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Electromagnetic metamaterials are artificial media assembled from components which have 
dimensions much smaller than the wavelength of the illuminating radiation. It has been 
demonstrated that these media can have properties beyond those found in conventional 
materials with important applications to many areas of science and engineering. Among 
the collection of such materials currently garnering significant attention are the Hyperbolic 
Metamaterials. These are highly anisotropic structures which have a hyperbolic dispersion 
relation due to the fact that one principal component of the relative permittivity or 
permeability tensor has the opposite sign of the other two. For such materials scattered 
wave information at all scales is transmitted far away which suggests a number of 
important applications, the most immediate of which is imaging objects below the 
diffraction limit (superlensing). Clearly it is of great current interest to have numerical 
simulation capabilities for these fascinating materials. As the hyperbolic response is quite 
strong and its nature is very sensitive, numerical simulations of these configurations 
should be robust and highly accurate. For this reason we focus on High–Order Spectral 
algorithms which efficiently produce high fidelity solutions. More specifically, we describe a 
High–Order Perturbation of Surfaces approach which enjoys the greatly reduced operation 
counts and memory savings of interfacial methods while avoiding the complexities and 
indefinite linear systems faced by Integral Equation algorithms. We give a full discussion 
of our formulation in terms of Impedance–Impedance Operators (which avoids spurious 
singularities of other formulations) and implementation details, followed by numerical 
validation and simulation of results which appear in the engineering literature.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Electromagnetic metamaterials are artificial media assembled from components which have dimensions much smaller 
than the wavelength of the illuminating radiation. It has been demonstrated that these media can have properties beyond 
those found in conventional materials with important applications to many areas of science and engineering [1–7]. The 
recent wave of interest in metamaterials was ushered in by the realization of negative index materials (first envisioned by 
Veselago [8] in 1968) that have permittivity, ε , and permeability, μ, simultaneously negative. These have been demonstrated 
experimentally [9] and allow one to ponder the possibility of perfect cloaks, sub–wavelength imaging, and superlensing to 
name just a few novel applications [2]. We refer the interested reader to the following survey articles for more examples 
and details of how such materials are constructed [4–7].
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Among the collection of metamaterials currently garnering significant attention are the so–called Hyperbolic Metama-
terials (HMMs). These HMMs are highly anisotropic structures which have a hyperbolic dispersion relation due to the fact 
that one principal component of the relative permittivity or permeability tensor has the opposite sign of the other two. 
(From here we focus on non–magnetic materials where the permeability tensor is the identity.) More specifically, if the 
permittivity tensor is

ε =
⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠ ,

it is not difficult to construct uniaxial HMMs (εx = εy) where Re {εx} Re {εz} < 0 [3]. In particular, these authors consider 
thin alternating layers of metal and dielectric which feature effective permittivities

εx = dmεm + ddεd

dm + dd
= εm + ηεd

1 + η
,

1

εz
= dmε−1

m + ddε
−1
d

dm + dd
= 1

1 + η

(
1

εm
+ η

εd

)
.

Here εm and εd are the permittivities of the metal and dielectric, respectively, and η = dd/dm is the ratio of the layer 
thicknesses. With εd > 0 and Re {εm} < 0 it is easy to see how an HMM could be built.

To explain the possibilities of these HMMs we recall that, in a homogeneous material layer, a plane–wave solution, 
exp(iαx + iγ z), of the time–harmonic Maxwell equations in Transverse Magnetic (TM) polarization will satisfy the dispersion 
relation

α2

εz
+ γ 2

εx
= k2

0,

where k0 = ω/c0, ω is the frequency of the radiation, and c0 is the speed of light in the vacuum. In a natural dielectric 
εx, εz > 0 and the wavevectors (α, γ ) form an ellipse. Of fundamental importance, if α is small then γ is real and the 
solution is propagating, while if α is large then γ is complex with Im

{
γ
} ≥ 0. Such solutions decay exponentially and 

are termed evanescent. Only long wavelengths propagate information away from the material and information at short 
wavelengths is lost exponentially quickly. This is the diffraction limit.

By contrast, if one can arrange εxεz < 0 then the dispersion relation delivers a hyperbola and for all choices of α we have 
γ real so that all wavelengths are propagating. Information at all scales is, in theory, transmitted far away from an HMM. 
This property suggests a number of important applications for these hyperbolic materials, the most immediate of these is 
the possibility of imaging objects below this diffraction limit (of a natural, elliptic, dielectric) [3]. We direct the interested 
reader to the surveys [4–6] which describe devices which have been built that can achieve this superlensing, despite the 
inevitable losses due to absorption.

Interestingly, natural Hyperbolic Materials (HMs) have been identified which display the strong anisotropy of the HMMs 
discussed above, most notably hexagonal Boron Nitride (hBN) [10,11]. Though our developments do not depend upon this 
choice, we will focus on hBN in this contribution as it seems a most promising candidate for subwavelength imaging and 
other applications. Of particular relevance are its low losses, nanoscale unit cells, and capability of demonstrating both Type 
I (εx > 0 and εz < 0) and Type II (εx < 0 and εz > 0) hyperbolicity [10]. (In most publications [4,6,11] one uses the notation 
εz = ε‖ for the component parallel to the anistropy axis and εx = ε⊥ for the component perpendicular, though this is not 
universal [5].)

Unsurprisingly, it is of great current interest to have numerical simulation capabilities for these fascinating materials. As 
the hyperbolic response of hBN is quite strong (the reflectivity can be enhanced by several orders of magnitude) and its 
nature is very sensitive (it is only seen on the range of tens of nanometers) [10], numerical simulations of these configu-
rations should be robust and highly accurate. For this reason we focus on High–Order Spectral (HOS) algorithms [12–14]
which efficiently produce high fidelity solutions.

