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Abstract

The Euler equations of free-surface ocean dynamics constitute a model of central importance in fluid mechanics due to the wide
range of physical phenomena they are intended to represent, from shoaling and breaking of waves in nearshore regions to energy
and momentum transport in the open ocean. From a mathematical perspective, these equations present rather unique challenges
for analysis and simulation as they couple the subtleties of nonlinear wave equations (balancing nonlinearity with dispersion in the
absence of dissipation) to the difficulties of free-boundary problems. In this paper a new, stable high-order boundary perturbation
algorithm for the numerical simulation of traveling water waves is described. Its performance is compared to that of classical surface
deformation algorithms and it is shown that the new scheme displays significantly enhanced conditioning properties and a lower
computational cost, which enable very accurate predictions of physical observables such as velocity, energy, height/steepness, and
shape.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The Euler equations of free-surface ocean dynamics constitute a model of central importance in fluid mechanics
due to the wide range of physical phenomena they are intended to represent, from shoaling and breaking of waves
in nearshore regions to energy and momentum transport in the open ocean. From a mathematical perspective, these
equations present rather unique challenges for analysis and simulation as they couple the subtleties of nonlinear wave
equations (balancing nonlinearity with dispersion in the absence of dissipation) to the difficulties of free-boundary
problems. In this paper, we describe a new, stable high-order boundary perturbation algorithm for the numerical
simulation of traveling water waves that is based upon our recent theoretical study [1] of analyticity properties of
solutions of the Euler equations. We compare its performance to classical surface deformation algorithms (which can
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be traced to Stokes [2]) and we show that the enhanced speed, stability, and conditioning of our new schemes lead to
very accurate predictions of physical observables such as velocity, energy, height/steepness, and shape.

There is a large literature concerning the numerical simulation of free-surface fluid flows. In the case of a
d-dimensional (d = 2,3) ideal fluid (with (d − 1)-dimensional surface), attention has centered on boundary inte-
gral/element methods (BIM/BEM) and “high-order spectral” (HOS) methods. Both approaches posit unknown surface
quantities and, due to this reduction in dimension, they are generally preferred to volumetric methods. Tsai and Yue
[3] provide an excellent and comprehensive overview of the state-of-the-art in this field up to the mid-1990’s, primar-
ily focused on the initial value problem. Since the appearance of this article, subsequent work has largely focused on
simulations of three-dimensional flows. Notable among these are the BIM/BEM of Beale [4]; Grilli, Guyenne, and
Dias [5]; Xue, Xu, Liu, and Yue [6]; and Liu, Xue, and Yue [7].

Regarding traveling free-surface ideal fluid flows, Dias and Kharif [8] provide a thorough overview of much of
the current theory and computational approaches. Notable among the papers on numerical simulation of the full Euler
equations are: Schwartz [9] who studied two-dimensional traveling patterns via complex variable theory, the boundary
integral method of Schwartz and Vanden-Broeck [10], and the HOS three-dimensional simulations of Rienecker and
Fenton [11]; Meiron, Saffman, and Yuen [12]; Roberts and Schwartz [13]; Saffman and Yuen [14]; and Bryant [15].
These latter authors all derive a nonlinear system of equations from the ideal fluid equations for unknown Fourier
coefficients, and then find solutions by Newton iteration and/or numerical continuation. More recent calculations
of Nicholls [16,17], and Craig and Nicholls [18] were achieved with a numerical continuation method applied to a
Fourier spectral discretization of the Hamiltonian formulation of the water wave equations as posed by Zakharov [19].

The work that is most closely related to the method we advocate here is that of Roberts [20]; Roberts and Pere-
grine [21]; and Marchant and Roberts [22]. These are also HOS methods, but rather than solving a single set of
nonlinear equations, they are based on the assumption that the velocity of the traveling wave, the wave shape, and the
velocity potential all depend analytically upon a small parameter, say ε, and on the derivation of linear (inhomoge-
neous) equations for these quantities at every perturbation order. Once obtained, these quantities are summed at the
desired value of ε. These methods can be viewed as iterative implementations of the HOS methods of [11–15] pre-
conditioned by the linear traveling water waves problem; see Nicholls and Reitich [23]. While these methods can be
quite useful within their domain of applicability, they suffer from several severe limitations. First, their computational
complexity (execution time) scales poorly with discretization parameters. For truly two-dimensional surfaces [1], if N

orders are approximated with N1 × N2 spatial discretization points, the execution time is O(N3N2
1 N2

2 ). Additionally,
as with other classical boundary perturbation methods (see Nicholls and Reitich [23–27]), these algorithms suffer
from numerical instability at high order due to subtle but significant cancellations (see Section 3.1).

To improve upon these classical perturbative HOS we present here a new, high-order spectral algorithm for the
stable and accurate approximation of traveling water waves. Our new scheme is also perturbative in nature. In contrast
with the classical methodologies, however, our new procedures effect the perturbation expansions in appropriately
transformed spatial coordinates. The choice of transformation (which effectively “flattens” the free boundary) is based
upon our earlier theoretical work that demonstrated its beneficial effects within boundary perturbation algorithms.
Indeed, as the results in [1] show, a suitable change of independent variables can have a rather dramatic effect on
the conditioning of these methods. With regards to computational cost, and while the change of variables introduces
source terms into the Euler equations demanding a volumetric discretization, a transparent boundary condition can
be implemented which, as we shall show, permits the discretization in the vertical dimension to occur in a very
small neighborhood of the free surface, so that it is effectively a surface discretization. Indeed, as we shall show, the
resulting schemes display significant improvements in overall computational cost over classical perturbative HOS.
More precisely, the computational cost is merely

O
(
NN1N2 log(Ny)Ny + N2N1N2Ny

)
in execution time.

The structure of the paper is as follows: In Section 2 we set up our notation as we review the basic Euler model.
In Section 3.1 we recall the method of Roberts et al. [20–22] which we shall refer to as “Field Expansions” (FE), and
discuss its limited stability properties. Section 3.2 is devoted to the introduction of our new approach, the method
of “Transformed Field Expansions”. Three-dimensional numerical results are then presented in Section 4 which
demonstrate the accuracy of the scheme in the computation of one-dimensional bifurcation branches of traveling-
wave solutions. In Section 5 we present results based on the extension of these algorithms to allow for the direct
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recovery of full two-dimensional bifurcation surfaces, whose existence was demonstrated in [1]. Finally, in Section 6
we present our conclusions.

