of convergence which vanishes as it ap-
proaches a resonant Bloch parameter. Numerically computed radii
with this property are depicted in Fig. 4. Thus although the TFE
method cannot compute such instabilities, it can detect them in
the form of a vanishing radius of convergence. When the compu-
tation of finite amplitude instabilities such as these is desired, we
would advocate combining the location information from the ra-
dius of convergence of the TFE method with direct numerical sim-
ulation of the spectrum, choosing Bloch parameters only in regions
where TFE did not converge. As noted in [13], the locations of in-
stabilities in Bloch parameter space may occur at small bands of
Bloch parameters,∆p ≈ 10−5. The radius of convergence from the
TFE method can be used to design adaptive discretizations of the
Bloch parameter for use in DNS simulations.

3.1. Numerical procedure

The numerical results presented here are based on a Fourier col-
location in the horizontal coordinate and a Chebyshev–Taumethod
in the vertical. The horizontal coordinate was discretized using
Nx = 128 points, the vertical with Ny = 32. The nature of both the
traveling wave and the spectral data is that the nth correction to
the flat state has support at wavenumbers of width 2n. To prevent
aliasing and truncation errors, when Nstab corrections are used, we
must restrict the spectral data to those eigenpairs whose flat state
eigenfunctions are supported at wavenumber |k| < 1

2Nx − Nstab.
Typical computations here useNstab = 26, in which case the eigen-
pairs have flat state eigenfunctions supported at wavenumber
|k| < 51. In Fig. 2, the results of the TFE method (lines) are com-
pared to a traditional Direct Numerical Simulation (circles). The
domain of applicability is limited by finite amplitude instabilities
but not by opposite Krein signature collisions (at either finite or
zero amplitude) in the left and right panels of Fig. 2 respectively.

3.2. Disc of analyticity

A novel feature of the TFE method, relative to traditional com-
putations of the spectrum, is the ability to study the disc of ana-
lyticity of the spectrum (see Fig. 1). To generate Fig. 1, the Bloch
parameter and depth were discretized. A uniform spacing in the
Bloch parameter was used (∆p = 0.01) for p ∈ (0, 0.5). For the
depth, a spacing of∆H = 0.1 was used for H ∈ [0.5, 2] and (with
a larger spacing ∆H = 0.2125) for H ∈ (2, 5]. For every value of
p and H sampled in the plot, all of the eigenvalues in the flat state
spectrum are simple. In fact, repeated eigenvalues happen on a set
of measure zero: on the curves where the resonances of RIT occur.
With this knowledge in mind, we have also computed the radius
of the disc of analyticity in the neighborhood of these resonances
withmuch finer samplings of the Bloch parameter (see Fig. 4). This
radius was estimated using the first non-canceled pole of a Padé
approximant (Nstab = 26).

The estimates of the radii reported here are in a sense overly
conservative.We report the smallest εwhere any eigenvalue stops
being analytic. We observe that the majority of the spectrum is
analytic far beyond this estimate, but report the smallest value of ε
as it is the first amplitudewhere theremay be a change in stability,
as discussed in [22].

3.3. Eigenvalue collision

It is well-known that small ε instabilities occur near resonant
configurations (see [1]).Moreover, instabilities arise from resonant
configurations only with opposite Krein signature [10]. This nec-
essary condition is known to be insufficient for general collisions
[24,22], but is both necessary and sufficient for triads [38]. In this
work we use the TFE method to analytically expand the spectrum
about the flat state, including these resonant configurations. We
observe that generally the spectrum is pure imaginary for the fixed
Bloch parameter. Only for H ∈ (0.855, 1) do we find an instability
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Fig. 3. Left: the first nonzero correction to the flat state spectrum, λ2 , is reported as a function of depth along a branch of quartet resonant Bloch parameters p. The real
part is marked with stars, and the imaginary part with solid lines. Non-zero real parts occur for H ∈ (0.855, 1), where a finite amplitude instability is analytically connected
to the flat state. Right: the correction λ2 is reported as a function of H along a branch of quintet resonant Bloch parameters. Bloch parameters p of the quartet and quintet
resonances presented in this figure are marked, respectively, by circles and stars in Fig. 1.
Fig. 4. The radius of the disc of analyticity of the spectrum is numerically estimated as a function of the Bloch parameter, p, near two quartet resonances. On the left, the
radius of the disc of analyticity is reported at H = 0.9, near the quartet resonance at ε = 0, λ0 ≈ −0.424i, p ≈ 0.237. At the resonant Bloch parameter, there is a real
eigenvalue which is analytic in ε. We observe that the radius of the disc vanishes like the square root of the distance from the resonant Bloch parameter. The solid line marks
the amplitude at which the collision occurs based on the second order asymptotics of Section 2.5. On the right, the radius is presented at H = 0.5 near p ≈ 0.107. At the
resonant Bloch parameter on the right panel the spectrum is pure imaginary.
which both occurs at the fixed Bloch parameter and is analytic in
amplitude. On the other hand, we do observe numerical evidence
of modulated instabilities, where the frequency depends on am-
plitude, in the neighborhood of these resonant parameters. In the
context of the TFE method, these instabilities are manifested as a
vanishing disc of analyticity near the resonant Bloch parameter.