All of the classical numerical algorithms are available for the simulation of this problem (e.g., Finite Difference Methods 
[15], Finite Element Methods (FEMs) [16], Discontinuous Galerkin Methods [17], Spectral Element Methods [13], and Spec-
tral Methods [12,14]). Of particular interest to engineers and scientists are black–box FEM solvers, most notably COMSOL 
Multiphysics [18], see e.g. [19,20]. However, these volumetric approaches are greatly disadvantaged with an unnecessarily 
large number of unknowns for the piecewise homogeneous problems we consider here.

Surface methods are orders of magnitude faster by comparison due to the greatly reduced number of unknowns required 
to resolve a computation. In addition, these methods enforce far–field boundary conditions exactly, e.g., through their use 
of the Green function [21,22]. As a result, these approaches are an important alternative which are becoming more widely 
used by engineers. Among these interfacial methods, the most important are those based upon Integral Equations (IEs) 
[21,23], but these face difficulties. Most have been addressed by (i.) the use of sophisticated quadrature rules to deliver HOS 
accuracy; (ii.) the design of preconditioned iterative solvers with suitable acceleration [24]; and (iii) new strategies to avoid 
periodizing the Green function [25–32]. As a result, these are an important alternative to volumetric approaches, but two 
2
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properties render them non–competitive for the parameterized layered media problems we consider as compared with the 
methods we advocate here: (i.) For geometries specified by the real value ε (the departure of the interface shapes from 
flat), an IE solver will return the scattering returns only for one value of ε. If this value is changed then the solver must be 
run again; (ii.) the dense, non–symmetric positive definite systems of linear equations which must be inverted with each 
simulation.

As we have shown, see e.g. [33–36], a “High–Order Perturbation of Surfaces” (HOPS) approach can convincingly address 
these concerns. These formulations maintain the useful properties of classical IE algorithms (e.g., surface formulation and 
exact enforcement of far–field conditions) while avoiding the flaws listed above: (i.) Since HOPS methods are built upon 
expansions in the perturbation parameter, ε, once the Taylor coefficients are recovered, it is simply a matter of summing 
these (rather than beginning a new simulation) for any given choice of ε to recover the scattering quantities; (ii.) due to 
the perturbative nature of the scheme, at every Taylor order one need only invert a single, sparse operator corresponding 
to the order–zero (flat–interface) approximation of the problem.

Regardless of method used, the formulation of the governing equations strongly influences the performance of these 
approaches. With this in mind, following the guidance in [37,38], we recently investigated the surface formulation of this 
problem in terms of Impedance–Impedance Operators (IIOs) [34,39] which avoid the Dirichlet eigenvalues that plague the 
Dirichlet–Neumann Operators (DNOs) of more straightforward statements [40]. This non–overlapping Domain Decomposi-
tion Method (DDM) was first described for Laplace’s equation by Lions [41] and adapted to the Helmholtz problem by 
Després [42,43,37]. On interior layers these IIOs are unitary and they deliver a very well–conditioned algorithm. We utilize 
a formulation of the problem in terms of IIOs here which we restrict to two dimensions in the current contribution.

Before leaving our discussion of numerical approaches, we mention the recent work of J. Lin [44] on IE methods for HMs. 
In this delicate and careful study, Lin describes a novel method for simulating the Green function associated to the relevant 
indefinite Helmholtz equation. This requires sophisticated grid refinement technology to resolve the boundary between 
regions of elliptic and hyperbolic behavior of the fundamental solution. In contrast to this IE algorithm (whose utilization 
of the Green function requires this refinement), the approach outlined in this work does not require such considerations 
provided that the exciting source is not contained in the HM, e.g., plane–wave incidence from above/below through a 
dielectric.

The rest of the paper is organized as follows: In § 2 we state the governing equations for scattering of linear waves by a 
periodic layered medium with special discussions of the field equations in § 2.1, the interfacial boundary conditions in § 2.2, 
and transparent boundary conditions in § 2.3. We recall our DDM in § 3 and our HOPS scheme in § 4. Finally, we conclude 
with numerical results in § 5 featuring specific discussions of implementation in § 5.1, validation in § 5.2, and comparision 
with results in the literature in § 5.3.

2. Governing equations

We begin with the constitutive relations between the electric displacement, D, the magnetic induction, B, the electric 
field, E, and the magnetic field, H,

D = ε0εE, B = μ0μH,

where ε0 and μ0 are the permittivity and permeability of the vacuum, and ε and μ are the relative permittivity and 
permeability tensors [45]. We focus upon non–magnetic materials so that μ = I , and, after diagonalization, we have

ε =
⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠ .

Using these, the time–harmonic Maxwell equations (in the absence of currents and charges) become

curl [E] = iωB = iωμ0H, (1a)

curl [H] = −iωD = −iωε0εE, (1b)

where time dependence of the form exp(−iωt) has been factored out.

2.1. Field equation

We now seek a solution to (1) in Transverse Magnetic (TM) polarization so that all quantities are y–invariant (the 
transverse direction) and the magnetic field has the form H = (0, v(x, z), 0)T . To accomplish this we write (1) entirely in 
terms of H and, in turn, v . By solving (1b) for E and inserting this into (1a) we find

curl

[
− 1

ε−1curl [H]

]
= iωμ0H. (2)
iωε0

3
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Upon using the y–invariance of v we find that the y–component of (2) becomes

div [A∇v] + k2
0 v = 0,

and

A =
(

(1/εz) 0
0 (1/εx)

)
,

which is not the inverse of ε .

