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Abstract The potential flow equations which govern the free-surface motion of an ideal
fluid (the water wave problem) are notoriously difficult to solve for a number of reasons.
First, they are a classical free-boundary problem where the domain shape is one of the un-
knowns to be found. Additionally, they are strongly nonlinear (with derivatives appearing in
the nonlinearity) without a natural dissipation mechanism so that spurious high-frequency
modes are not damped. In this contribution we address the latter of these difficulties us-
ing a surface formulation (which addresses the former complication) supplemented with
physically-motivated viscous effects recently derived by Dias et al. (Phys. Lett. A 372:1297–
1302, 2008). The novelty of our approach is to derive a weakly nonlinear model from the
surface formulation of Zakharov (J. Appl. Mech. Tech. Phys. 9:190–194, 1968) and Craig
and Sulem (J. Comput. Phys. 108:73–83, 1993), complemented with the viscous effects
mentioned above. Our new model is simple to implement while being both faithful to the
physics of the problem and extremely stable numerically.

Keywords Water waves · Weak surface viscosity · Weakly nonlinear model ·
Spectral method · Filtering

1 Introduction

The free-surface evolution of surface ocean waves is important in a wide array of engineer-
ing applications from wave-structure interactions in deep-sea oil rig design, to the shoaling
and breaking of waves in near-shore regions, to the transport and dispersion of pollutants in
lakes, seas, and oceans. The potential flow equations which model this “water wave prob-
lem” [10] are notoriously difficult for numerical schemes to simulate and the most success-
ful approaches involve sophisticated integral equation formulations, subtle quadrature rules,
and preconditioned iterative solution methods accelerated by, e.g., Fast Multipole methods
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(see [7, 8]). In this paper we propose a new model which is not only simple to implement nu-
merically, but also incorporates a physically motivated dissipation mechanism to overcome
some of the difficulties mentioned above.

The computation of these surface water waves is challenging for several reasons. The
most important are that the domain of definition of the problem is one of the unknowns,
and that the equations are strongly nonlinear (with derivatives appearing in the nonlin-
earity) without a natural dissipation mechanism to damp the growth of spurious, high-
frequency modes. One method for addressing the first difficulty, and reducing the size of
the computational domain by a dimension, is to resort to a surface formulation. One way
to accomplish this is to utilize surface integrals (for a sampling of the vast literature on
this subject see the survey articles of [4] and, from the Annual Review of Fluid Mechan-
ics [11, 16–18, 21]). Another approach, which we follow here, is to use the Hamiltonian
surface formulation of Zakharov [22] which was augmented and simplified by Craig and
Sulem [3] (see also the closely related work of Watson and West [20], West et al. [19], and
Milder [12]). The contribution of Craig and Sulem to the formulation was the introduction of
the Dirichlet–Neumann operator (DNO)—in this context an operator which inputs surface
Dirichlet data for Laplace’s equation inside the fluid domain and produces surface Neumann
data—together with a perturbative method for its calculation. In this paper we will use this
perturbative approach to surface operators to derive a weakly nonlinear model for the water
wave problem.

Recently, Dias et al. [5] have generalized the water wave problem to incorporate weak
surface viscosity effects. While their derivation is not completely rigorous (e.g., they con-
sider irrotational flows though viscosity will certainly destroy this property), it is correct in
the linear wave limit, and they argue that it is a viable model in the case of small viscosity.
The reason for putting forward a viscous water wave model is that it is significantly simpler
to numerically simulate and mathematically analyze than the full Navier–Stokes equations
posed on a moving domain. In this work we take a slightly different point of view to Dias,
Dyachenko, and Zakharov’s (DDZ’s) model: It provides a physically-motivated mechanism
for adding dissipation to the water wave equations. This is important since Craig and Sulem’s
[3] implementation of Zakharov’s equations for inviscid flows required significant filtering
in order to stabilize their computations. Our new contribution is to argue that it is more nat-
ural to consider the DDZ model with very small viscosity for stabilized, inviscid water wave
simulations. However, in this initial contribution we further simplify the DDZ equations
to include only linear and quadratic contributions thereby constituting a weakly nonlinear
model for viscous water waves. This approach has the advantage of capturing nearly all of
the essential linear and nonlinear effects seen in mildly nonlinear water waves, while being
considerably simpler to implement than the full DDZ equations.

