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Numerical simulation of solitary waves on plane slopes
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Abstract

In this paper, we present a numerical method for the computation of surface water waves over bottom topography.
It is based on a series expansion representation of the Dirichlet–Neumann operator in terms of the surface and bottom
variations. This method is computationally very efficient using the fast Fourier transform. As an application, we
perform computations of solitary waves propagating over plane slopes and compare the results with those obtained
from a boundary element method. A good agreement is found between the two methods.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Solitary water waves; Dirichlet–Neumann operators; Bottom topography; Geometrical perturbation methods; Bound-

ary element method

1. Introduction

Surface water wave propagation over variable depth has been studied for many years in applications
to coastal engineering. This problem can be very complex due to the richness of coastal wave dynamics:
when entering shallow water, waves are strongly affected by the bottom through shoaling, refraction,
diffraction and reflection. Nonlinear effects related to wave–wave and wave–bottom interactions can
cause wave scattering and depth-induced wave breaking. In turn, nonlinear waves can have a great
influence on sediment transport and the formation of sandbars in nearshore regions.
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Traditionally, the modeling of water waves over variable depth has been tackled using both the full Euler
equations and long wave models such as shallow water equations or Boussinesq equations. Much work
has been devoted to develop numerical methods for the solution to the full equations. Two main classes of
numerical methods are boundary element methods[18,10,15]and spectral methods. In particular, spectral
methods based on perturbative expansions have been developed by Dommermuth and Yue[11], West et
al. [25], Craig and Sulem[9], Nicholls [19] and Bateman et al.[2] for the modeling of water waves over
constant or infinite depth. Similar methods have been proposed by Liu and Yue[17] and Smith[23] to
include the effects of a bottom topography.

In this paper, we present a numerical method for the simulation of water waves over variable depth,
based on an extension of the work of Craig and Sulem[9]. We use a series expansion formulation of
the Dirichlet–Neumann operator on the free surface in terms of the surface and bottom variations. The
spatial discretization is efficiently performed by a pseudospectral method using the fast Fourier transform.
To test the accuracy of our method, we perform computations of solitary waves propagating over plane
slopes and compare the results with those obtained from a boundary element method. For convenience,
we restrict ourselves to a two-dimensional configuration.

The paper is organized as follows. InSection 2, we present the mathematical formulation of the problem
and introduce the Dirichlet–Neumann operator. InSection 3, we give a description of the numerical method
for the discretization of the equations.Section 4describes the boundary element method, and inSection
5, we present our numerical results of solitary waves propagating over a sloping bottom.

2. Equations of motion and Dirichlet–Neumann operator

We consider the motion of a free surface on top of a two-dimensional fluid domain defined byΩ(β, η) =
{(x, y) : x ∈ R,−h + β < y < η}, whereβ(x) denotes the bottom perturbation andη(x, t) denotes the
free surface. The mean water level is located aty = 0 and the constant reference depth is represented by
h. The fluid is assumed to be incompressible, inviscid and irrotational, so that the fluid velocity is given
by u = ∇ϕ and the velocity potentialϕ(x, y, t) satisfies

�ϕ = 0 in Ω(β, η). (1)

On the bottom boundaryy = −h + β, the velocity potential obeys the Neumann boundary condition

∂nϕ = 0, (2)

wheren is the exterior unit normal. The top boundary conditions are the usual kinematic and dynamic
conditions imposed ony = η, namely

∂tη = ∂yϕ − (∂xη)(∂xϕ), (3)

∂tϕ = −1
2|∇ϕ|2 − gη, (4)

whereg is the acceleration due to gravity. The effects of surface tension are neglected. Following[9], we
setξ(x, t) = ϕ(x, η(x, t), t) and define the Dirichlet–Neumann operator

G(β, η)ξ = (1 + (∂xη)2)1/2∂nϕ|y=η, (5)

which maps Dirichlet data to Neumann data on the free surface. This operator is linear inξ but it is
nonlinear with explicit nonlocal dependence onβ andη which determine the fluid domain. In terms of
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the surface quantitiesη andξ, the boundary conditions(3) and (4)can be rewritten as

∂tη = G(β, η)ξ, (6)

∂tξ = − 1

2(1+ (∂xη)2)
((∂xξ)

2 − (G(β, η)ξ)2 − 2(∂xη)(∂xξ)G(β, η)ξ) − gη. (7)

These equations are Hamilton’s canonical equations in Zakharov’s formulation of the water wave problem
as a Hamiltonian system[26], i.e.