Remark 2.1. We note that the same derivation could be conducted for Transverse Electric (TE) polarization resulting in the 
governing equation

div
[
(1/εy)∇v

]+ k2
0 v = 0,

which, while interesting, is standard and can be treated with existing methods [46].

Remark 2.2. In the case of an isotropic material, ε = εr I , we find the familiar Helmholtz equation

�v + εrk2
0 v = 0.

Remark 2.3. As we mentioned above, rather than model an HMM we chose to simulate a natural HM, namely hBN. For this 
we used the permittivity specified in [11]

εm = ε∞,m

(
1 + (ωLO,m)2 − (ωTO,m)2

(ωTO,m)2 − ω2 − iω	m

)
, m ∈ {‖,⊥},

where

ε∞,⊥ = 4.87, 	⊥ = 5 cm−1, ωTO,⊥ = 1370 cm−1, ωLO,⊥ = 1610 cm−1,

and

ε∞,‖ = 2.95, 	‖ = 4 cm−1, ωTO,‖ = 780 cm−1, ωLO,‖ = 830 cm−1.

From these we form

εhBN =
⎛
⎝ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖

⎞
⎠ . (3)

2.2. Interfacial boundary conditions

At this point we fixate upon a (y–invariant) layered structure with M interfaces located at

z = a(m) + g(m)(x), 1 ≤ m ≤ M,

which are d–periodic,

g(m)(x + d) = g(m)(x), 1 ≤ m ≤ M,

see Fig. 1. These define the (M + 1) domains

S(0) =
{
(x, z) | z > a(1) + g(1)(x)

}
,

S(m) =
{
(x, z) | a(m+1) + g(m+1)(x) < z < a(m) + g(m)(x)

}
, 1 ≤ m ≤ M − 1,

S(M) =
{
(x, z) | z < a(M) + g(M)(x)

}
,

with upward pointing normals

N(m) =
⎛
⎝−∂x g(m)

0
1

⎞
⎠ .
4
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Fig. 1. Plot of the structure under consideration: Graphene affixed to both the upper and lower sides of the hyperbolic material, under an isotropic dielectric 
(ε(0)) mounted on another isotropic dielectric (ε(2)). Structure rescaled by the period in the x coordinate and the maximum amplitude in the z coordinate.

These domains are filled with homogeneous non–magnetic materials with relative permittivity tensors ε(m) , and the upper-

most and lowermost layers are isotropic dielectrics so that for m ∈ {0, M}, ε(m) = ε(m) I , ε(m) ∈ R+ . Additionally, we consider 
the case where two–dimensional materials are present at the layer interfaces which we model with an interfacial current 
[47]. The structure is illuminated from above by radiation of frequency ω at angle θ that has the form

vi = eiαx−iγ (0)z, α =
√

ε(0)k0 sin(θ), γ (0) =
√

ε(0)k0 cos(θ).

The derivations in the previous section demonstrate that the transverse component of the magnetic field in layer 0 ≤
m ≤ M , v(m) , is governed by a Helmholtz equation of the form

div
[

A(m)∇v(m)
]
+ k2

0 v(m) = 0, 0 ≤ m ≤ M, (4)

where

A(m) =
(

(1/ε
(m)
z ) 0

0 (1/ε
(m)
x )

)
,

which must be supplemented with appropriate boundary conditions. First, each of the fields is quasiperiodic

v(m)(x + d, z) = eiαd v(m)(x, z), 0 ≤ m ≤ M. (5)

Next, at the interfaces z = a(m) + g(m)(x), we know that, in the presence of interfacial currents, the tangential components 
of the electric and magnetic fields must satisfy [47]

N(m) × E = 0, N(m) × H =
∣∣∣N(m)

∣∣∣ j(m)
s , 1 ≤ m ≤ M.

where j(m)
s is the surface current at the m–th interface. Following [47], and inspired by Ohm’s Law, we model this with the 

relation

j(m)
s = σ (m)

(
E(m) · T(m)

T(m) · T(m)

)
T(m), 1 ≤ m ≤ M,

where T(m) is a tangent to the interface.
Using a straightforward generalization of [47], in TM polarization the tangential continuity of the electric field yields

−N (m − 1)[v(m−1)] −N u(m)[v(m)] = ν(m), 1 ≤ m ≤ M, (6)

where

ν(m) =
{
N (0)[vi], m = 1,

0, m > 1,

and the A(m)–modified upper/lower exterior–pointing surface normal derivatives are defined by
5
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N u(m)[v(m)] := N(m) ·
(

A(m)∇v(m)
)

, z = a(m) + g(m)(x),

N (m)[v(m)] := −N(m+1) ·
(

A(m)∇v(m)
)

, z = a(m+1) + g(m+1)(x).

Continuing, the tangential boundary condition on the magnetic field gives

v(m−1) − v(m) +
∣∣∣N(m)

∣∣∣−1
p(m)N u(m)[v(m)] = ξ (m), 1 ≤ m ≤ M, (7)

where

ξ (m) =
{

−vi, m = 1,

0, m > 1.

Remark 2.4. Arguably the most influential two–dimensional material in the field of plasmonics is graphene [48,49]. To give 
a flavor of the form which σ (m) might take we note that, while the correct modeling of the electromagnetic properties of 
graphene is still open, one reasonable choice for the surface current is a Drude model [48,49] of the form

σ̂D = σD

ε0c0
, σD = σ0

(
4E f /π

	 − ih̄ω

)
, σ0 = πε0c0α, (8)

where α is the fine structure constant, E F > 0 is the (local) Fermi level position, and 	 := h̄γ , where h̄ is the reduced 
Planck’s constant and γ is the relaxation rate. In our simulations we used E F = 0.45 eV and 	 = 2.6 meV.