2. Governing equations

The classical model for the free-surface evolution of an ideal (irrotational, inviscid, incompressible) fluid under the
influence of gravity and capillarity is the Euler equations (see Lamb [28]). If the fluid occupies the domain

Sh,η = {
(x, y) ∈ R

d−1 × R | −h < y < η(x, t)
}
, (1)

where 0 < h � ∞, then the irrotational nature of the flow implies that the fluid velocity is the gradient of a potential,
v = ∇ϕ, inside Sh,η . At the impermeable bottom the normal velocity is set to zero (in the case h = ∞ the y-component
of velocity tends to zero as y → −∞), while in the horizontal directions we choose, for simplicity, the classical
assumption of periodic boundary conditions with respect to the lattice Γ ∈ R

d−1 and period cell P(Γ ). Finally, these
are supplemented with initial conditions, and kinematic and Bernoulli relations at the free surface,

∂tη + ∇xη · ∇xϕ − ∂yϕ = 0 at y = η,

∂tϕ + 1

2
|∇ϕ|2 + [g − σ�x]η − σH(η) = 0 at y = η,

where

H(η) = divx

[ ∇xη√
1 + |∇xη|2 − ∇xη

]
,

g is the constant of gravity, and σ is the coefficient of surface tension. Traveling waves translating uniformly with
speed c ∈ R

d−1, therefore satisfy

�ϕ = 0, −h < y < η(x), (2a)

∂yϕ(x,−h) = 0, (2b)

[c · ∇x]η + ∇xη · ∇xϕ − ∂yϕ = 0 at y = η, (2c)

[c · ∇x]ϕ + 1

2
|∇ϕ|2 + [g − σ�x]η − σH(η) = 0 at y = η. (2d)

2.1. A transparent boundary condition

An equivalent and numerically advantageous restatement of (2) can be made in terms of a transparent boundary
condition. To derive this condition we note that for |η|L∞ < a < h, (2) can be restated with the aid of an “augmented
velocity potential”, ϕ̃,

�ϕ = 0, −a < y < η(x), (3a)

[c · ∇x]η + ∇xη · ∇xϕ − ∂yϕ = 0 at y = η, (3b)

[c · ∇x]ϕ + 1

2
|∇ϕ|2 + [g − σ�x]η − σH(η) = 0 at y = η, (3c)

�ϕ̃ = 0, −h < y < −a, (3d)

∂yϕ̃(x,−h) = 0, (3e)

ϕ(x,−a) = ϕ̃(x,−a), (3f)

∂yϕ(x,−a) = ∂yϕ̃(x,−a). (3g)

Eqs. (3d) and (3e) have solution

ϕ̃(x, y) =
∑

′
ak cosh

(|k|(y + h)
)

eik·x,

k∈Γ
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where Γ ′ is the conjugate lattice to Γ . With (3f) in mind we note that for a general Dirichlet condition at y = −a, say

ϕ̃(x,−a) = ξ(x) ≡
∑
k∈Γ ′

ξ̂k eik·x, (4)

the solution becomes

ϕ̃(x, y) =
∑
k∈Γ ′

ξ̂k

cosh(|k|(y + h))

cosh(|k|(h − a))
eik·x.

Furthermore, Neumann data, cf. (3g), can be computed as

ν(x) = ∂yϕ̃(x,−a) =
∑
k∈Γ ′

ξ̂k|k| tanh
(|k|(h − a)

)
eik·x. (5)

Letting D = −i∇x , the right-hand side of (5) can be used to define an “order-one pseudodifferential operator”:

T ≡ |D| tanh
(
(h − a)|D|),

whose action on the Fourier series (4) is given by

T ξ =
∑
k∈Γ ′

ξ̂k|k| tanh
(
(h − a)|k|)eik·x.

This definition then allows for an equivalent statement of (3) in the form

�ϕ = 0, −a < y < η(x), (6a)

∂yϕ(x,−a) − T ϕ(x,−a) = 0, (6b)

[c · ∇x]η + ∇xη · ∇xϕ − ∂yϕ = 0 at y = η, (6c)

[c · ∇x]ϕ + 1

2
|∇ϕ|2 + [g − σ�x]η − σH(η) = 0 at y = η. (6d)

This alternative statement not only allows one to focus on a considerably truncated problem domain, but also provides
a uniform statement of the water wave problem for any depth including infinite depth (note that if h = ∞ then
T = |D|).

2.2. Bifurcation theory

We seek non-trivial traveling wave solutions of the Euler equations via bifurcation theory. A trivial branch of
solutions exists at the “quiescent state”, ϕ = η = 0 and any velocity c, and we search for solutions nearby. This theory
requires an analysis of the linearization of (6) about these quiescent solutions:

�ϕ̄ = 0, −a < y < 0, (7a)

∂yϕ̄(x,−a) − T ϕ̄(x,−a) = 0, (7b)

[c̄ · ∇x]η̄ − ∂yϕ̄ = 0 at y = 0, (7c)

[c̄ · ∇x]ϕ̄ + gη̄ − σ�xη̄ = 0 at y = 0. (7d)

In the case of finite depth, (7a), (7b), and the periodic boundary conditions imply that

ϕ̄(x, y) =
∑
k∈Γ ′

ϕ̄k

cosh(|k|(y + h))

cosh(h|k|) eik·x, η̄(x) =
∑
k∈Γ ′

η̄k eik·x.

Eqs. (7c) and (7d) mandate

A(c̄, k)

(
ϕ̄k

η̄k

)
≡

(−|k| tanh(h|k|) ic̄ · k
ic̄ · k g + σ |k|2

)(
ϕ̄k

η̄k

)
=

(
0
0

)
, (8)

for all k ∈ Γ ′, k 	= 0. Clearly, a non-trivial solution exists only if A(c̄, k) is singular, i.e. if the determinant

Λσ (c̄, k) = (c̄ · k)2 − (
g + σ |k|2)|k| tanh

(
h|k|)
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is zero. If a pair (c̄, k̄) satisfies Λσ (c̄, k̄) = 0 then a solution of (7) is

η̄(x) = α(c̄ · k̄) eik̄·x + c.c., (9a)

ϕ̄(x, y) = αi
(
g + σ |k̄|2)cosh(|k̄|(y + h))

cosh(h|k̄|) eik̄·x + c.c., (9b)

where α ∈ C. The character of these linear solutions can be revealed by writing α = (ρ/2) eiθ and simplifying:

η̄(x) = ρ(c̄ · k̄) cos(k̄ · x + θ), (10a)

ϕ̄(x, y) = ρ
(
g + σ |k̄|2)cosh(|k̄|(y + h))

cosh(h|k̄|) sin(k̄ · x + θ). (10b)