∂tη = δξH, ∂tξ = −δηH (8)

with Hamiltonian

H = 1
2

∫
(ξG(β, η)ξ + gη2) dx. (9)

The analyticity of Dirichlet–Neumann operators has been studied by many authors beginning with the
work of Coifman and Meyer[4] which built on the results of Calderón [3]. Coifman and Meyer showed
that, if η ∈ Lip(R), the Taylor series

G(β, εη) =
∞∑
l=0

εl G(l)(β, η) (10)

converges forε sufficiently small. Subsequently, forβ = 0, Craig et al.[8] extended these results for
periodicη ∈ C1(R2), and Craig and Nicholls[6] generalized this argument forη ∈ C1(Rd). Nicholls and
Reitich[20] devised a direct method to estimate theG(l) (requiring the slightly stronger hypothesisη ∈
C3/2+δ(Rd)) with the goal of stabilized high-order calculations. These high-order results were exhibited
in [21,22], and joint analyticity results were established.

In the case of a flat bottom (β = 0), Craig and Sulem[9] showed that explicit expressions for the
G(l) can be computed using a recursion formula, the operator expansion method. As noted by Craig and
Nicholls [7], the adjoint recursion formula turns out to be more efficient in terms of computational time
and memory storage, since each termG(l)ξ can be computed as a vector quantity. The first terms are given
by

G(0) = D tanh(hD), G(1) = DηD − G(0)ηG(0),

G(2) = 1
2(G(0)Dη2D − D2η2G(0) − 2G(0)ηG(1)), (11)

whereD = −i∂x andG(0) represent Fourier multiplier operators.
This approach can be extended to account for a nontrivial bottom topography. In Craig et al.[5], it

is shown that the same recursion formula as in(11) can be written for the Dirichlet–Neumann operator,
except that the first termG(0) is replaced by

G(0) = D tanh(hD) + DL(β). (12)

By an extension of the argument in[20], it can be shown that the operatorL(β) can be expressed as a
convergent Taylor series

L(β) =
∞∑
j=0

Lj(β), (13)
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whose terms can be also derived explicitly from a recursion formula. The first terms are given by

L0 = 0, L1 = −sech(hD)β sech(hD), L2 = sech(hD)βD sinh(hD)L1, (14)

where theLj are homogeneous of degreej inβ. Clearly,L(β) = 0 forβ = 0 andG(0, η) reduces to that for
a flat bottom. The series expansion representation of the Dirichlet–Neumann operator as presented here
is suitable for numerical computations (seeSection 3) and it proves useful for the systematic derivation
of Hamiltonian long wave approximations with bottom topography. The reader is referred to[5] for more
details on the derivation ofL(β) and on the long wave expansions.

3. Numerical method

We assume periodic boundary conditions in thex-direction and, as in[9,19], we use a pseudospectral
method for the space discretization of the problem. This is a natural choice for the computations ofG(β, η)
andL(β) since each term in(11) and (14)consists of concatenations of Fourier multipliers with powers
of β andη. Both operators are approximated by a finite number of terms

G(β, η) �
MG∑
l=0

G(l)(β, η), L(β) �
ML∑
j=0

Lj(β), (15)

where the ordersMG andML are independently chosen according to the physical problem under consid-
eration. In practice, it is not necessary to specify large values ofMG andML due to the fast convergence
of the series expansions forG(β, η) andL(β). The three variablesη, ξ andβ are expanded in truncated
Fourier series with the same number of modes. Applications of Fourier multipliers are performed in spec-
tral space, while nonlinear products are calculated in physical space at a discrete set of equally spaced
points. All operations are performed via the FFTW routines[12].