2.3. Transparent boundary conditions and the dispersion relation

We require two more boundary conditions to specify a unique solution: The Upward and Downward Propagating Con-
ditions (UPC/DPC). We derive the DPC and simply state the UPC, but for each we require artificial boundaries, {z = a} and 
{z = a}, where

a > a(1) +
∣∣∣g(1)

∣∣∣
L∞ , a < a(M) −

∣∣∣g(M)
∣∣∣

L∞ .

For the DPC we seek plane–wave solutions of the form

eiαp x−iγ (M)
p (z−a), αp = α + 2π p

d
.

These are solutions of (4) in {z < a} if

1

ε
(M)
z

(iαp)2 + 1

ε
(M)
x

(iγ (M)
p )2 + k2

0 = 0,

which can be simplified to the Dispersion Relation for uniaxial materials in TM polarization

α2
p

ε
(M)
z

+ (γ
(M)
p )2

ε
(M)
x

= k2
0. (9)

Notice that if the M–th layer is isotropic then ε(M)
x = ε

(M)
z = ε(M) and one rediscovers the classical dispersion relation,

α2
p + (γ

(M)
p )2 = ε(M)k2

0.

In order to specify the DPC we make the following choice for γ (M)
p ,

γ
(M)
p =

(
ε

(M)
x k2

0 +
(

−ε
(M)
x

ε
(M)
z

)
α2

p

)1/2

, Im
{
γ

(M)
p

}
≥ 0,

which guarantees that solutions are bounded as z → −∞. Separation of variables gives

v(M)(x, z) =
∞∑

p=−∞
μ̂peiαp x−iγ (M)

p (z−a),

and we observe that
6
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v(M)(x,a) =
∞∑

p=−∞
μ̂peiαp x = μ(x), μ̂p = 1

d

d∫
0

μ(x)e−iαp x dx.

It is a simple matter to compute

∂z v(M)(x,a) =
∞∑

p=−∞
(−iγ (M)

p )μ̂peiαp x =: T (M)[μ],

which defines the order–one Fourier multiplier T (M) . From these calculations it is clear that the DPC can be specified 
transparently at the artificial boundary with

∂z v(M) − T (M)[v(M)] = 0, z = a. (10)

In a similar fashion [39], the UPC can be specified by

∂z v(0) + T (0)[v(0)] = 0, z = a, (11)

where

T (0)[μ] :=
∞∑

p=−∞
(−iγ (0)

p )μ̂peiαp x.

Gathering all of our developments (Equations (4), (7), (6), (11), (10), and (5)) together we find the following set of 
governing equations

div
[

A(m)∇v(m)
]
+ k2

0 v(m) = 0, 0 ≤ m ≤ M, (12a)

v(m−1) − v(m) +
∣∣∣N(m)

∣∣∣−1
p(m)N u(m)[v(m)] = ξ (m), 1 ≤ m ≤ M, (12b)

−N (m − 1)[v(m−1)] −N u(m)[v(m)] = ν(m), 1 ≤ m ≤ M, (12c)

∂z v(0) + T (0)[v(0)] = 0, z = a, (12d)

∂z v(M) − T (M)[v(M)] = 0, z = a, (12e)

v(m)(x + d, z) = eiαd v(m)(x, z). (12f)

3. A non–overlapping domain decomposition

Following our previous work [39], and for completeness of presentation, we restate (12) using a Non–Overlapping 
Domain Decomposition. For this we follow the lead of Després [42,43] by using carefully chosen Impedance–Impedance Op-
erators (IIOs) which are free of the artificial singularities which plague other surface operators such as Dirichlet–Neumann 
Operators (DNOs). To summarize these developments we begin by defining the order–r Fourier multipliers

Y (m)[φ] :=
∞∑

p=−∞
̂Y (m)

pφ̂peiαp x, Z (m)[φ] :=
∞∑

p=−∞
̂Z (m)

pφ̂peiαp x,

∣∣∣̂Y (m)
p

∣∣∣ , ∣∣∣̂Z (m)
p

∣∣∣∼ (1 + |p|2
)r/2

, r ∈ {0,1},
and rearrange the boundary conditions, (12b) & (12c), by the operator

P (m) =
(−Y (m) −I

Z (m) −I

)
,

giving{
N (m − 1)[v(m−1)] − Y (m)[v(m−1)]

}
+
{
N u(m)[v(m)] + Y (m)[v(m)]

}
−Y (m)[

∣∣∣N(m)
∣∣∣−1

p(m)N u(m)v(m)] = −Y (m)[ξ (m)] − ν(m), (13a){
N (m − 1)[v(m−1)] + Z (m)[v(m−1)]

}
+
{
N u(m)[v(m)] − Z (m)[v(m)]

}
+Z (m)[

∣∣∣N(m)
∣∣∣−1

p(m)N u(m)v(m)] = Z (m)[ξ (m)] − ν(m). (13b)
7
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We select (Y (m) + Z (m)) invertible so that this transformation can be inverted, and point out that Després made the choice 
Y (m) = Z (m) = iη, η ∈ R+ so that r = 0 [42,43].