These solutions are clearly two-dimensional waveforms in a rotated set of coordinates. To obtain truly d-dimensional
nonlinear waves we begin by selecting (d − 1)-many linearly independent wavenumbers κ1, . . . , κd−1 ∈ Γ ′ and then
solve Λσ (c̄, κj ) = 0 for c̄ ∈ R

d−1, i.e. Kc̄ = R, where K ∈ R
(d−1)×(d−1) has rows κj , and

Rj = ±
√(

g + σ |κj |2
)|κj | tanh

(
h|κj |

);
we can, without loss of generality, choose the signs of the Rj so that c̄j � 0. In this case, the most general linear
solution will be a sum of terms, as in (10), with k̄ = κj :

η̄(x) =
d−1∑
j=1

ρj (c̄ · κj ) cos(κj · x + θj ), (11a)

ϕ̄(x, y) =
d−1∑
j=1

ρj

(
g + σ |κj |2

)cosh(|κj |(y + h))

cosh(h|κj |) sin(κj · x + θj ). (11b)

Note that, without loss of generality, we may choose θj = 0 (by effecting a suitable translation). Moreover, to construct
nonlinear solutions which linearize to (11), it suffices to consider, upon reparameterization, the case ρ1 = 1.

We note here that an important consideration in this analysis is the possibility that there may be other wavenumbers
κd, . . . , κp such that Λσ (c̄, κj ) = 0. In fact if σ = 0 then p can be infinite thereby exhibiting the phenomenon of “small
divisors” (see Craig and Nicholls [29]). This is an instance of resonance in the traveling wave problem and currently
lies outside the scope of our theory (see [1]).

3. Boundary perturbation methods

In this section we review the basic ideas and equations behind the new perturbative approach we introduced in [1]
for the theoretical analysis of bifurcating traveling wave solutions. These theoretical developments suggest that a nu-
merical scheme based on this novel formulation should lead to significantly more stable simulations than those based
on classical perturbative approaches [20–22]. As we show in Section 4, this is indeed the case and, moreover, these
higher quality solutions can be obtained at a comparatively lower computational cost. For the sake of completeness we
begin the discussion here with a brief review of the classical approach in Section 3.1, where we also re-examine the
origins and manifestation of its ill-conditioning; the details of our new, stable formulation then follow in Section 3.2.

3.1. Field expansions and cancellations

A classical approach of Stokes [2] to approximating solutions of (6) consists of the boundary perturbation phi-
losophy we have termed “Field Expansions” – FE – (to distinguish it from the alternative “Operator Expansions”
approach, see e.g. Watson and West [30]; West, Brueckner, Janda, Milder, and Milton [31]; Milder [32]; and Craig
and Sulem [33]) carried out to order one or two. This method was extended to higher orders by subsequent researchers
with the most recent developments by Roberts et al. [20–22]. This method posits that the field ϕ, surface η, and speed
c can be expanded in convergent Taylor series:

ϕ(x, y, ε) =
∞∑

ϕn(x, y)εn, η(x, ε) =
∞∑

ηn(x)εn, c(ε) =
∞∑

cnε
n. (12)
n=1 n=1 n=0
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Then (2) is used to provide differential equations for {ϕn,ηn, cn} at every order on the simple geometry Sh,0. The
interested reader is referred to [1] for a detailed description and explicit formulas.

As we noted in [1], the derivation of the FE recursions is purely formal in nature. Indeed to justify this proce-
dure it must be shown that the expansions (12) converge in some sense. An examination of the explicit recurrences
defining the coefficients in (12) (see [1]), however, reveals that this can only be accomplished by estimating (in an
appropriate function space) the spatial derivatives of the velocity potential, ϕn, at increasingly high orders and ap-
plying the triangle inequality. However, as we have shown in related boundary perturbation approaches (see Nicholls
and Reitich [23–27]), these bounds cannot establish a finite rate of growth in any norm of these solutions since they
destroy substantial cancellations which underly the FE recursions.

Following [1], we substantiate this claim within the present context with a careful two-dimensional numerical ex-
periment. Naturally, the two-dimensional setting is chosen since moderately sized values of N1 are required to display
the cancellations; when Nj is even somewhat large the O(N3N2

1 N2
2 ) cost of the three-dimensional FE algorithm is

prohibitive. If we choose σ = 0, h = ∞, g = 1, 2π -periodicity, and κ1 = 3, then a bifurcating family of traveling
waves emanates from c0 = 1/

√
3. We present results of an FE implementation up to order N = 30 with N1 = 256

so that all convolution products (performed using Fast Fourier acceleration in vectors of length N1, representing
wavenumbers [−N1/2,N1/2 − 1]) are free of aliasing.

Motivated by physical considerations, we compute the L2-norm of the wave form η(x) which measures the poten-
tial energy of the wave, cf. (29). More specifically, if we denote by

η
N1
N (x; ε) =

N∑
n=0

N1/2−1∑
k=−N1/2

η̂n(k) eikxεn, (13)

which represents the FE approximation to η(x), then in Fig. 1 we present the difference, measured in L2, between
a double precision approximation of η256

N (x;0.04), and a highly resolved calculation, η256
30 (x;0.04) in quadruple

precision. We note that at ε = 0.04 the quadruple precision calculation is fully converged at N = 30 indicating that
ε = 0.04 is within the disk of convergence of the Taylor series (12).

We point out that through several orders the double precision calculation agrees with the “exact” solution. However,
a careful investigation of the “raw data” shows that the two calculations begin to diverge at N = 19 (where three digits
are lost from the N = 18 calculation) and, furthermore, the rate of divergence is exponential (as becomes visually
evident in Fig. 1 at N = 22). As a result of this, the double precision approximation is only able to realize a relative
accuracy of about 1% while the quadruple precision results attain a full order of magnitude better accuracy with just
a few more iterations.

Fig. 1. Comparison of double and quadruple precision computations of η256
N

, cf. (13), with a highly resolved solution (quadruple precision cal-

culation with N1 = 256, N = 30). Relative error is measured in the L2 norm (N1 = 256, 0 � N � 29, ε = 0.04, σ = 0, h = ∞, g = 1, κ = 3,
c0 = 1/

√
3 ).
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3.2. Transformed field expansions

The computations of Section 3.1 reveal the subtle cancellations present in the FE recursions for all N and which
increase in severity as N is increased. As we noted in [1], the presence of these cancellations precludes the most
natural and direct approach to estimating the convergence of the series (12), e.g. through bounds of the form

‖ϕn‖X � CBn.