The organization of the paper is as follows: In Sect. 2 we recall the governing equations
of the water wave problem and, in Sect. 2.1, the surface formulation due to Zakharov and
Craig and Sulem. In Sect. 2.2 we discuss analyticity properties of surface operators which
play a crucial role in the surface formulation we employ, in Sect. 2.3 we derive the weakly
nonlinear model which is the focus of this paper, and in Sect. 2.4 we discuss a nondimen-
sionalization of free-surface flows. In Sect. 2.5 we derive two classes of exact solutions of
our new model in the special cases of linear viscous waves and inviscid traveling waves,
respectively. Finally, we present numerical results in Sect. 3 and concluding remarks in
Sect. 4.
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2 Governing Equations

To begin, we consider the potential flow equations which model the free-surface evolution
of a deep, two-dimensional ideal (irrotational, incompressible, inviscid) fluid [10]. For this
we define the fluid domain

Sη := {(x, y) ∈ R × R | y < η(x, t)},

where η measures the deviation of the fluid surface from the quiescent state at y = 0. The
well-known governing equations of an ideal fluid under the influence of gravity [10] are

�ϕ = 0 in Sη (2.1a)

∂yϕ → 0 as y → −∞ (2.1b)

∂tη = ∂yϕ − (∂xη)∂xϕ at y = η (2.1c)

∂tϕ = −gη − 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2 at y = η, (2.1d)

where g is the gravitational constant, and ϕ is the velocity potential (the velocity can be
expressed as �V = ∇ϕ). This must be supplemented with initial conditions:

η(x,0) = η0(x), ϕ(x, y,0) = ϕ0(x, y), (2.1e)

though, from the theory of elliptic partial differential equations [6], the boundary data
ϕ(x,η(x,0),0) suffices. Additionally, lateral boundary conditions must be specified, and
for this we make the classical choice of periodicity:

η(x + 2π, t) = η(x, t), ϕ(x + 2π,y, t) = ϕ(x, y, t). (2.1f)

In a recent contribution [5], Dias, Dyachenko, and Zakharov proposed a modification of
(2.1) to take into account some weak effects of surface viscosity:

�ϕ = 0 in Sη (2.2a)

∂yϕ → 0 y → −∞ (2.2b)

∂tη = ∂yϕ + 2ν∂2
x η − (∂xη)∂xϕ at y = η (2.2c)

∂tϕ = −gη − 2ν∂2
yϕ − 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2 at y = η, (2.2d)

together with initial conditions and periodicity. We point out that in this modification, only
(2.2c) and (2.2d) are changed, each with the addition of a linear term scaled by the viscos-
ity ν.

2.1 Surface Variables

We now follow the approach of Zakharov [22] and Craig and Sulem [3] and note that to
solve (2.2) it is sufficient to find {η(x, t), ξ(x, t)} where

ξ(x, t) := ϕ(x,η(x, t), t) (2.3)
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is the velocity potential at the free surface; the potential inside the fluid domain can be found
from these boundary values and an appropriate integral formula. It is clear from (2.2) that
it will be necessary to produce first and second order derivatives of the velocity potential at
the surface in order to close the system of equations for {η, ξ}. With this in mind we define
the following maps: Given a solution of the prototype elliptic problem

�v = 0 y < σ(x) (2.4a)

∂yv → 0 y → −∞ (2.4b)

v = ζ at y = σ(x), (2.4c)

compute

X(σ)[ζ ] := ∂xv(x,σ ), Y (σ )[ζ ] := ∂yv(x,σ ), Z(σ)[ζ ] := ∂2
y v(x, σ ), (2.5)

which are surface operators closely related to the classical Dirichlet–Neumann operator
[3, 14]. In terms of these operators the surface formulation of the water wave equations
with viscosity now reads:

∂tη = Y (η)[ξ ] + 2ν∂2
x η − (∂xη)X(η)[ξ ] (2.6a)

∂t ξ = −gη − 2νZ(η)[ξ ] + 1

2
(Y (η)[ξ ])2 − 1

2
(X(η)[ξ ])2 + 2ν(∂2

x η)Y (η)[ξ ]
− (∂xη)X(η)[ξ ]Y (η)[ξ ]. (2.6b)

2.2 Analytic Dependence of Surface Integral Operators

An important theorem, which will be useful for our later developments, regarding the oper-
ators X, Y , and Z from (2.5) is that they depend analytically upon the surface deformation
σ(x). More precisely, if we set σ(x) = εf (x) then the following series converge strongly

X(εf ) =
∞∑

n=0

Xn(f )εn, Y (εf ) =
∞∑

n=0

Yn(f )εn, Z(εf ) =
∞∑

n=0

Zn(f )εn. (2.7)

While this result is actually new for all three operators, it is easily derived from our previous
work [14] and we therefore omit both the formal statement and proof.

Our aim in this paper is to study a set of model equations of (2.6) valid in the weakly
nonlinear regime, {η, ξ} � 1, accurate to quadratic order. For this it is crucial to have ex-
pressions for the operators X0, X1, Y0, Y1, Z0, and Z1. To find these we use the method of
Operator Expansions [3, 13] which we now describe. Consider the harmonic function

ϕp(x, y) = eipx+|p|y, p ∈ Z

which satisfies (2.4a) and (2.4b) and is 2π -periodic in x. Focusing now upon the operator
Y (σ)[ζ ] we have, from the definition in (2.5):

Y (σ)
[
eipx+|p|σ ] = |p|eipx+|p|σ .