In light of (13) it is natural to define the surface impedances

U (m),(x) := N (m)[v(m)] − Y (m+1)[v(m)],
U (m),u(x) := N u(m)[v(m)] − Z (m)[v(m)],
Ũ (m),(x) := N (m)[v(m)] + Z (m+1)[v(m)],
Ũ (m),u(x) := N u(m)[v(m)] + Y (m)[v(m)],

and, upon using these to solve for {v(m), N u(m)[v(m)]} in terms of {U (m),u, Ũ (m),u}, we find that the boundary conditions 
(13) become

U (m−1), + Ũ (m),u + F (m)U (m),u + F̃ (m)Ũ (m),u = ζ (m),

Ũ (m−1), + U (m),u + G(m)U (m),u + G̃(m)Ũ (m),u = ψ(m),

where

ζ (m) = −ν(m) − Y (m)[ξ (m)],
ψ(m) = −ν(m) + Z (m)[ξ (m)],
F (m) = −Y (m)

[
p(m)

∣∣∣N(m)
∣∣∣−1

Y (m)

](
Y (m) + Z (m)

)−1
,

F̃ (m) = −Y (m)

[
p(m)

∣∣∣N(m)
∣∣∣−1

Z (m)

](
Y (m) + Z (m)

)−1
,

G(m) = Z (m)

[
p(m)

∣∣∣N(m)
∣∣∣−1

Y (m)

](
Y (m) + Z (m)

)−1
,

G̃(m) = Z (m)

[
p(m)

∣∣∣N(m)
∣∣∣−1

Z (m)

](
Y (m) + Z (m)

)−1
.

We direct the interested reader to our previous work [39] for full details.
To close (and simplify) this system of equations we introduce the following IIOs which are a generalization of those 

defined in [39].

Definition 3.1. Given an integer s ≥ 0 and any δ > 0, if g(1) ∈ C s+3/2+δ then, for order–r (r ∈ {0, 1}) Fourier multipliers 
{Y (1), Z (1)}, if a unique quasiperiodic solution exists of

div
[

A(0)∇v(0)
]
+ k2

0 v(0) = 0, a(1) + g(1)(x) < z < a, (14a)

∂z v(0) + T (0)[v(0)] = 0, z = a, (14b)

N (0)[v(0)] − Y (1)[v(0)] = U (0),, z = a(1) + g(1)(x), (14c)

we define the upper IIO

Q [U (0),] = Q (a,a(1), g(1))[U (0),] := Ũ (0), = N (0)[v(0)] + Z (1)[v(0)]. (14d)

Definition 3.2. Given an integer s ≥ 0 and any δ > 0, if g(M) ∈ C s+3/2+δ then, for order–r (r ∈ {0, 1}) Fourier multipliers 
{Y (M), Z (M)}, if a unique quasiperiodic solution exists of

div
[

A(M)∇v(M)
]
+ k2

0 v(M) = 0, a < z < a(M) + g(M)(x), (15a)

N u(M)[v(M)] − Z (M)[v(M)] = U (M),u, z = a(M) + g(M)(x), (15b)

∂z v(M) − T (M)[v(M)] = 0, z = a, (15c)

we define the lower IIO

S[U (M),u] = S(a,a(M), g(M))[U (M),u] := Ũ (M),u = N u(M)[v(M)] + Y (M)[v(M)]. (15d)
8
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Definition 3.3. Given an integer s ≥ 0 and any δ > 0, if g(m), g(m+1) ∈ C s+3/2+δ then, for order–r (r ∈ {0, 1}) Fourier multi-
pliers {Y (m), Y (m+1), Z (m), Z (m+1)}, if a unique quasiperiodic solution exists of

div
[

A(m)∇v(m)
]
+ k2

0 v(m) = 0, a(m+1) + g(m+1)(x) < z < a(m) + g(m)(x), (16a)

N u(m)[v(m)] − Z (m)[v(m)] = U (m),u, z = a(m) + g(m)(x), (16b)

N (m)[v(m)] − Y (m+1)[v(m)] = U (m),, z = a(m+1) + g(m+1)(x), (16c)

we define an inner IIO

R(m)

[(
U (m),u

U (m),

)]
= R(m)(a(m), g(m),a(m+1), g(m+1))

[(
U (m),u

U (m),

)]

=
(

R(m),uu R(m),u

R(m),u R(m),

)[(
U (m),u

U (m),

)]

:=
(

Ũ (m),u

Ũ (m),

)
=
(

N u(m)[v(m)] + Y (m)[v(m)]
N (m)[v(m)] + Z (m+1)[v(m)]

)
. (16d)

Remark 3.4. As far as we are aware, the uniqueness of solutions to the problems (14), (15), and (16) is still an open 
question. However, it is known (see, e.g., [50]) that in the case of an isotropic material, ε(m)

x = ε
(m)
y = ε

(m)
z , these problems 

are well–posed provided that

Im

⎧⎨
⎩

d∫
0

(
Y (m)ϕ

)
ϕ̄ dx

⎫⎬
⎭> 0, Im

⎧⎨
⎩

d∫
0

(
Z (m)ϕ

)
ϕ̄ dx

⎫⎬
⎭> 0.

Therefore, the choice of Després [42,43], Y (m) = Z (m) = iη, η > 0, ensures well–defined IIOs.

Following [39] we can write this system of equations as

AV = R, (17)

where

V :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U (0),

U (1),u

U (1),

...

U (M−1),u

U (M−1),

U (M),u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, R :=

⎛
⎜⎜⎜⎜⎜⎝

ζ (1)

ψ(1)

...

ζ (M)

ψ(M)

⎞
⎟⎟⎟⎟⎟⎠ .

Also

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(1) U(1) 0 0 · · · 0
L(2) D(2) U(2) 0 · · · 0

0
. . .

. . .
. . . 0 0

0 0
. . .