However, as we demonstrated there, a direct estimation of the terms in (12) can be effected if a change of variables
is completed prior to the perturbation expansion. This change of variables succeeds as it implicitly accounts for
all significant cancellations (see [1]); this suggests that a numerical implementation of these new recursions should
display significant gains in stability over the classical FE formulas (see Fig. 2). As we show in the next section, this
conjecture can be translated into a practical and accurate numerical scheme that significantly improves on classical
perturbation methods. For the sake of clarity and completeness in substantiating these claims we shall next review the
details behind this new approach which we shall refer to as the method of “Transformed Field Expansions” (TFE).

To this end we begin by introducing the change of variables

x′ = x, y′ = a

(
y − η

a + η

)
, (14)

which maps the domain Sa,η to the strip Sa,0. (This transform is well-known in many branches of physics, e.g. as
σ -coordinates in oceanography [34].) Defining

u(x′, y′) = ϕ
(
x′, (a + η)y′/a + η

)
(15)

Eqs. (6) become, upon dropping primes,

�u = F(x, y), −a < y < 0, (16a)

∂yu(x,−a) − T u(x,−a) = J (x), (16b)

[c0 · ∇x]η − ∂yu = Q(x) at y = 0, (16c)

[c0 · ∇x]u + [g − σ�x]η = R(x) at y = 0, (16d)

where

F(x, y) = divx

[
F (1)(x, y)

] + ∂yF
(2)(x, y) + F (3)(x, y), (16e)

F (1) = −2

a
η∇xu − 1

a2
η2∇xu + a + y

a
∇xη∂yu + a + y

a2
η∇xη∂yu, (16f)

F (2) = a + y

a
∇xη · ∇xu + a + y

a2
η∇xη · ∇xu − (a + y)2

a2
|∇xη|2∂yu, (16g)

F (3) = 1

a
∇xη · ∇xu + 1

a2
η∇xη · ∇xu − a + y

a2
|∇xη|2∂yu, (16h)

J = 1

a
ηT u, (16i)

Q = −(c − c0) · ∇xη − 1

a
(c − c0) · η∇xη − ∇xη · ∇xu − 1

a
η∇xη · ∇xu + |∇xη|2∂yu, (16j)

R = −(c − c0) · ∇xu − 2

a
c · η∇xu − 1

a2
c · η2∇xu + c · ∇xη∂yu + 1

a
c · η∇xη∂yu − 2

a
gη2 − 1

a
gη3

+ 2

a
ση�xη + 1

a2
ση2�η − 1

2
|∇xu|2 − 1

a
η|∇xu|2 − 1

2a2
η2|∇xu|2 + ∇xη · ∇xu∂yu + 1

a
η∇xη · ∇xu∂yu

− 1

2
|∇xη|2(∂yu)2 − 1

2
(∂yu)2 + σH(η) + 2

a
σηH(η) + 1

a2
ση2H(η). (16k)

To solve (16) we expand:

u(x, y, ε) =
∞∑

un(x, y)εn, η(x, ε) =
∞∑

ηn(x)εn, c(ε) =
∞∑

cnε
n, (17)
n=1 n=1 n=0
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and insert into (16); this results in the following set of problems:

�un = Fn(x, y), −a < y < 0, (18a)

∂yun(x,−a) − T un(x,−a) = Jn(x), (18b)

[c0 · ∇x]ηn − ∂yun = Qn(x) − [cn−1 · ∇x]η1 at y = 0, (18c)

[c0 · ∇x]un + [g − σ�x]ηn = Rn(x) − [cn−1 · ∇x]u1 at y = 0. (18d)

The terms on the right-hand side of (18) are

Fn(x, y) = divx

[
F (1)

n (x, y)
] + ∂yF

(2)
n (x, y) + F (3)

n (x, y), (18e)

F (1)
n = −2

a

n−1∑
l=1

ηl∇xun−l − 1

a2

n−1∑
m=2

m−1∑
l=1

ηlηm−l∇xun−m

+ a + y

a

n−1∑
l=1

∇xηl∂yun−l + a + y

a2

n−1∑
m=2

m−1∑
l=1

ηl∇xηm−l∂yun−m, (18f)

F (2)
n = a + y

a

n−1∑
l=1

∇xηl · ∇xun−l + a + y

a2

n−1∑
m=2

m−1∑
l=1

ηl∇xηm−l · ∇xun−m

− (a + y)2

a2

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l∂yun−m, (18g)

F (3)
n = 1

a

n−1∑
l=1

∇xηl · ∇xun−l + 1

a2

n−1∑
m=2

m−1∑
l=1

ηl∇xηm−l · ∇xun−m

− a + y

a2

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l∂yun−m, (18h)

Jn = 1

a

n−1∑
l=1

ηlT un−l , (18i)

Qn = −
n−2∑
l=1

cl · ∇xηn−l − 1

a

n−1∑
m=1

m−1∑
l=0

cl · ηm−l∇xηn−m −
n−1∑
l=1

∇xηl · ∇xun−l

− 1

a

n−1∑
m=2

m−1∑
l=1

ηl∇xηm−l · ∇xun−m +
n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l∂yun−m, (18j)

Rn = −
n−2∑
l=1

cl · ∇xun−l − 2

a

n−1∑
m=1

m−1∑
l=0

cl · ηm−l∇xun−m − 1

a2

n−1∑
t=2

t−1∑
m=1

m−1∑
l=0

cl · ηm−lηt−m∇xun−t

+
n−1∑
m=1

m−1∑
l=0

cl · ∇xηm−l∂yun−m + 1

a

n−1∑
t=2

t−1∑
m=1

m−1∑
l=0

cl · ηm−l∇xηt−m∂yun−t − 2

a
g

n−1∑
l=1

ηlηn−l

− 1

a
g

n−1∑
m=2

m−1∑
l=1

ηlηm−lηn−m + 2

a
σ

n−1∑
l=1

ηl�xηn−l + 1

a2
σ

n−1∑
m=2

m−1∑
l=1

ηlηm−l�ηn−m − 1

2

n−1∑
l=1

∇xul · ∇xun−l

− 1

a

n−1∑
m=2

m−1∑
l=1

ηl∇xum−l · ∇xun−m − 1

2a2

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

ηlηm−l∇xut−m · ∇xun−t

+
n−1∑ m−1∑

∇xηl · ∇xum−l∂yun−m + 1

a

n−1∑ t−1∑ m−1∑
ηl∇xηm−l · ∇xut−m∂yun−t
m=2 l=1 t=3 m=2 l=1
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− 1

2

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l∂yut−m∂yun−t − 1

2

n−1∑
l=1

∂yul∂yun−l

+ σHn(η) + 2

a
σ

n−1∑
l=2

Hlηn−l + 1

a2
σ

n−1∑
m=3

m−1∑
l=2

Hlηm−lηn−m. (18k)