Setting σ = εf , substituting in the expansion for Y in (2.7), and using the Taylor series for
the exponential we find

( ∞∑

n=0

Yn(f )εn

)[
eipx

∞∑

n=0

(f n/n!)|p|nεn

]
= |p|eipx

∞∑

n=0

(f n/n!)|p|nεn. (2.8)
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Equating at order zero we find

Y0(f )[eipx] = |p|eipx

implying, if we use Fourier multiplier notation,

Y0(f )[eipx] = |D|eipx,

where D := (1/i)∂x . Recalling that any function of interest to us can be represented through
its Fourier series, e.g.

ζ(x) =
∞∑

p=−∞
ζ̂peipx, ζ̂p = 1

2π

∫ 2π

0
ζ(x)e−ipx dx,

we conclude that

Y0(f )[ζ(x)] = |D|ζ(x). (2.9)

At order one in (2.8) we find

Y1(f )[eipx] + Y0(f )[f |p|eipx] = f |p|2eipx,

so that

Y1(f )[eipx] + Y0(f )[f |D|eipx] = f |D|2eipx.

Again, representing a generic function ζ by its Fourier series

Y1(f )[ζ(x)] = f |D|2ζ(x) − Y0(f )[f |D|ζ(x)],

using (2.9) we find

Y1(f )[ζ(x)] = f |D|2ζ(x) − |D|[f |D|ζ(x)]. (2.10)

In a similar fashion we can find forms for X0, X1, Z0, and Z1:

X0(f )[ζ ] = iDζ = ∂xζ (2.11a)

X1(f )[ζ ] = f (iD)|D|ζ − (iD)[f |D|ζ ]
= f ∂x |D|ζ − ∂x[f |D|ζ ] = −(∂xf )(|D|ζ ) (2.11b)

Y0(f )[ζ ] = |D|ζ (2.11c)

Y1(f )[ζ ] = f |D|2ζ − |D|[f |D|ζ ] (2.11d)

Z0(f )[ζ ] = |D|2ζ (2.11e)

Z1(f )[ζ ] = f |D|3ζ − |D|2[f |D|ζ ]. (2.11f)

Noting that the zeroth order operators X0, Y0, Z0 are independent of f , we suppress this
notation from this point forward.
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2.3 Weakly Nonlinear Model Equations

With the expansions of the previous section we can now form a weakly nonlinear approx-
imation to (2.6). If we assume that η and ξ are small (and of the same order) then (2.6)
implies:

∂tη = Y0[ξ ] + Y1(η)[ξ ] + 2ν∂2
x η − (∂xη)X0[ξ ] + Qη(η, ξ)

∂t ξ = −gη − 2νZ0[ξ ] − 2νZ1(η)[ξ ] + 1

2
(Y0[ξ ])2 − 1

2
(X0[ξ ])2

+ 2ν(∂2
x η)Y0[ξ ] + Qξ(η, ξ),

where Qη and Qξ are of cubic or higher order in {η, ξ}. Using (2.11) and dropping the cubic
and higher contributions, we find the weakly nonlinear approximation of (2.6) which we
term WWV2 (Water Waves with Viscosity and order of approximation 2):

∂tη = |D|ξ + 2ν∂2
x η + η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ (2.12a)

∂t ξ = −gη − 2ν|D|2ξ − 2νη|D|3ξ + 2ν|D|2[η|D|ξ ]

+ 1

2
(|D|ξ)2 − 1

2
(∂xξ)2 + 2ν(∂2

x η)|D|ξ. (2.12b)

2.4 Nondimensionalization

Equations (2.12) can be nondimensionalized using the classical scalings

x = λx ′, y = λy ′, t = λ√
gλ

t ′, η = aη′, ξ = a
√

gλξ ′,

where λ denotes a typical wavelength (which we will set to 2π ), and a is a typical amplitude.
Defining the nondimensional quantities

α := a

λ
, β := ν√

gλ3
,

it is easy to see that (2.12) transforms to (upon dropping primes)

∂tη = |D|ξ + 2β∂2
x η + α

{
η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ

}
(2.13a)

∂t ξ = −η − 2β|D|2ξ + α

{
−2βη|D|3ξ + 2β|D|2[η|D|ξ ]

+ 1

2
(|D|ξ)2 − 1

2
(∂xξ)2 + 2β(∂2

x η)|D|ξ
}
. (2.13b)

In our numerical experiments we will vary the nondimensional viscosity β .