In Fig. 1 two resonant curves are marked; a quartet resonance
is marked with plus signs and a quintet is marked with circles. The
quartet curve includes Class I instability [10] for H ∈ (0.855, 1).
The leading order growth rate of this instability, λ2, is plotted in
Fig. 3. The quintet resonance, marked with circles in Fig. 1, is a
collision of eigenvalues with opposite Krein signature but does
not lead to instability. Note that this statement on stability is in
the context of the TFE method, where the spectrum is computed
with the fixed Bloch parameter. Based on our investigations of the
radius of convergence near these Bloch parameters, we believe
that the quintet configurations do lead to instability, but that the
Bloch parameters where these instabilities occur do not include
the resonant Bloch parameters, at which there was an eigenvalue
collision at zero amplitude.
Close-ups of the radius of the disc of analyticity near two res-
onant Bloch parameters are given in Fig. 4. The Bloch parameters
are chosen to reflect the typical observed behavior when the reso-
nant Bloch parameter includes an analytic instability, as on the left,
andwhere the resonant Bloch parameter has pure imaginary spec-
trumwithin its disc of analyticity, as on the right. In both cases our
asymptotic approximation predicts a collision of opposite Krein
signature eigenvalues which vanishes like the square root of p for
p > pcrit . Numerical estimates of the radius of the disc of analytic-
ity imply that in the unstable case, the left panel of Fig. 4, the spec-
trum loses analyticity in both the left- and right-hand limits of the
resonant Bloch parameter. In the right panel, where the resonant
configuration had a pure imaginary spectrum, the disc of analytic-
ity did not vanish as the resonant Bloch parameter is approached
from the left. Thus we expect finite amplitude instabilities to exist
in bands of Bloch parameterswhich include the resonant case, as in
the left panel, or do not, as in the right panel. In other words, as the
amplitude increases the bands of unstable Bloch parameters both
grow in width and move in location. The support of these bands
may or may not include the resonant Bloch parameters from the
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zero amplitude case. The TFE method only computes the spectrum
with fixed Bloch parameter, and thus cannot compute the spec-
trumwithin these bands, except at the resonant Bloch parameters.

Based on our results we believe that there are many finite am-
plitude instabilities which cannot be computed by the TFEmethod.
These instabilities exist in bands of Bloch parameters which move
as the wave amplitude increases. If the band includes the resonant
Bloch parameter at finite amplitude, then the TFE method com-
putes the unstable spectrum at this Bloch parameter, as in the left
panel of Fig. 4, and provides a predicted location of the band. If the
band does not include the resonant Bloch parameter at finite am-
plitude, then the TFE method does not compute any instability. In-
stead it provides a predicted location of the band of unstable Bloch
parameters, as in the right of Fig. 4. An instability has recently been
computed by Deconinck and Trichtchenko whose location agrees
with this interpretation [37].

3.4. Comparison with other results

Such an expansion (essentially expanding p as a function of ε)
has been successfully applied to compute near-resonant traveling
waves to the KdV equation [39]; the leading order asymptotics of
the spectrum are derived with a multi-scale expansion for deep-
water gravity–capillary waves in [26]. A multi-scale extension of
the TFE method presented here should be able to compute the fi-
nite amplitude instabilities in the neighborhood of the configura-
tions in Fig. 4.

Apart from themarked resonance curves in Fig. 1, the spectrum
also loses analyticity near p = 0, for H > 1.363. This is due to
the Benjamin–Feir instability, a collision of flat state eigenvalues
of algebraic multiplicity four, which is not currently supported by
the algorithm [27]. Extending the algorithm to higher dimensional
null spaces is not sufficient to compute this instability; however,
as for fixed p the instability is either not present (p = 0) or not
analytic in ε (for p small). In order to compute these bands of
instability via boundary perturbation, the method must allow the
Bloch parameter to depend on amplitude, as is not done here. The
analyticity of the spectrum for Bloch parameters which depend on
amplitude is an open question.

In the recent work of Oliveras & Deconinck [13], unstable
sections of the spectrum were reported at H = 0.5 with ε = 0.01,
see their Figure 9(b), near λ ≈ 0.1489i and λ ≈ 0.5212i. The
two eigenvalues are in the neighborhood of the aforementioned
quartet and quintet configurations respectively. In both cases, our
computations indicate that the spectrum is pure imaginary. Thus
the instability of Oliveras & Deconinck is not analytic in amplitude
for fixed p. Instead, these instabilities occur in bands of Bloch
parameters which both move as a function of amplitude and do
not include the resonant Bloch parameter at finite amplitude.

The structure of the set of resonances of the spectrum of travel-
ing waves in the potential flow equations (1) is quite rich. In ad-
dition to the resonances mentioned in the previous paragraphs,
the equation supports non-isolated resonances, at which λ0 has
kernel of dimension higher than two. Non-isolated resonances
(e.g.,where awavenumber is part of both a triad and a quartet), cre-
ate the ‘‘rough’’ regions in Fig. 1. We note that these non-isolated
resonances accumulate in the region H ≤ 0.5. It is not clear that
an amplitude expansion is the right approach to compute the spec-
trum in a region where the resonant sets are intertwined in such a
complicated manner.

4. Conclusion

A perturbative numerical method was presented for comput-
ing simple and resonant spectra for finite depth gravity waves,
extending the previous work from infinite depth. This method
computes the analytic spectrum for fixed Bloch parameter p and
can be used to numerically approximate the radius of the disc of
analyticity of the spectrum. The leading order asymptotics of the
spectrum are also directly calculated and comparedwith these nu-
merical results. An instability is observed to be analytic in ampli-
tude, with fixed Bloch parameter, for kh ∈ (0.855, 1). Elsewhere
the spectrum is either pure imaginary or not analytically connected
to the flat state. A modulational extension of this method, which
expands the Bloch parameter in ε, will allow for the computation
of instabilities which depend nontrivially on the Bloch parameter,
and is currently being pursued, based on recentmulti-scale asymp-
totics of the spectrum of deep-water gravity–capillary waves [26].
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