The TFE procedure involves solving (18) recursively up to order N starting at order one with solutions of the
form (11):

η1(x) =
d−1∑
j=1

ρj (c0 · κj ) cos(κj · x), (19a)

ϕ1(x, y) =
d−1∑
j=1

ρj

(
g + σ |κj |2

)cosh(|κj |(y + h))

cosh(h|κj |) sin(κj · x), (19b)

where we may set ρ1 = 1, cf. (11). For n > 1, periodic lateral boundary conditions imply that solutions can be
expressed as

un(x, y) =
∑
k∈Γ ′

ûn(k, y) eik·x, ηn(x) =
∑
k∈Γ ′

η̂n(k) eik·x,

and (18) transforms to an elliptic two-point boundary value problem at each wavenumber k ∈ Γ ′,[
∂2
y − |k|2]ûn(k, y) = F̂n(k, y), −a < y < 0, (20a)

∂yûn(k,−a) − |k| tanh
(
(h − a)|k|)ûn(k,−a) = Ĵn(k), (20b)

[ic0 · k]η̂n(k) − ∂yûn(k,0) = Q̂n(k) − [icn−1 · k]η̂1(k), (20c)

[ic0 · k]ûn(k,0) + [
g + σ |k|2]η̂n(k) = R̂n(k) − [icn−1 · k]û1(k,0). (20d)

For each k 	= 0, κj this problem is uniquely solvable. The ambiguity at k = 0 stems from the non-uniqueness of the
velocity potential and can therefore be readily resolved, e.g. by requiring that∫

P(Γ )

∂yu(x,−h) = 0.

The singularity in the linear system at wavenumbers k = κj , on the other hand, arises from the choice of c0. The
unspecified velocity cn−1 can be used to determine a solution via a system of equations. To derive these equations
consider the prototype elliptic system, cf. (18),

�u = F(x, y), −a < y < 0, (21a)

∂yu(x,−a) − T u(x,−a) = J (x), (21b)

[c0 · ∇x]η − ∂yu = Q(x) − [μ · ∇x]f at y = 0, (21c)

[c0 · ∇x]u + [g − σ�x]η = R(x) − [μ · ∇x]ξ at y = 0, (21d)

where f , ξ , and μ are intended to represent η1, u1(x,0), and cn−1 respectively. The solution of (21a), (21b), and
periodic boundary conditions is

u(x, y) =
∑
k∈Γ ′

û(k, y) eik·x,

where (for k 	= 0)

û(k, y) = Dk

cosh(|k|(y + h))

cosh(h|k|) + 1

|k| sinh
(|k|(y + h)

)
cosh

(|k|(h − a)
)
Ĵ (k) + 1

|k|Is(y),

and

Is(y) =
y∫

sinh
(|k|(y − s)

)
F̂ (k, s)ds, Ic(y) =

y∫
cosh

(|k|(y − s)
)
F̂ (k, s)ds.
−a −a
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Eqs. (21c) and (21d) demand that(−|k| tanh(h|k|) ic0 · k
ic0 · k g + σ |k|2

)(
Dk

η̂(k)

)
=

(
Φk − (iμ · k)f̂ (k)

Ψk − (iμ · k)ξ̂ (k)

)
, (22)

where

Φk = Q̂(k) + cosh
(
h|k|) cosh

(
(h − a)|k|)Ĵ (k) + Ic(0),

Ψk = R̂(k) − ic0 · k
|k| sinh

(
h|k|) cosh

(
(h − a)|k|)Ĵ (k) − ic0 · k

|k| Is(0).

Thus, at k = κj we must have that

κj · μ = −(ic0 · κj )Φκj
− |κj | tanh(h|κj |)Ψκj

(c0 · κj )η̂(κj ) − |κj | tanh(h|κj |)ξ̂ (κj )
, (23)

which is well-defined by the choices of η̂(κj ) and ξ̂ (κj ), cf. (19). This results in the system Kcn−1 = r , where rj is
given by the right-hand side of (23), and K is the matrix from Section 2.2.

Of course, with the singularity of (18) at wavenumbers k = κ1, . . . , κd−1 comes not only the issue of solvability
but also uniqueness. To address the latter we utilize one of two parameterizations, one determined by orthogonality
constraints, and the other by conditions on the wave amplitude. The first parameterization specifies that η̂n(κj ) = 0
(n > 1) so that ηn is orthogonal to η1; then ûn(κj ) can be computed from (20). However, Schwartz [9] points out that,
for two-dimensional traveling waves, this parameterization of the branch of solutions contains a square-root singularity
well before the physical singularity at the Stokes critical wave. He proposed an alternative parameterization in terms
of (half) the peak-to-trough height,

h ≡ 1

2

[
η(xmax) − η(xmin)

]
, (24)

where xmax and xmin are the x-coordinates of the maximum and minimum values of η1, respectively. We note that
Roberts et al. [20–22] also utilized this parameterization for three-dimensional traveling waves.

To implement this parameterization we note that

η(x,h) =
∞∑

n=1

ηn(x)hn,

and insert this into the definition (24):

h = 1

2

[
η1(xmax) − η1(xmin)

]
h +

∞∑
n=2

1

2

[
ηn(xmax) − ηn(xmin)

]
hn. (25)

So, at order one

1 = 1

2

d−1∑
j=1

ρj

(
cos(κj · xmax) − cos(κj · xmin)

)
,

where the ratios ρj/ρ1 are fixed and any of the ρj may be adjusted to satisfy this constraint. In addition, we need to
enforce,

0 = ηn(xmax) − ηn(xmin), n � 2,

which ensures that the third term in (25) vanishes. This choice still leaves us freedom to impose (d − 2) additional
equations on η̂n(κj ) which, for example, may take the form

η̂n(κj )

η̂n(κ1)
= η̂1(κj )

η̂1(κ1)
,

for j = 2, . . . , d − 1.
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4. Numerical results

As we shall show in the following subsections, the TFE method constitutes a reliable, high-order algorithm for the
numerical simulation of traveling water wave forms. As we have explained, due to its favorable execution time and
lack of significant cancellations, it can produce simulations at a fraction of the cost of classical boundary perturbation
methods such as the FE recursions. As a result, physically relevant quantities such as the wave frequency, energy, and
shape can be resolved with a great degree of accuracy. To illustrate these characteristics we shall present examples of
fully three-dimensional (d = 3) calculations.