2.5 Exact Solutions

Here we present exact solutions of (2.12) in two special cases: Linear waves with viscosity,
and nonlinear traveling waves without viscosity. We briefly present these for later use in
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our numerical convergence studies of Sects. 3.2 and 3.3. To begin, it is easy to see that the
(dimensional) linearized water wave equations with viscosity have solution

η(x, t) =
∞∑

p=−∞
η̂p(t)eipx, ξ(x, t) =

∞∑

p=−∞
ξ̂p(t)eipx,

with
(

η̂p(t)

ξ̂p(t)

)
= e−2νp2t

(
cos(ωpt)η̂p(0) + |p|

ωp
sin(ωpt)ξ̂p(0)

−ωp

|p| sin(ωpt)η̂p(0) + cos(ωpt)ξ̂p(0)

)
, (2.14a)

where ω2
p := g|p|; in the case p = 0:

(
η̂0(t)

ξ̂0(t)

)
=

(
η̂0(0)

gη̂0(0)t + ξ̂0(0)

)
. (2.14b)

For a second exact solution, we now pursue formulas for the traveling wave solutions
of (2.12) when ν = 0 (Note that no traveling wave solutions exist for ν 
= 0). Shifting to a
traveling frame moving with speed c, (2.12) (ν = 0) becomes

∂tη + c∂xη = |D|ξ + η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ

∂t ξ + c∂xξ = −gη + 1

2
(|D|ξ)2 − 1

2
(∂xξ)2.

By seeking steady solutions we realize the following governing equations for the traveling
waves

c∂xη − |D|ξ = η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ (2.15a)

c∂xξ + gη = 1

2
(|D|ξ)2 − 1

2
(∂xξ)2, (2.15b)

or, symbolically, Bu = R̃, where

B =
(

c∂x −|D|
g c∂x

)
, u =

(
η

ξ

)
,

R̃ =
(

η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ

1
2 (|D|ξ)2 − 1

2 (∂xξ)2

)
.

We now seek solutions of the traveling wave equation, Bu = R̃, in Taylor series as a
function of a waveheight parameter δ:

u = u(x; δ) =
∞∑

n=1

un(x)δn =
∞∑

n=1

(
ηn(x)

ξn(x)

)
δn, (2.16)

and

c = c(δ) = c0 +
∞∑

n=1

cnδ
n. (2.17)
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With this expansion for c(δ) in mind we rewrite the traveling wave equations as

B0u = R, (2.18)

where

B0 =
(

c0∂x −|D|
g c0∂x

)
,

R =
(

η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ − (c − c0)∂xη

1
2 (|D|ξ)2 − 1

2 (∂xξ)2 − (c − c0)∂xξ

)
.

Inserting the expansions (2.16) and (2.17) into (2.18) and gathering terms of order O(δ) we
have

B0u1 = 0,

or, after switching to Fourier space,

B̂0,pû1,p = 0 (2.19)

where û1,p are the Fourier coefficients of u1(x) and

B̂0,p =
(

c0(ip) −|p|
g c0(ip)

)
.

Of course (2.19) will only have non-trivial solutions if one (or more) of the operators B̂0,p

are singular which we measure by (the opposite of) the determinant functions

�(c0,p) := (c0p)2 − g|p|.
It is not difficult to show that given a p0 ∈ �′ −{0}, if one chooses c0 such that �(c0,p0) = 0,
i.e.

c0 =
√

g|p0|
p0

,

then �(c0,p) 
= 0 for p 
= 0,±p0. In this way we can find solutions

û1,p0 = α

( |p0|
ic0p0

)
, û1,−p0 = ¯̂u1,p0 ,

and û1,p = 0 for p 
= ±p0. We note that this condition at p = 0 enforces the condition that
the velocity potential at the surface satisfies

∫
ξ(x) dx = 0 (2.20)

which we now assume.
Having constructed this linear traveling wave at first order, we now insert the expansions

(2.16) and (2.17) into (2.18) and see that for orders n > 1 we must satisfy

B0un = Rn =
(

Rη
n

Rξ
n

)
− cn−1

(
∂xη1

∂xξ1

)
, (2.21)
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where

Rη
n =

n∑

l=1

{
ηn−l |D|2ξl − |D|[ηn−l |D|ξl] − (∂xηn−l )∂xξl

} −
n−1∑

l=2

cn−l∂xηl,

and

Rξ
n =

n∑

l=1

{
1

2
(|D|ξn−l )(|D|ξl) − 1

2
(∂xξn−l )(∂xξl)

}
−

n−1∑

l=2

cn−l∂xξl .

Once again, (2.21) can be rewritten in terms of Fourier coefficients as

B̂0,pûn,p =
(

R̂η
n,p

R̂ξ
n,p

)
− cn−1δp,±p0

(
(ip)η̂1,p

(ip)ξ̂1,p

)
, (2.22)

where δp,q is the Kronecker delta function; note that the final terms involving cn−1 only
appear at wavenumbers p = ±p0. To solve (2.22) we separate into three cases:

1. Case p �= 0,±p0:
In this case B̂0,p is invertible and the solution of (2.22) is simply

ûn,p = −1

�(c0,p)

(
(ic0p)R̂η

n,p + |p|R̂ξ
n,p

−gR̂η
n,p + (ic0p)R̂ξ

n,p

)
.