Time integration is carried out in Fourier space. The linear terms in(6) and (7)are exactly solved
by an integrating factor technique. The nonlinear terms are integrated using a fourth-order Adams–
Bashford/Moulton predictor–corrector scheme with constant time step[2]. A predictor–corrector scheme
is preferred for example over a Runge–Kutta scheme[11,17] because the latter would require multiple
evaluations ofG(β, η) at intermediate times, which results in a larger computational effort and a faster
accumulation of numerical errors. On the other hand, the predictor–corrector scheme requires more
memory storage since one needs to save the solution at some previous times. This is however not too
memory demanding at least for two-dimensional problems.

In our computations, after some time of integration, we have observed spurious oscillations in the wave
profile due to an onset of instability initiated by some growth of numerical errors at high wavenumbers.
The cause of this problem may be related to aliasing errors inherent to the pseudospectral method and/or
the ill-conditioning of the operator expansion method[21]. Similar high-wavenumber instabilities were
observed by other authors (e.g.[9,11,18]) who used smoothing techniques to overcome this difficulty.
Here, at every time step, we apply an ideal low-pass filter toη andξ of the form

f (k) =




1 if
|k|
kmax

≤ ν,0 < ν ≤ 1,

0 if |k|
kmax

> ν,

(16)
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wherekmaxis the highest wavenumber of the spectrum. In our applications, we typically found thatν = 0.8
suffices to stabilize the solution. Applying an ideal filter with a high value ofν ensures that only very low
energy levels located in the high-wavenumber region of the spectrum are suppressed by filtering.

4. Boundary integral formulation and boundary element method

In this section, we briefly describe the numerical model developed by Grilli et al.[15] for the simulation
of two-dimensional nonlinear water waves over bottom topography. This model has been recently extended
to three dimensions by Grilli et al.[13].

The governing equations are still given for a potential flow. However, the kinematic and dynamic
boundary conditions(3) and (4)are expressed in the mixed Eulerian–Lagrangian formulation as

dtx = u = ∇ϕ, (17)

dtϕ = 1
2|∇ϕ|2 − gy, (18)

where d/dt = ∂/∂t + ∇ϕ · ∇ denotes the Lagrangian time derivative andx denotes the vector position
of a fluid particle on the free surface. Green’s second identity transforms Laplace’s equation(1) into the
boundary integral equation

α(x)ϕ(x) =
∫
S

(
∂nϕ(x′)Γ (x′, x) − ϕ(x′)∂nΓ (x′, x)

)
dS′, (19)

whereα(x) is proportional to the exterior solid angle at pointx andΓ (x′, x) is the two-dimensional free
space Green’s function defined by

Γ (x′, x) = − 1

2π
ln |x′ − x|, (20)

which depends on the distance from the source pointx′ to the field pointx, both on the boundaryS. Note
that, in three dimensions, the Green’s function is defined byΓ (x′, x) = 1/(4π|x′ − x|). The boundaryS
of the fluid domain includes the free surface, the bottom and the lateral boundaries.Eq. (19)corresponds
to the boundary integral formulation of the Dirichlet–Neumann operator, as opposed to the perturbative
formulation given inSection 2.

Grilli et al. [15] used a high-order boundary element (BE) method for the discretization of(19). The
boundary is discretized into collocation nodes, defining elements for local interpolation of the solution
in between these nodes. The boundary elements are four-node quadrilaterals associated with cubic shape
functions. The discretized boundary integrals are evaluated by Gauss–Legendre quadrature. A method of
singularity extraction based on coordinate transformations is used to calculate the integrals at singular
points. The linear algebraic system resulting from the discretization of(19) is numerically solved either
by a direct method (LU decomposition) or, for large-scale problems, by an iterative method (GMRES).
The evolution equations(17) and (18)are integrated in time using a second-order explicit scheme based
on Taylor series expansions of the variablesx andϕ about the current time. The advantages of this scheme
are that multiple solutions to the linear system are not required at intermediate times and, once the linear
system is solved, the matrix associated with it can be used to compute the high-order terms in the temporal
Taylor expansions without too much additional effort (see also[10]).
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It should be noted that this two-dimensional BE model has been extensively tested and validated against
experimental results for both solitary waves and periodic waves[14–16]. The reader is referred to[13,15]
for more details on their numerical models. In this paper, we use the BE model as a reference to test the
performance of our operator expansion (OE) model.