. . .
. . . 0

0 · · · 0 L(M−1) D(M−1) U(M−1)

0 · · · 0 0 L(M) D(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

U(m) =
(

(I + F̃ (m))R(m),u 0
G̃(m)R(m),u 0

)
, 1 ≤ m ≤ M − 1,

and

L(m) =
(

0 0
0 R(m−1),u

)
, 2 ≤ m ≤ M,

and
9
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D(1) =
(

I F (1) + (I + F̃ (1))R(1),uu

Q (I + G(1)) + G̃(1)R(1),uu

)
,

D(m) =
(

I F (m) + (I + F̃ (m))R(m),uu

R(m−1), (I + G(m)) + G̃(m)R(m),uu

)
, 2 ≤ m ≤ M − 1,

D(M) =
(

I F (M) + (I + F̃ (M))S
R(M−1), (I + G(M)) + G̃(M) S

)
.

4. A high–order perturbation of surfaces method

At this point we have several options for solving our governing equations, (17). We adopt a geometric perturbation 
approach based upon the assumption

g(m)(x) = ε f (m)(x), 1 ≤ m ≤ M,

for ε sufficiently small and f (m) sufficiently smooth (at least C s+3/2+δ for some δ > 0). In this case, the operator A = A(ε)

and the right–hand–side R = R(ε) depend analytically upon ε so that

A(ε) =
∞∑

n=0

Anε
n, R(ε) =

∞∑
n=0

Rnε
n. (18)

With this it can be shown that the solution V (ε) depends analytically upon ε, so that

V(ε) =
∞∑

n=0

Vnε
n, (19)

where, upon insertion of these forms into (17), we find at order O(εn),

A0Vn = Rn −
n−1∑
=0

An−V,

or

Vn = A−1
0

[
Rn −

n−1∑
=0

An−V

]
. (20)

We refer the interested reader to [39] and the references therein for a more formal justification of these developments, 
in particular, the demonstration that the relevant IIOs, {Q , R(m), S}, depend analytically upon the perturbation parameter 
ε which justifies the expansion of the terms {A, R} in convergent power series. We further mention that the paper [39]
provides a possible path to establishing that, under certain hypotheses, unique solutions of (17) exist.

Remark 4.1. We anticipate that the smallness assumption on the perturbation variable, ε, can be dropped provided that it is 
real and that there is no topological obstruction (e.g., intersecting layer interfaces). The papers [51,52] provide one possible 
approach to establishing such a result.

5. Numerical results

We now present the results of numerical experiments based upon the formulation of grating structures featuring hyper-
bolic materials stated above. We begin with a brief validation by the Method of Manufactured Solutions and follow up with 
simulations of structures appearing in the engineering literature.

5.1. Implementation

To simulate layered media problems featuring hyperbolic materials we utilize (17), the surface formulation of the gov-
erning equations in terms of IIOs which are functions of the interface height/slope ε,

A(ε)V(ε) = R(ε).

As in [39], we seek a solution of the form (19) which is truncated after a finite number of orders, N ≥ 0,

V(ε) ≈ VN(ε) :=
N∑

Vnε
n. (21)
n=0

10
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To find the Vn we must solve (20) for 0 ≤ n ≤ N which, in turn, requires the application of the operators An and the 
formation of the functions Rn which come from the series expansions of A and R, respectively. For this we must be able to 
evaluate the operators {F (m)

n , F̃ (m)
n , G(m)

n , G̃(m)
n } and the IIOs {Q n, R(m)

n , Sn}. For the former, all of the details are provided in 
the papers [34,39], while for the latter, the method of Transformed Field Expansions (TFE) [53,51,46] was used to simulate 
the IIOs. Again, all of the relevant details are specified in [34,39]. To summarize, we used a spectral Fourier–Chebyshev 
approach [12,54,14] where

Vn(x, z) ≈ VNx,Nz
n (x, z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
q=0

V̂n,p,q Tq(z/h)eiαp x,

and Tq is the q–th Chebyshev polynomial. To find the Fourier–Chebyshev coefficients, {V̂n,p,q}, we used the collocation 
method by demanding that the governing equations be true at the gridpoints, e.g. on a layer {[0, d] × [−h, h]},

{x j = j(d/Nx) | 0 ≤ j ≤ Nx − 1}, {zr = h cos(πr/Nz) | 0 ≤ r ≤ Nz}.
With fast Fourier and Chebyshev transforms [12,54,14] the resulting equations were solved efficiently and stably.

Remark 5.1. We point out that these developments eventually lead to the simulation of two–point boundary value problems 
for the quantities V̂n,p(z) on {−h < z < h} which we successfully addressed with our Chebyshev collocation method. For 
this, the only (mild) challenge to our algorithm was the indefinite nature of the two–point boundary value problem to be 
solved. Such difficulties were ameliorated when physically mandated dissipation was considered.

A final, important, question is how the Taylor series, (21), in ε is summed, e.g., the approximation of V̂p,q(ε) by

V̂N
p,q(ε) :=

N∑
n=0

V̂n,p,qε
n.

For this, Padé approximation [55] has been used in conjunction with HOPS methods to great effect [56,51] and we recom-
mend its use here. Padé approximation seeks to estimate the truncated Taylor series V̂N

p,q(ε) by the rational function

[L/M](ε) := aL(ε)

bM(ε)
=

∑L
=0 aε



1 +∑M
m=1 bmεm

, L + M = N,

and

[L/M](ε) = V̂N
p,q(ε) +O(εL+M+1);

well–known formulas for the coefficients {a, bm} can be found in [55]. This technique has remarkable properties of en-
hanced convergence, and we refer the interested reader to § 2.2 of Baker & Graves–Morris [55] and the insightful calculations 
of § 8.3 of Bender & Orszag [57] for a thorough discussion of the capabilities and limitations of Padé approximants.