2. Case p = 0:
In this case (2.22) degenerates to just the second equation:

gη̂n,0 = R̂ξ
n,0

which is easily solved. The first equation is consistent because R̂η
n,0 = 0 for all n. This

can be seen from the computation:

Rη = η|D|2ξ − |D|[η|D|ξ ] − (∂xη)∂xξ

= −η∂2
x ξ − |D|[η|D|ξ ] − (∂xη)∂xξ

= −∂x[η∂xξ ] − |D|[η|D|ξ ],

where we have used |D|2 = D2 = (−i∂x)
2 = −∂2

x . Since the operators ∂x and |D| map
generic functions to functions with zeroth Fourier coefficient equal to zero, we have
R̂η

n,0 = 0 as claimed. Regarding ξ̂n,0, we simply set it to zero which enforces (2.20).
3. Case p = ±p0:

For this we select the representative case p = p0. Here the matrix B̂0,p0 is, by design,
singular, however, there is a free parameter on the right hand side, cn−1. An easy exercise
in Gaussian elimination shows that if

cn−1 = gR̂η
n,p0 − (ic0p0)R̂ξ

n,p0

g(ip0)η̂1,p0 + (c0p0)p0ξ̂1,p0

then (2.22) is solvable. However, we are left with the issue of uniqueness and for this
we follow the approach of Stokes (see [15]) for the full water wave problem, that ηn be
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L2-orthogonal to η1. As η1 is only supported at wavenumbers p = ±p0 this is easily
enforced by setting

η̂n,p0 = 0,

and now (2.22) delivers

ξ̂n,p0 = R̂ξ
n,p0 − cn−1(ip0)ξ̂1,p0

ic0p0
.

We remark that the case p = −p0 can be easily addressed by setting ûn,−p0 = ¯̂un,p0 .

Remark 2.1 Using the procedure outlined above, it is possible to show that, in fact, the
expansions (2.16) and (2.17) converge strongly in an appropriate function space. For details
of such a proof we refer the interested reader to [15].

3 Numerical Method and Results

In this section we now present results which not only validate our numerical approach to
approximating solutions of (2.12), but also display how our model equations can be used for
flows with small viscosities. We show how our numerical simulations capture the viscous
decay we expect for linear water wave flows from the exact solution we found in Sect. 2.5.
We also utilize our new scheme to stabilize computations of inviscid water wave flows with
this new, physically motivated dissipation.

3.1 Numerical Method

Briefly, our numerical scheme for approximating solutions of (2.12) is a Fourier spectral col-
location method in the spatial variable coupled to a fourth order Runge–Kutta time-stepping
scheme [2, 9]. In more detail, we approximate our problem unknowns {η(x, t), ξ(x, t)} by

ηNx (x, t) :=
Nx/2−1∑

p=−Nx/2

dp(t)eipx, ξNx (x, t) :=
Nx/2−1∑

p=−Nx/2

ap(t)eipx, (3.1)

where {dp(t), ap(t)} are approximations to the Fourier coefficients {η̂p(t), ξ̂p(t)}. We en-
force (2.12) at the equally spaced gridpoints xj = (2πj)/Nx (j = 0, . . . ,Nx − 1) and com-
pute derivatives by appealing to (3.1) and the discrete Fourier transform (DFT), accelerated
by the FFT algorithm. The Fourier multiplier |D| is computed in a similar manner: After
transforming to the Fourier side, via the DFT, we multiply pointwise by |p| before return-
ing to the physical side. Finally, products are computed on the physical side via inverse
DFTs and pointwise multiplication, all of which is dealiased. All of this specifies a system
of 2 × Nx ordinary differential equations to solve which we approximate with the classical
fourth order Runge–Kutta scheme yielding the approximations {dNt

p (t), aNt
p (t)}.

3.2 Spatial Convergence

Before presenting our numerical results, we verify our codes by displaying convergence
of our numerically generated solutions to the exact solutions discussed earlier in Sect. 2.5:
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Linear viscous water waves and nonlinear inviscid traveling water waves. In this section
we focus upon the spatial convergence (with a fixed temporal discretization, �t = 2.45 ×
10−3) while in the next section we examine the temporal discretization (with a fixed spatial
resolution). To accomplish this we consider the quantities:

eη(Nx,Nt , T ) := |ηNx,Nt (·, T ) − ηex(·, T )|L∞ (3.2a)

eξ (Nx,Nt , T ) := |ξNx,Nt (·, T ) − ξex(·, T )|L∞ , (3.2b)

where {ηex(x, t), ξex(x, t)} stand for exact solutions (e.g., for linear viscous water waves or
traveling nonlinear inviscid water waves) and {ηNx,Nt (x, t), ξNx,Nt (x, t)} are the correspond-
ing numerical approximations.

We note that in all following simulations we have set g = 1 and chosen waves of period-
icity 2π so that ν can be viewed as the non-dimensional quantity β from Sect. 2.4. Carrying
this out with the exact solution of linear water waves, (2.14), with

η0(x) = 1

10
cos(x), ξ0(x) = 1

10
sin(x), (3.3)

for final times T = 2,10 we have the data presented in Tables 1 and 2, respectively; the
results are presented for ν = 0,0.01,0.1.