5. Numerical results

The numerical method described inSection 3is used to compute the evolution of solitary waves
traveling up plane slopes. The accuracy of the computations are assessed by direct comparison with
results obtained from the BE method described inSection 4.

The geometry of the bottom is specified as follows: a flat bottom of depthhover a short distanced from
the left extremity of the domain, and a slopes for x ≥ d. All physical quantities are non-dimensionalized
according to long wave theory, i.e. lengths are divided byhand times divided by

√
h/g. This is equivalent

to settingg = 1 andh = 1. The initial condition is a fully nonlinear solitary wave of heightA computed
by Tanaka’s method[24]. This corresponds to a numerically exact and permanent solution of potential
flow theory. We have checked numerically that such a wave propagates with negligible change of shape
and speed on uniform depth in our model. Because fixed vertical walls are specified at extremities of
the domain in the BE model, both the bottom topography and the initial condition in the OE code are
symmetrically extended by reflection in order to simulate a Neumann boundary condition at some distance
up the slope. As shown inFig. 1, the situation is two solitary waves propagating symmetrically towards
a submerged island between them. For the computations presented below, we have used expansions of
G(β, η) andL(η) up to ordersMG = 8 andML = 2 which give satisfactory results with reasonable cost.

We present results of computations for incident solitary waves of amplitudesA = 0.2,0.3,0.4. In the
three cases, the imposed bottom slope is fairly steep (s = 1/18). It starts atx = d = 8.225 and ends at
x = 25. A resolution of 512 points over the whole domain 0≤ x ≤ 52 was specified in the pseudospectral
code. The time step was chosen sufficiently small:�t = 0.01 for A = 0.2,0.3 and�t = 0.005 for
A = 0.4. Fig. 1 actually shows the configuration withA = 0.2 ands = 1/18. In the BE model, the
domain is truncated atx = 25 and a discretization of 128 nodes was specified for the free surface (and

Fig. 1. Sketch of the bottom topography and initial condition in the OE model. Here the two solitary waves are of amplitude
A = 0.2 and the bottom slope iss = 1/18.
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Fig. 2. Comparison between BE (dashed line) and OE (solid line) wave profiles fors = 1/18 andA = 0.2 at t = 5,13,14.8
(from top to bottom).
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Fig. 3. Comparison between BE (dashed line) and OE (solid line) wave profiles fors = 1/18 andA = 0.3 at t = 4.4,12,13.6
(from top to bottom).

the bottom). Note that it is not necessary to use a very large number of nodes because, in the mixed
Eulerian–Lagrangian formulation, nodes which are associated with fluid particles move according to the
fluid velocity and tend to gather in regions of large gradients. As a result, there is a gain of resolution in
small-scale regions like the wave crest which need to be well-resolved.
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Fig. 4. Comparison between BE (dashed line) and OE (solid line) wave profiles fors = 1/18 andA = 0.4 at t = 4.2,10.2,12
(from top to bottom).

Figs. 2–4show the comparison of wave profiles at three successive times forA = 0.2,0.3,0.4 re-
spectively. For the OE computations, only the left half of the domain is displayed. One can see that, at
early times, the BE and OE solutions remain indistinguishable. However, as the solitary waves travel
up the slope and steepen, some discrepancies become noticeable, especially at and ahead of the wave
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Fig. 5. Time evolution of relative errors of energy conservation�H/H0 for A = 0.2 (solid line), 0.3 (dashed line) and 0.4
(circles) in the OE model withs = 1/18.H0 denotes the energy level at the initial time.