5.2. Validation

To validate our scheme, we utilized the Method of Manufactured Solutions [58–60]. To summarize, consider the general 
system of partial differential equations subject to generic boundary conditions

Pv = 0, in �,

Bv = 0, at ∂�.

It is typically easy to implement a numerical algorithm to solve the nonhomogeneous version of this set of equations

Pv = F, in �,

Bv = J , at ∂�.

To test an implementation we began with the “manufactured solution,” ṽ , and set

Fv := P ṽ, Jv := J ṽ.

Thus, given the pair {Fv , Jv} we had an exact solution of the nonhomogeneous problem, namely ṽ . While this does not 
prove an implementation to be correct, if the function ṽ is chosen to imitate the behavior of anticipated solutions (e.g., 
satisfying the boundary conditions exactly) then this gives us confidence in our algorithm.
11
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For the current implementation we focused upon the three–layer problem (M = 2) and considered the quasiperiodic, 
outgoing solutions of the Helmholtz equation (14a)

v(0)
r (x, z) := A(0)

r eiαr x+iγ (0)
r z, r ∈ Z, A(0)

r ∈ C,

and their counterparts for (15a)

v(2)
r (x, z) := B(2)

r eiαr x−iγ (2)
r z, r ∈ Z, B(2)

r ∈ C.

Further, we considered the quasiperiodic solutions of the Helmholtz equation (16a)

v(1)
r (x, z) := A(1)

r eiαr x+iγ (1)
r z + B(1)

r eiαr x−iγ (1)
r z, r ∈ Z, A(1)

r , B(1)
r ∈ C.

We selected two simple sinusoidal profiles

g(1)(x) = ε f (1)(x) = ε cos(2x), g(2)(x) = ε f (2)(x) = ε sin(2x), (22)

and defined, for any choice of the layer half–thickness h̄, the Dirichlet and Neumann traces

ξ
(0)
r (x) := v(0)

r (x, h̄ + g(1)(x)), ν
(0)
r (x) := N (0)[v(0)

r (x, h̄ + g(1)(x))],
ξ

(1),h
r (x) := v(1)

r (x, h̄ + g(1)(x)), ν
(1),h
r (x) := N u(1)[v(1)

r (x, h̄ + g(1)(x))],
ξ

(1),−h
r (x) := v(1)

r (x,−h̄ + g(2)(x)), ν
(1),−h
r (x) := N (1)[v(1)

r (x,−h̄ + g(2)(x))],
ξ

(2)
r (x) := v(2)

r (x,−h̄ + g(2)(x)), ν
(2)
r (x) := N u(2)[v(2)

r (x,−h̄ + g(2)(x))].
From these we defined, for any choices of the operators {Y (1), Z (1), Y (2), Z (2)}, the impedances

V (0),
r := ν(0) − Y (1)[ξ (0)], Ṽ (0),

r := ν(0) + Z (1)[ξ (0)], (23a)

V (1),u
r := ν(1),h − Z (1)[ξ (1),h], Ṽ (1),u

r := ν(1),h + Y (1)[ξ (1),h], (23b)

V (1),
r := ν(1),−h − Y (2)[ξ (1),−h], Ṽ (1),

r := ν(1),−h + Z (2)[ξ (1),−h], (23c)

V (2),u
r := ν(2) − Z (2)[ξ (2)], Ṽ (2),u

r := ν(2) + Y (2)[ξ (2)]. (23d)

We chose the following physical parameters

d = 2π, α = 0.1, ε(0) = ε(2) = I, ε(1) =
⎛
⎝e + 1.1i 0 0

0 e + 1.1i 0
0 0 −2.3 + 1.1i

⎞
⎠ ,

σ̂ (1) = 0.2, σ̂ (2) = 0.45,

A(0)
r = −3 δr,2, B(2)

r = 4 δr,2, A(1)
r = −e δr,2, B(1)

r = π δr,2, (24)

(where δr,s is the Kronecker delta) in TM polarization, and the numerical parameters

Nx = 64, Nz = 24, N = 10, a = 1/5, b = 1/5. (25)

To illuminate the behavior of our scheme we made the Després [42,43,37] choice of operators

Y (1) = Z (1) = Y (2) = Z (2) = iη, η = k0, (26)

and studied four choices

ε = 0.005,0.01,0.05,0.1,

in (22). For this we supplied the “exact” input data, {V (0),
r , V (1),u

r , V (1),
r , V (2),u

r }, from (23) to our HOPS algorithm 
to simulate solutions of the IIO formulation of the three–layer scattering problem. We compared the output of this, 
{Ṽ (0),,approx

r , Ṽ (1),u,approx
r , Ṽ (1),,approx

r , Ṽ (2),u,approx
r }, with the “exact” output, {Ṽ (0),

r , Ṽ (1),u
r , Ṽ (1),

r , Ṽ (2),u
r }, by computing the 

relative error

Errorrel :=
∣∣∣Ṽ (0),

r − Ṽ (0),,approx
r

∣∣∣
L∞ /

∣∣∣Ṽ (0),
r

∣∣∣
L∞ .

We note that the choice to measure the defect in the upper–layer quantity, Ṽ (0),
r , was arbitrary, and measuring the mis-

match in any of the other output quantities produced similar results.
To evaluate our implementation we selected the IIOs specified by (26), and we report our results in Figs. 2 and 3. More 

specifically, Fig. 2 displays both the rapid and stable decay of the relative error as N is increased, and how this rate of decay 
improves as ε is decreased. Fig. 3 shows both how the error shrinks as ε becomes smaller, and that this rate is enhanced 
as N is increased.
12



D.P. Nicholls Journal of Computational Physics 453 (2022) 110961
Fig. 2. Plot of relative error with six choices of N = 0, 2, 4, 6, 8, 10 and four choices of ε = 0.005, 0.01, 0.05, 0.1 for IIO choice (26) with Taylor summation. 
Physical parameters were (24) and numerical discretization was (25).