Table 1 Spatial convergence of
simulation of solutions to the
linearized water wave equations
with viscosity with initial
conditions, (3.3). The error, (3.2),
is measured at time T = 2 and
compared against the exact
solution (2.14)

ν Nx eη eξ

0 16 1.66601 × 10−11 1.66601 × 10−11

32 1.03899 × 10−12 1.03898 × 10−12

64 5.89095 × 10−14 5.90188 × 10−14

0.01 16 1.59005 × 10−11 1.59005 × 10−11

32 9.98009 × 10−13 9.97957 × 10−13

64 5.68504 × 10−14 5.68027 × 10−14

0.1 16 1.21801 × 10−11 1.21800 × 10−11

32 7.69267 × 10−13 7.69260 × 10−13

64 4.36456 × 10−14 4.36456 × 10−14

Table 2 Spatial convergence of
simulation of solutions to the
linearized water wave equations
with viscosity with initial
conditions, (3.3). The error, (3.2),
is measured at time T = 10 and
compared against the exact
solution (2.14)

ν Nx eη eξ

0 16 8.20554 × 10−11 8.20558 × 10−11

32 5.22295 × 10−12 5.22374 × 10−12

64 1.86613 × 10−13 1.86566 × 10−13

0.01 16 6.78144 × 10−11 6.78143 × 10−11

32 4.26790 × 10−12 4.26798 × 10−12

64 1.53369 × 10−13 1.53350 × 10−13

0.1 16 1.24571 × 10−11 1.24572 × 10−11

32 7.79649 × 10−13 7.79680 × 10−13

64 3.51351 × 10−14 3.51837 × 10−14
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Table 3 Spatial convergence of
simulation of solutions to the
water wave equations with
viscosity, (2.12), with ν = 0. The
initial conditions and exact
solution are provided by the
traveling wave solutions derived
in Sect. 2.5, see (3.4). The error,
(3.2), is measured at times T = 2
and T = 10

T Nx eη eξ

2 16 1.72501 × 10−12 1.75794 × 10−12

32 1.09069 × 10−13 1.09654 × 10−13

64 6.21920 × 10−15 6.24397 × 10−15

10 16 8.22048 × 10−12 8.26373 × 10−12

32 5.24426 × 10−13 5.26383 × 10−13

64 1.87376 × 10−14 1.88053 × 10−14

We further test the spatial convergence of our time-stepping algorithm by comparing with
approximations of the traveling wave solutions in the inviscid case

uM :=
M∑

n=1

(
ηn(x)

ξn(x)

)
δn, cM := c0 +

M∑

n=1

cnδ
n, (3.4)

c.f., (2.16)–(2.17), with M = 20 and δ = 0.01. The {ηn(x), ξn(x)} are also discretized via a
Fourier collocation method as in (3.1) where the resulting {dn,p, an,p} are, of course, inde-
pendent of t . The results of this convergence study are presented in Table 3 for T = 2,10
(with ν = 0, of course).

3.3 Temporal Convergence

We now investigate the temporal rate of convergence of our scheme by fixing the number of
spatial collocation points (at Nx = 64) and examining the quantities {eη, eξ }, (3.2) as �t is
refined. Carrying this out with the exact solution of linear water waves, (2.14) (with initial
conditions (3.3)), for final times T = 2,10 we have the data presented in Tables 4 and 5,
respectively; the results are presented for ν = 0,0.01,0.1. If we fit these data to the error
estimate:

Error ≈ C�tr,

where the well-known theory tells us that r should be 4, using a least-squares procedure we
have an experimentally determined value of r̄ = 4.07 for both η and ξ errors for all three
values of ν at T = 2, and r̄ = 4.40, 4.40, 4.23 for ν = 0, 0.01, 0.1 at T = 10.

We further test the convergence of our time-stepping algorithm by comparing with the
traveling wave solutions in the inviscid case, (3.4) with M = 20 and δ = 0.01. These results
are presented in Table 6 for T = 2, 10 (with ν = 0) and yield rates of convergence r̄ = 4.07,
4.40 for T = 2, 10, respectively.

3.4 Numerical Results

We now present numerical results which illustrate the properties of solutions of our model
equations, (2.12), and the capabilities of our numerical simulation strategy. In particular, we
display the decay rates of solutions to the nonlinear WWV2 equations, and then show how
our numerical scheme can be used to stably compute inviscid surface water waves.