crest. The BE solution exhibits a sharper and higher wave crest than that of the OE solution. A slightly
higher surface elevation is also noticeable ahead of the wave for the BE solution. These discrepancies
are more pronounced in the latest stages as the solitary waves get close to the breaking point after having
propagated some distance up the slope. The breaking point corresponds to the instant when the front
face of the wave reaches a vertical tangent before the wave crest overturns. Increasing the resolution in
the spectral computations does not yield a better agreement between BE and OE results. It should be
remembered that the Eulerian–Lagrangian BE formulation allows for wave overturning while the OE
method requires that the free surface be represented as the graph of a function,y = η(x, t). Consequently,
it is not surprising that near the onset of breaking the BE results are more reliable. Nevertheless, the OE
results are quite close to the BE ones until near the time of breaking. One can see that, for the three cases
A = 0.2,0.3,0.4, the rear faces of the waves match almost perfectly and the wave crests have nearly the
same locations. As expected, the higher the incident wave amplitude is, the sooner the steepening process
occurs.

Although there is a small difference of locations for the Neumann boundary condition at the right end
of the slope between the two models, we have checked that reducing the length of the plateau on top of the
submerged island in the OE code, or extending the truncation of the domain in the BE code, gives similar
results as previously. Solitary waves have a velocity distribution which is very localized around the wave
crest, and thus the Neumann boundary condition plays a small role until the boundary is reached.

In Fig. 5, we plot the relative errors of energy conservation

�H

H0
= H − H0

H0
, (21)

for A = 0.2,0.3,0.4 in the OE model, whereH is given by(9) andH0 denotes the energy level at the
initial time. Overall, the errors remain small (less than 10%) until the latest stages of wave shoaling shown
in Figs. 2–4. As expected, there is a gradual growth of errors as the waves approach breaking. One can
also see that the relative errors are smaller for high-amplitude waves than for small-amplitude waves.
This is in accordance with the results inFigs. 2–4which show a better agreement between BE and OE
models for high wave amplitudes. A possible explanation is that high-amplitude waves are less influenced
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Fig. 6. Comparison between BE (dashed line) and OE (solid line) wave profiles fors = 1/35 andA = 0.3 att = 16,17.8,21.4
(from top to bottom).

by the bottom, especially at early stages of shoaling, and so they are less affected by errors due to the
approximation of the bottom topography.

Finally, Fig. 6 shows the comparison between BE and OE results forA = 0.3 and a milder bottom
slopes = 1/35. The latter extends over a longer interval 8.225≤ x ≤ 42 but the same discretizations as
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previously are specified for the two models. Similar observations as forFig. 3can be made, except that
the steepening process takes longer to develop. Nevertheless, it can be seen that the two solutions remain
close to each other over a long time of integration.

6. Conclusions

We have presented a numerical method for the computation of unsteady nonlinear surface waves over
bottom topography. As an extension of the work of Craig and Sulem[9], the model is based on the expan-
sion of the Dirichlet–Neumann operator in terms of the surface and bottom variations and a pseudospectral
method is used for the spatial discretization of the problem. In this paper, we have applied the model to
the computation of solitary waves propagating over plane slopes and direct comparisons with results from
a boundary element method have been made. Near breaking, the operator expansion representation is
numerically not as robust as the boundary element method, since questions arise concerning the stability
of operator expansion formulas and limitations of the underlying formulation in terms of the free surface
as the graph of a function. Nevertheless, we have obtained quite satisfactory results of wave shoaling
up to the time of breaking; a good agreement is found for the amplitude and location of the wave crest.
Regarding the computational efficiency, it should be emphasized that the present formulation takes ad-
vantage of the fast Fourier transform and, unlike the boundary element method, no additional collocation
points are required for the discretization of the bottom. Our method can also be easily extended to three
dimensions as well as to moving (time-dependent) bottom geometries. For the near future, we plan to
address the problems of wave transformations over submerged bars and sinusoidal ripples, with different
types of lateral boundary conditions like wavemakers and absorbing beaches[1,23].
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