Fig. 3. Plot of relative error with six choices of N = 0, 2, 4, 6, 8, 10 and four choices of ε = 0.005, 0.01, 0.05, 0.1 for IIO choice (26) with Taylor summation. 
Physical parameters were (24) and numerical discretization was (25).

5.3. Comparison with published results

Having verified the accuracy and reliability of our implementation we felt justified in simulating results which appear in 
the engineering literature, in particular the computations published by Kumar et al. [11]. In this work the authors investi-
gated the dispersion relation of hybrid plasmon–phonon polaritons excited in a configuration consisting of graphene–hBN 
heterostructures. In this study the tunable graphene surface plasmons which are generated in the mid–infrared to terahertz 
regime were coupled to the hBN phonon polaritons which also exist in this regime.

Kumar et al. studied the linear dispersion relation for a thin (50 nm thick) layer of hBN in air, and then recomputed this 
with a monolayer sheet of graphene attached to the hBN. In short, they computed the singularities of A0 , see (18), as the 
spatial wavenumber q = 2π/d and illumination frequency ω = 2π/λ were varied. We have reproduced these results in the 
regimes of Type I hyperbolicity (760 cm−1 < ω < 860 cm−1) without graphene (Fig. 4) and with graphene affixed above 
and below the hBN layer (Fig. 5). In addition, we have computed in the Type II hyperbolicity range (1000 cm−1 < ω <

1700 cm−1) without graphene (Fig. 6) and with graphene above and below the hBN layer (Fig. 7).
In these plots we see the characteristic appearance of multiple slab polariton modes in the regions of hBN hyperbolicity, 

Re {εx} Re {εz} < 0, indicated by the yellow regions where

log (Re {�}) = log (Re {condA0}) , (27)

cf. (18), becomes large, hinting at small values of the dispersion relation. For instance, in Fig. 4 we find a range of frequencies 
between 780 and 830 cm−1 which feature multiple ranges of large � indicating that several modes propagate in the hBN 
for these frequencies. In addition, we see that the number of such modes increases with increasing ω in Fig. 4 (Type I 
hyperbolicity) and with decreasing ω in Fig. 6 (Type II hyperbolicity). Additionally, these figures are significantly modified 
with the introduction of graphene. In both configurations an additional mode, of quite strong magnitude, is introduced at 
lower frequency than the hypebolic regions, which merges rather smoothly to this range as q increases, as noted in [11].
13
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Fig. 4. Linear dispersion relation for a layered air/hBN/air structure in the frequency range of Type I hyperbolicity of hBN. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Linear dispersion relation for a layered air/graphene/hBN/graphene/air structure in the frequency range of Type I hyperbolicity of hBN.

Fig. 6. Linear dispersion relation for a layered air/hBN/air structure in the frequency range of Type II hyperbolicity of hBN.

Beyond this we can use our solver for (17) to investigate whether one can realize these properties in an actual device. 
For this we introduce corrugations to the upper air/hBN and lower hBN/air interfaces shaped by

f (1)(x) = f (2)(x) = cos(2πx/d),

which generate the necessary momentum to realize surface plasmon waves [49]. (We note that, by contrast, Kumar et al.
generate this momentum with periodically spaced ribbons of graphene.) We chose the following physical parameters

d = 2π/q, θ = 0, ε(0) = ε(2) = I, ε(1) = εhBN, σ̂ (1) = σ̂ (2) =
{

0,

σ̂D ,
(28)
14
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Fig. 7. Linear dispersion relation for a layered air/graphene/hBN/graphene/air structure in the frequency range of Type II hyperbolicity of hBN.

Fig. 8. Nonlinear dispersion relation, (27), for a layered air/hBN/air structure in the frequency range of Type I hyperbolicity of hBN.

Fig. 9. Nonlinear dispersion relation, (27), for a layered air/graphene/hBN/graphene/air structure in the frequency range of Type I hyperbolicity of hBN.

(see (3) and (8)) in TM polarization, and the numerical parameters

Nq = 201, Nω = Nq + 1, Nx = 16, Nz = 16, N = 4, a = b = 1/2. (29)

Again, we made the Després choice of operators (26) and considered the value ε = 0.01 which is sufficiently large to 
generate a plasmonic response [61].

To study the response of these configurations under plane–wave illumination we computed the absorbance (the total 
energy minus the reflected and transmitted energies) which characterizes the energy propagating inside the hBN layer. Here 
we see in this nonlinear dispersion relation the strong resemblance between our device simulations and the predictions 
of the linear dispersion relation. More specifically we note the similarities between Figs. 4 and 8 in the Type I hyperbolic 
regime without graphene, Figs. 5 and 9 in the Type I hyperbolic regime with graphene, Figs. 6 and 10 in the Type II 
hyperbolic regime without graphene, and Figs. 7 and 11 in the Type II hyperbolic regime with graphene. Such results 
15
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Fig. 10. Nonlinear dispersion relation, (27), for a layered air/hBN/air structure in the frequency range of Type II hyperbolicity of hBN.

Fig. 11. Nonlinear dispersion relation, (27), for a layered air/graphene/hBN/graphene/air structure in the frequency range of Type II hyperbolicity of hBN.

indicate that, in fact, such devices can be built and a construction strategy based upon periodically corrugated diffraction 
gratings is one realistic possibility [62].
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