4.1. Numerical method

Eqs. (18) prescribe, almost completely, the TFE algorithm for simulating traveling water waves. To complete the
specification of the method in its three-dimensional version we posit an approximate solution of the form:

u
N1,N2,Ny

N (x, y) =
N∑

n=0

N1/2−1∑
m1=−N1/2

N2/2−1∑
m2=−N2/2

Ny∑
l=0

ûm1,m2,l
n Tl

(
2y + a

a

)
ei(k1

mx1+k2
mx2)hn, (26a)

η
N1,N2
N (x) =

N∑
n=0

N1/2−1∑
m1=−N1/2

N2/2−1∑
m2=−N2/2

η̂m1,m2
n ei(k1

mx1+k2
mx2)hn, (26b)

where Tl is the l-th Chebyshev polynomial, and km = (k1
m,k2

m) is a wavenumber (in Γ ′) indexed by m = (m1,m2).
These are simply inserted into (18) and the Fourier collocation–Chebyshev tau method (see Canuto, Hussaini, Quar-
teroni, and Zang [35]) provides a linear system of equations, at every order n and wavenumber k, which the û

m,l
n

and η̂m
n must satisfy. At wavenumbers κ1 and κ2, (23) can be implemented directly, and either of the uniqueness

specification schemes (orthogonality or wave-height; see Section 3.2) can be utilized.
As we anticipated, this TFE algorithm displays significantly enhanced stability properties over those of FE. To

illustrate this we present, in Fig. 2, results of the TFE algorithm when applied to the two-dimensional example of
Fig. 1 showing no loss of accuracy up to order 29.

From (26) it is clear that storage requirements will be O(NN1N2Ny). Regarding execution time, the “elliptic
solve”, required in (18a), can be done at every order n and wavenumber km, and it is a two-point boundary value
problem with cost O(Ny log(Ny)) (see Canuto, Hussaini, Quarteroni, and Zang [35] and Gottlieb and Orszag [36]);

Fig. 2. Comparison of Transformed Field Expansion (double precision) and Field Expansion (quadruple precision) computations of η256
N

, cf. (13),

with a highly resolved solution (quadruple precision calculation with N1 = 256, N = 30). Relative error is measured in the L2 norm (N1 = 256,
0 � N � 29, ε = 0.04, σ = 0, h = ∞, g = 1, κ = 3, c0 = 1/

√
3 ).
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thus the cost of this aspect of the algorithm is O(NN1N2Ny log(Ny)). A more subtle bottleneck in execution time
comes from the assemblage of the Fn, Jn, Qn, and Rn from (18). It would appear that forming Fn, e.g.

F (1)
n = − 1

a2

n−1∑
m=2

m−1∑
l=1

ηlηm−l∇xun−m + · · ·

will require, at every order, time proportional to O(n2N1N2Ny), while the cost of computing Rn, e.g.

Rn = − 1

2a2

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

ηlηm−l∇xut−m · ∇xun−t + · · · (27)

would be O(n3N1N2) at every order (note that Rn is computed only at the surface so the computational expense is
independent of Ny ). However, these execution times can be significantly reduced at the expense of some extra storage
(still, however, of order O(NN1N2Ny)). For instance, the evaluation of (27) can be accelerated if, in addition to ηn,
we also store the quantities:

An =
n−1∑
l=1

ηlηn−l , Bn =
n−1∑
m=2

m−1∑
l=1

ηlηm−l∇xun−m =
n−1∑
l=1

Al∇xun−l .

Indeed, with these additions the evaluation can be effected as

Rn = − 1

2a2

n−1∑
l=1

Bl · ∇xun−l

at a cost O(nN1N2) at every order, 0 � n � N . This produces a total execution time for {FN,JN,QN,RN } of
O(N2N1N2Ny) which can be significantly lower than the O(N3N2

1 N2
2 ) of the FE approach.

4.2. Convergence of frequency and energy density

At this point we specialize to the geometry and notation employed by Roberts et al. [20–22] in their simulations of
“short-crested waves” (SCW). A short-crested wave is a traveling waveform that is not only periodic in the direction
of propagation, but also periodic in the orthogonal horizontal direction. The period in the propagation direction is set
to L/ sin(θ) while the period in the orthogonal direction is L/ cos(θ). In this way Roberts [20] describes an incident
(Stokes) wavetrain of wavelength L fully reflected from a vertical wall; here θ gives the angle between the direction
of propagation of the incident wave and the normal to the wall.

If we choose the x1-axis as the direction of propagation and non-dimensionalize by setting L = 2π , the solutions
will be periodic with respect to the lattice

Γθ = {
γ = j1a + j2b | a = (2π)/ sin(θ), b = (2π)/ cos(θ); j1, j2 ∈ Z

}
, (28)

i.e. η(x + γ ) = η(x) for all γ ∈ Γθ . These solutions will have (linear) amplitude ratio ρ = ρ1/ρ2 = 1, cf. (11),
and there will be a branch of non-trivial solutions for every pair of (linearly independent) wavenumbers (κ1, κ2)

parameterized by ε (or h if Schwartz’s method is used). We note that our method is not restricted to such patterns and
can generate solutions with arbitrary periodicity and amplitude ratios. In fact, as we shall see in Section 5, our method
is not restricted to branches of solutions but can, in fact, produce entire surfaces.

Two quantities of physical relevance measured in Roberts and Schwartz [13] are the (temporal) frequency ω, and
the energy density E of the traveling wave. In the present configuration, the velocity is constrained to have zero x2
component, i.e. c = (c1,0), and thus the frequency is defined by

ω = c1 sin(θ).

The total energy density is the sum of the kinetic and potential energy densities, E = K+P , where

K = 1

2|P(Γ )|
∫

(ϕ|y=η)(∂yϕ|y=η − ∇xϕ|y=η · ∇xη)dx, (29a)
P(Γ )
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Table 1
Convergence of ωN and EN , and |RN |max as N is refined using the TFE algorithm (h = 0.2, θ = 45◦ , N1 = N2 = 64, Ny = 48, N = 31)

N ωN EN |RN |max

4 1.005196646512916 0.009883644568005213 4.362998832815271 × 10−5

6 1.005194641310237 0.009878291421105056 4.734026055216306 × 10−6

8 1.005194594102063 0.009878231538493739 1.905675412585198 × 10−7

10 1.005194589197477 0.009878223320090387 1.58898666425232 × 10−8

12 1.005194589442087 0.009878223868258484 1.423264868374158 × 10−9

14 1.005194589397794 0.009878223777685075 1.396967238068147 × 10−10

16 1.005194589401453 0.009878223785242023 1.449392559096929 × 10−11

18 1.00519458940103 0.009878223784370262 1.476996476512671 × 10−12

20 1.005194589401071 0.009878223784456151 1.496242366116896 × 10−13

22 1.005194589401067 0.009878223784447264 1.706707691839782 × 10−14

24 1.005194589401067 0.009878223784448069 7.186959360971912 × 10−15

26 1.005194589401067 0.009878223784448 1.367482516112517 × 10−14

28 1.005194589401067 0.009878223784447996 3.007837034996186 × 10−14

30 1.005194589401067 0.009878223784447993 6.668450514002444 × 10−14

P = 1

2|P(Γ )|
∫

P(Γ )