To begin, we note that, from the exact solution formula (2.14), linear solutions should
decay like e−2νp2t at wavenumber p. We have numerically simulated such solutions (again
using the initial conditions (3.3), so that p = 1) and in Table 7 report experimental decay
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Table 4 Temporal convergence
of simulation of solutions to the
linearized water wave equations
with viscosity with initial
conditions, (3.3). The error, (3.2),
is measured at time T = 2 and
compared against the exact
solution (2.14)

ν �t eη eξ

0 9.82 × 10−3 1.67 × 10−11 1.67 × 10−11

4.91 × 10−3 1.04 × 10−12 1.04 × 10−12

2.45 × 10−3 5.89 × 10−14 5.90 × 10−14

0.01 9.82 × 10−3 1.60 × 10−11 1.60 × 10−11

4.91 × 10−3 9.99 × 10−13 9.99 × 10−13

2.45 × 10−3 5.69 × 10−14 5.68 × 10−14

0.1 9.82 × 10−3 1.23 × 10−11 1.23 × 10−11

4.91 × 10−3 7.69 × 10−13 7.69 × 10−13

2.45 × 10−3 4.36 × 10−14 4.36 × 10−14

Table 5 Temporal convergence
of simulation of solutions to the
linearized water wave equations
with viscosity with initial
conditions, (3.3). The error, (3.2),
is measured at time T = 10 and
compared against the exact
solution (2.14)

ν �t eη eξ

0 9.82 × 10−3 8.33 × 10−11 8.33 × 10−11

4.91 × 10−3 5.22 × 10−12 5.22 × 10−12

2.45 × 10−3 1.87 × 10−13 1.87 × 10−14

0.01 9.82 × 10−3 6.83 × 10−11 6.83 × 10−11

4.91 × 10−3 4.28 × 10−12 4.28 × 10−12

2.45 × 10−3 1.53 × 10−13 1.53 × 10−13

0.1 9.82 × 10−3 1.25 × 10−11 1.25 × 10−11

4.91 × 10−3 7.80 × 10−13 7.80 × 10−13

2.45 × 10−3 3.51 × 10−14 3.51 × 10−14

Table 6 Temporal convergence
of simulation of solutions to the
water wave equations with
viscosity, (2.12), with ν = 0. The
initial conditions and exact
solution are provided by the
traveling wave solutions derived
in Sect. 2.5, see (3.4). The error,
(3.2), is measured at times T = 2
and T = 10

T �t eη eξ

2 9.82 × 10−3 1.75 × 10−12 1.76 × 10−12

4.91 × 10−3 1.09 × 10−13 1.10 × 10−13

2.45 × 10−3 6.22 × 10−15 6.24 × 10−15

10 9.82 × 10−3 8.36 × 10−12 8.39 × 10−12

4.91 × 10−3 5.24 × 10−13 5.26 × 10−13

2.45 × 10−3 1.87 × 10−14 1.88 × 10−14

rates. We see that within a very small tolerance (e.g. 10−5) the theoretical decay rate is re-
alized. Additionally, we have evolved the traveling waveforms, (3.4), in the fully nonlinear
WWV2 equations and report in Table 8 our results. We see how strong the effects of vis-
cosity can be as these nonlinear solutions also decay at roughly the rate expected for linear
solutions.

These results, while interesting in their own right, also suggest a new strategy for evolv-
ing inviscid surface water waves in a stable way. As noted in publications such as [3], the
faithful computation of these waves is quite delicate and filtering is typically required to
ensure that solutions do not blow up. The reason for this can be seen in the energy conserv-
ing nature of the equations (implying no natural energy dissipation mechanism) coupled to
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Table 7 Rate of decay of the
amplitude of simulated solutions
of the linearized water wave
equations with viscosity with
initial conditions, (3.3). These
amplitudes are measured at times
T = 2 and T = 10

T ν ν̄(η) ν̄(ξ)

2 0 −3.33 × 10−4 −3.33 × 10−4

0.01 −2.03 × 10−2 −2.03 × 10−2

0.1 −2.00 × 10−1 −2.00 × 10−1

10 0 −1.78 × 10−5 −1.78 × 10−5

0.01 −2.00 × 10−2 −2.00 × 10−2

0.1 −2.00 × 10−1 −2.00 × 10−1

Table 8 Rate of decay of the
amplitude of simulated solutions
of the water wave equation with
viscosity, (2.12). The initial
conditions are provided by the
traveling wave solutions derived
in Sect. 2.5, see (3.4). These
amplitudes are measured at times
T = 2 and T = 10

T ν ν̄(η) ν̄(ξ)

2 0 −3.39 × 10−4 −1.51 × 10−4

0.01 −2.05 × 10−2 −2.01 × 10−2

0.1 −2.01 × 10−1 −2.00 × 10−1

10 0 −1.78 × 10−5 −8.80 × 10−6

0.01 −2.01 × 10−2 −2.00 × 10−2

0.1 −2.00 × 10−1 −2.00 × 10−1

Fig. 1 Evolution of modulated cosine initial condition (3.5) (A = 0.01) in the water wave equations with
viscosity, (2.12), with ν = 0. Solution was evolved to T = 10 with �t = �x/10 for Nx = 64 and Nx = 128

very strong nonlinearities. Of course our new set of equations circumvent this first chal-
lenge with the introduction of viscous dissipation terms. Thus, it seems natural to consider
the possibility of approximating inviscid water waves by solving slightly viscous equations.