η2 dx. (29b)

Also measured in Roberts and Schwartz [13] is the residual in the Bernoulli condition

R = [c · ∇x]ϕ + 1

2
|∇ϕ|2 + [g − σ�x]η − σH(η) at y = η. (30)

This residual, measured in the maximum norm, was interpreted as a “semi-independent error estimate”.
Inspired by the computations in Roberts and Schwartz [13], the convergence of

ωN =
N∑

n=0

ωnh
n, EN =

N∑
n=0

Enh
n, |RN |max = max

x∈P(Γ )

∣∣∣∣∣
N∑

n=0

Rn(x)hn

∣∣∣∣∣,
were studied for h = 0.2 as N was increased. Table 1 summarizes the results for θ = 45◦ derived from a TFE approx-
imation with N1 = N2 = 64, Ny = 48, and N = 31.

We note that throughout the range of orders, this algorithm consistently delivers increasing accuracy as N is
increased. In particular, the estimate of ωN has full double precision accuracy by N = 22, while EN has fifteen digits
of accuracy at N = 30. The magnitude of the residual consistently decreases through all orders and gives us confidence
that our calculations are converging to a solution of the Euler equations.

4.3. Plots of prototypical solutions

In this subsection we display surface and contour plots of typical traveling wave solutions. To display some of the
canonical features of short-crested, three-dimensional traveling surface patterns we have chosen three values of the
parameter θ (in water of infinite depth) for sample calculations. In all calculations the numerical parameters were set
to N1 = N2 = 64, Ny = 48, and N = 31.

Beginning with θ = 45◦, we have selected two values of the parameter h, h1 = 0.21 and h2 = 0.43, which are
meant to represent “moderately nonlinear” and “highly nonlinear” profiles. In Fig. 3 we plot the traveling wave
surface η for these two values of h. For these two surfaces, the actual height (measured in the maximum norm) is
|η(x;h1)|max = 0.224997, and |η(x;h2)|max = 0.487929, respectively. In Fig. 4 we give a contour plot of these two
surfaces where two periods in both the x1 and x2 direction are plotted to give a flavor for the periodic wave-field they
represent. In these plots we point out the “diamond-like” shape of the wave due to the symmetries of this configuration;
however, we also point out the significant nonlinearity in these forms with the wide, shallow troughs, and (relatively)
compact, steep crests (cf. Fig. 3).
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(a) (b)

Fig. 3. Surface plots of two ocean profiles with θ = 45◦ with h = 0.21, 0.43 respectively. (a) Medium, (b) large.

(a) (b)

Fig. 4. Contour plots of two ocean profiles with θ = 45◦ with h = 0.21,0.43 respectively. (a) Medium, (b) large.

(a) (b)

Fig. 5. Surface plots of two ocean profiles with θ = 60◦ with h = 0.21, 0.42 respectively. (a) Medium, (b) large.

Turning to θ = 60◦, we have again selected two values of the parameter h, h1 = 0.21 (moderately nonlinear) and
h2 = 0.42 (highly nonlinear). In Fig. 5 we plot the traveling wave surface η for these two values of h. For these
two surfaces the actual height (measured in the maximum norm) is |η(x;h1)|max = 0.228521, and |η(x;h2)|max =
0.491571, respectively. In Fig. 6 we give contour plots of these two surfaces where, again, two periods are pictured.
In contrast with the “diamond-like” waveforms of the solutions above, these surfaces display the “rectangular” or
“hexagonal” forms characteristic of higher values of θ (see e.g. Nicholls [16,17], and Craig and Nicholls [18]). Again,
in both plots the significant nonlinearity is evident in the long, shallow troughs and sharp, steep crests.

Finally, we consider θ = 75◦. Again we study the traveling wave solutions via our numerical scheme at two values
of the perturbation parameter h, h1 = 0.2 and h2 = 0.41. In Fig. 7 we plot the traveling wave surface η for h1 and h2,
and the actual heights of these profiles are |η|max = 0.226086, and |η|max = 0.542079, respectively. In Fig. 8 we give
contour plots of these two surfaces where, again, two periods are pictured. Here the rectangular/hexagonal form of the
traveling waves is even more pronounced than in the case θ = 60◦.
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(a) (b)

Fig. 6. Contour plots of two ocean profiles with θ = 60◦ with h = 0.21, 0.42 respectively. (a) Medium, (b) large.

(a) (b)

Fig. 7. Surface plots of two ocean profiles with θ = 75◦ with h = 0.2,0.41 respectively. (a) Medium, (b) large.

(a) (b)

Fig. 8. Contour plots of two ocean profiles with θ = 75◦ with h = 0.2, 0.41 respectively. (a) Medium, (b) large.

4.4. Padé enhancement

All the calculations above were performed with direct summation of the Taylor series (12). A question arises then
as to the possibility of accelerating the convergence of these series through alternative summation mechanisms. Most
notable among these is the use of Padé approximants [37], whereby the series are approximated by rational functions.
As is well-known, this technique is particularly useful when singularities of the analytic extension to the complex
plane of the quantities of interest are well separated from the evaluation point (e.g. when such singularities have
nonzero imaginary parts and evaluations are effected on the real axis).

In the present case, however, Padé approximation is only marginally useful, especially for highly nonlinear wave-
forms. Indeed, for the examples above the singularity closest to the origin, as predicted by Padé approximation,
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(a) (b)

(c)

Fig. 9. Plot of uncanceled zeroes (circles) and poles (crosses) of η(xj ) for all gridpoints xj , cf. (12), as computed by Padé approximation. A pole

(denominator zero) and a zero (numerator zero) are canceled if their distance is less than a tolerance τ (in this case τ = 10−4) in the Euclidean
norm. (a) θ = 45◦ , (b) θ = 60◦ , (c) θ = 75◦ .

consistently lies on the real axis; see Fig. 9. Moreover, the heights h2 in each of the examples of “Large” waveforms
is relatively close to this singularity. More quantitatively, the use of Padé approximation in these cases allows for
non-singular results up to heights h3 = 0.56, 0.46, 0.41 (cf. Fig. 9); when applied to the heights h2 above, however,
Padé approximation produces no distinguishable improvement. As evidence of this, when the maximum amplitude
was computed for waveforms at h2 and N was refined from zero to 31, Padé summation never consistently delivered
more than two extra digits of accuracy.

5. Surfaces of solutions

It is clear from the recursions derived in [1] that the perturbation parameter ε need not be restricted to one di-
mension, and may, in fact, be viewed as a (d − 1)-dimensional real quantity. In three dimensions this amounts to
ε = (ε1, ε2), which makes transparent the realization made in Craig and Nicholls [29] (and further elucidated in Craig
and Nicholls [18]) that three-dimensional traveling water waves come in surfaces rather than simply in curves. Indeed,
as is shown in [1], these surfaces depend analytically on the parameter (ε1, ε2) ∈ R

2; in fact, these solutions are jointly
analytic in parameter and spatial variable.

In most aspects the TFE recursions are easily generalized to the case of a parameter (ε1, ε2) ∈ R
2. The change of

variables (14) is identical, while the expansions (17) are trivially generalized, e.g.

ϕ(x, y, ε1, ε2) =
∑

ϕn(x, y) ε
n1
1 ε

n2
2 ,
|n|�1
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where n = (n1, n2) ∈ Z2 is a multi-index. At every order |n| ≡ n1 + n2 = N , one solves (18), where, e.g.

F (3)
n = 1

a

|n|−1∑
|l|=1

∇xηl · ∇xun−l + 1

a2

|n|−1∑
|m|=2

|m|−1∑
|l|=1

ηl∇xηm−l · ∇xun−m − a + y

a2

|n|−1∑
|m|=2

|m|−1∑
|l|=1

∇xηl · ∇xηm−l∂yun−m.

To begin this TFE procedure, solutions of the homogeneous equations at order |n| = 1 must be specified. As we
have throughout, we begin with two wavenumbers κ1, κ2 ∈ Γ ′ and select the unique (up to sign) velocity c0 ∈ R

2 such
that Λσ (c0, κj ) = 0 (see Section 2.2). We are now free to choose solutions akin to (19), e.g.

η1,0(x) = ρ1,0(c0 · κ1) cos(κ1 · x + θ1,0), η0,1(x) = ρ0,1(c0 · κ2) cos(κ2 · x + θ0,1),

and, again, without loss of generality we can set θl = 0 (|l| = 1). The expansion now becomes

η(x, ε1, ε2) = ε1ρ1,0(c0 · κ1) cos(κ1 · x) + ε2ρ0,1(c0 · κ2) cos(κ2 · x) +O
(|ε|2),

and it is clear that we can specify an entire surface of solutions by varying ε1 and ε2 independently. In particular,
ε1 = 0 or ε2 = 0 correspond to two-dimensional Stokes waves, while ε1 = ε2 recovers the short-crested waves of the
previous section.

For orders |n| = N > 1 the specification of this TFE algorithm is precisely the same as that outlined in Section 3.2
with the exception of the resolution of the singularity in the linear operator A(c, k), see (8), at wavenumbers k = κj .
As discussed in [1] the resolution of this difficulty must be made at every order N simultaneously, for all n such
that |n| = N . Another aspect of this generalized TFE approach which deserves mention is the implementation of
parameterization by “half wave-height”, cf. (24). Following the design philosophy of Schwartz [9] we identify the
unique points amin, amax, bmin, and bmax such that:

(1) η1,0 is maximized at amax and minimized at amin,
(2) η0,1 is maximized at bmax and minimized at bmin,
(3) η1,0(bmax) = η1,0(bmin),
(4) η0,1(amax) = η0,1(amin),

and define

h1 ≡ 1

2

[
η(amax) − η(amin)

]
, h2 ≡ 1

2

[
η(bmax) − η(bmin)

]
. (31)

Then, following Section 3.2, we expand η in powers of h = (h1, h2)

η(x,h1, h2) =
∑
|n|�1

ηn(x)h
n1
1 h

n2
2 ,

and insert this into the definitions (31):

h1 = 1

2

[
η1,0(amax) − η1,0(amin)

]
h1 +

∑
|n|�2

1

2

[
ηn(amax) − ηn(amin)

]
h

n1
1 h

n2
2 , (32a)

h2 = 1

2

[
η0,1(bmax) − η0,1(bmin)

]
h2 +

∑
|n|�2

1

2

[
ηn(bmax) − ηn(bmin)

]
h

n1
1 h

n2
2 . (32b)

So

1 = 1

2

[
ρ1,0 cos(κ1 · amax) − ρ1,0 cos(κ1 · amin)

]
,

1 = 1

2

[
ρ0,1 cos(κ2 · bmax) − ρ0,1 cos(κ2 · bmin)

]
,

where ρ1,0 and ρ0,1 are adjusted to satisfy these constraints. In addition, we need to enforce,

0 = ηn(amax) − ηn(amin) = ηn(bmax) − ηn(bmin), |n| � 2,

which ensure that the O(|h|2) terms in (32) vanish.
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Fig. 10. Plot of ‖η‖
L2 versus (h1, h2) meant to depict the surface of traveling wave solutions. Parameters for this numerical simulation were:

κ1 = (1,1), κ2 = (5,−1), N1 = 16, N2 = 16, Ny = 16, N = 7, g = 1, h = ∞, θ = 60◦ , a = 0.5. The “half wave-height” parameterization (31)
was utilized.

We conclude this section with Fig. 10 that depicts the full surface of traveling wave solutions which generically
exist for the Euler equations. In this particular calculation the solutions are periodic with respect to the lattice Γθ , (28),
with θ = 60◦. Asymmetry in the bifurcation surface is enhanced by the choice of base wavenumbers κ1 = (1,1) and
κ2 = (5,−1). The physical parameters are g = 1 and h = ∞, and the numerical parameters are N1 = 16, N2 = 16,
Ny = 16, N = 7, and a = 0.5.

6. Conclusions

In this paper we have described a new, stable high-order boundary perturbation algorithm for the numerical simu-
lation of traveling water waves. This algorithm is based upon our recent study of analyticity properties of solutions of
the Euler equations [1]. Our new scheme compares favorably with classical boundary deformation methods in terms of
both conditioning and computational complexity. The improved conditioning results from the avoidance of significant
cancellations upon which classical methods rely for convergence. The lower computational cost stems from the nature
of the recursions and our implementation of a fast, high-order spectral method to resolve them. Finally, we displayed
how the algorithm can be extended to compute the full surfaces (as opposed to simply branches) of traveling wave
solutions which we had previously shown to exist.
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