We have carried out this program for the modulated cosine profile

η0(x) = A cos(10x)e−(4/3)(x−L/2)2
, ξ0(x) = 0, (3.5)

proposed by Craig and Sulem [3]. To study the evolution of this profile we have chosen
the same physical parameter values as those given in [3], namely L = 2π , A = 0.01, and
final time T = 10. For this configuration we were able to satisfactorily evolve the initial
conditions (3.5) without need for any filtering or viscosity (see Fig. 1), with Nx = 64,128
and �t = �x/10.
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Fig. 2 Evolution of modulated cosine initial condition (3.5) (A = 0.045) in the water wave equations with
viscosity, (2.12), with ν > 0. Solution was evolved to T = 10 with �t = �x/10 for Nx = 64 and Nx = 128
with viscosities ν = 2.4 × 10−5 and ν = 1.095 × 10−4, respectively

However, if A is increased to a value of A = 0.045 we found that with a moderate number
of Fourier collocation points, Nx = 64, and a reasonable time-step, �t = �x/10, we were
unable to resolve a believable solution. To make these ideas more precise we note that the
inviscid version of our model equations have a conserved energy (Hamiltonian)

H := 1

2

∫ 2π

0
ξ {Y0[ξ ] + Y1(η)[ξ ] − (∂xη)X0[ξ ]} + gη2 dx, (3.6)

which can be derived from a weakly nonlinear expansion of the well-known energy for fully
nonlinear water waves [3]. To measure the integrity of our solutions we measure the relative
change in this energy from the initial to the final time:

eH := H(t = T ) − H(t = 0)

H(t = T )
.

In the case mentioned above (A = 0.045, Nx = 64) this relative error is approximately
0.35, while this quantity is unchanged if the time-step is reduced by a factor of 10. If the
number of collocation points is increased to Nx = 128 then, for both �t = �x/10 and �t =
�x/100, the solution blows up shortly after t = 2. By contrast, if we select ν = 2.4 × 10−5

with Nx = 64 and �t = �x/10, then we can produce a solution which not only looks quite
reasonable, see Fig. 2a, but also produces a relative energy error of eH ≈ 7×10−3, under 1%.
If we select ν = 1.095 × 10−4 with Nx = 128 and �t = �x/10, then we can compute the
solution depicted in Fig. 2b with eH ≈ 8 × 10−2.

In a similar fashion we also investigated the slightly more nonlinear case A = 0.05. Here,
regardless of our choice of Nx (64 or 128) or our time-step (�x/10 or �x/100) we were
unable to obtain a finite solution at T = 10 using our code with ν = 0. In this case filtering of
some sort is required. However, if we set ν = 5.5 × 10−5 then, again, we found a physically
reasonable solution (Fig. 3a) with a relative energy error of eH ≈ 6 × 10−2, just over 6%. If
we refine to Nx = 128 with �t = �x/10 then with ν = 1.9365 × 10−4 we find a solution,
Fig. 3b, with eH ≈ 0.38. While not really a very satisfactory solution, it at least provides a
reasonable profile without finite-time blow-up.

While these simulations do show the promise of filtering inviscid water wave simulations
with small viscous effects, the values of ν chosen were quite specific. In general we found
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Fig. 3 Evolution of modulated cosine initial condition (3.5) (A = 0.05) in the water wave equations with
viscosity, (2.12), with ν > 0. Solution was evolved to T = 10 with �t = �x/10 for Nx = 64 and Nx = 128
with viscosities ν = 5.5 × 10−5 and ν = 1.9365 × 10−4, respectively

that values much larger than the ones chosen resulted in solutions which were overly damped
and had energies tending to zero quite rapidly. On the other hand, if ν were chosen much
smaller than those reported above, oftentimes solutions would blow up significantly before
T = 10.

Remark 3.1 If we return to the original derivations of Dias et al. [5] we recall that the
viscosity used is the kinematic viscosity which, for water at 15 degrees Celsius, is reported
by Acheson [1] to be

νwater ≈ 10−2 cm/s2 = 10−6 m/s2.

This, upon nondimensionalization, yields

β = ν√
gλ3

≈ 3.2 × 10−6

if we use λ = 1 m. Thus, the values for which our scheme performs well are all in a close
neighborhood of the kinematic viscosity appropriate for water.

4 Conclusions

In this paper we have taken the water wave equations with small viscosity effects of Dias
et al. [5] and restated them in terms of the boundary quantities advocated by Zakharov [22]
for a Hamiltonian formulation of the water wave problem, namely the surface shape and the
surface velocity potential. Upon analyzing the relevant surface integral operators (related
to the Dirichlet–Neumann operator), we used their analyticity properties to derive a new,
second order weakly nonlinear model with small viscosity. We then outlined a new Fourier
spectral collocation method for their numerical simulation and verified the accuracy and
high-order convergence of this scheme. Finally, we displayed some preliminary results on
the utilization of very weakly viscous water wave flows for the stable numerical simulation
of very nonlinear water waves.
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