Data-Driven Design of Thin-Film Optical Systems using Deep Active Learning

Youngjoon Hong\textsuperscript{a,1}, David P. Nicholls\textsuperscript{b,2}

\textsuperscript{a}Sungkyunkwan University, 2066, Seoba-ro, Jangan-gu, Suwon, 16419, South Korea
\textsuperscript{b}University of Illinois at Chicago, 851 S Morgan St, Chicago, Chicago, 60607, IL, USA

\section*{ARTICLE INFO}

\textbf{Keywords:}
Layered diffraction grating design
Deep learning
Variational autoencoder
Helmholtz equations
High-Order Spectral methods.

\section*{ABSTRACT}

A deep learning aided optimization algorithm for the design of thin-film multilayer optical systems is developed. The authors introduce a deep generative neural network, based on a variational autoencoder, to perform the optimization of photonic devices. This algorithm allows one to find a near-optimal solution to the inverse design problem of creating an anti-reflective grating, a fundamental problem in material science. As a proof of concept, the authors demonstrate the method’s capabilities for designing an anti-reflective thin-film stack consisting of multiple material types. We designed and constructed a dielectric stack on silicon that exhibits an average reflection of 1.52\%, which is lower than other recently published experiments in the engineering and physics literature. In addition to its superior performance, the computational cost of our algorithm based on the deep generative model is much lower than traditional nonlinear optimization algorithms. These results demonstrate that advanced concepts in deep learning can drive the capabilities of inverse design algorithms for photonics. In addition, the authors develop an accurate regression model using deep active learning to predict the total reflectivity for a given optical system. The surrogate model of the governing partial differential equations can then be broadly used in the design of optical systems and to rapidly evaluate their behavior.

1. Introduction

Multilayered thin-film diffraction gratings are essential optical elements in nanoplasmonic and photonic devices as they modulate light intensity and spectral composition in such systems \cite{9}. In practice it is often important to determine the best multilayer design among a wide choice of dielectrics and metals of varying thicknesses to achieve a desired reflection and transmission spectrum. For this, numerous inverse algorithms have been constructed to find such optimal designs for use in efficient photonic devices \cite{1}. However, it is well known that this problem is highly nonlinear and non-convex, featuring numerous suboptimal local minima which make it difficult to find the global optimum \cite{1}.

In this paper, we develop a novel and effective inverse design algorithm with the aid of deep learning to identify \(m\)-layer thin-film stacks composed of materials with varying refractive indices and thicknesses. In this scheme we begin by constructing a structure/response database using a rapid and accurate classical Fresnel solver \cite{16}. Then, we make use of a generative deep neural network (DNN), a conditional variational autoencoder (CVAE), to obtain a nearly optimal design of the optical system. The goal of this CVAE is to minimize the average reflection of the structure over a range of incident illumination angles \((0 \leq \theta \leq \pi/3)\) and wavelengths \((400\ \text{nm} \leq \lambda \leq 1600\ \text{nm})\), which we denote

\[
\mathcal{O}(\mathbf{p}) = \frac{3}{\pi} \frac{1}{1200} \int_{0}^{\pi/3} \int_{400}^{1600} R(\lambda, \theta, \mathbf{p}) \ d\lambda \ d\theta, 
\]  

where \(\mathbf{p}\) is the design vector. We also propose a deep active learning algorithm to effectively search for the optimal solution.

Thin-film stacks have been widely studied and utilized in many optical systems including passive radiative coolers, efficient solar cells, thermal emitters, and spatial multiplexing filters \cite{14, 8}. The material composition and film thicknesses of these devices must be carefully optimized to achieve the desired transmission and reflection properties.
across a broad range of wavelengths and incidence angles. Design methods based on physical intuition give rise to devices of limited performance, and they are very difficult to scale to many-layer thin-film stacks. To address these limitations, various global optimization approaches have been explored; see e.g. [1] and the references therein. More recently, deep learning approaches have been considered to find optimal designs by using a ResNet generative model [5]. In this paper, we develop an alternative approach based on deep learning strategies which is both fast and efficient, and which can readily be extended to more general thin-film structures featuring, e.g., corrugated layer interfaces. In this way we view our new algorithm as particularly promising in the design of new metamaterials [15].

2. Methods

In this section we present the governing equation for a thin-film multilayer optical system and an accurate method for numerically approximating its solutions based upon the classical Fresnel equations [16]. We then present a novel approach to coupling this to not only a Deep Learning (DL) algorithm (we consider a CVAE), but also an active learning methodology.

2.1. Governing Equations

We consider a thin-film multilayer optical system consisting of flat layers of varying materials with rather arbitrary thicknesses. The variety of dielectrics and thicknesses leads to a considerable practical design challenge of finding a “best” grating structure. To be more precise, dielectrics occupy each of the $m$-many domains

\[ S^1 := \{ y > g_1 \}; \quad S^m := \{ y < g_{m-1} \}; \quad \text{and} \quad S^j := \{ g_j < y < g_{j-1} \}, \quad 2 \leq j \leq m - 1; \]

where the (flat) interface locations are given by \( \{ y = g_j \}_{j=1}^m \). This structure is illuminated by incident radiation of frequency \( \omega \) and angle \( \theta \) in the uppermost layer, \( S^1 \), of the form

\[ v_{\text{inc}} = e^{-i\omega t + i\alpha x - i\beta y}, \quad \alpha = k_0 \sin(\theta), \quad \beta = k_0 \cos(\theta), \quad k_0 = \omega / c_0, \]

and \( c_0 \) is the speed of light in the vacuum. Factoring out time-dependence of the form \( \exp(-i\omega t) \) we define the (reduced) scattered fields

\[ v_j = v_j(x, y) \quad \text{in} \quad S^j \quad \text{for} \quad 1 \leq j \leq m, \]

and seek outgoing, \( \alpha \)-quasiperiodic, outgoing (upward/downward propagating) solutions of the following system of Helmholtz equations [16]

\[
\begin{align*}
\Delta v_j + k_j^2 v_j &= 0, & \text{in} \quad S^j, \quad 1 \leq j \leq m, \quad (2a) \\
v_1 - v_2 &= -e^{i\beta_1} e^{i\alpha x}, & \text{at} \quad y = g_1, \quad (2b) \\
\partial_y v_1 - \tau_1^2 \partial_y v_2 &= (i\beta)e^{i\beta_1} e^{i\alpha x}, & \text{at} \quad y = g_1, \quad (2c) \\
v_j - v_{j+1} &= 0, & \text{at} \quad y = g_j, \quad 2 \leq j \leq m, \quad (2d) \\
\partial_y v_j - \tau_j^2 \partial_y v_{j+1} &= 0, & \text{at} \quad y = g_j, \quad 2 \leq j \leq m, \quad (2e)
\end{align*}
\]

where \( k_j = n_j k_0 = n_j (\omega / c_0) \) is the wavenumber in layer \( j \) (with refractive index \( n_j \)) and

\[
\tau_j = \begin{cases} 
1, & \text{for Transverse Electric (TE) polarization}, \\
(k_j / k_{j+1})^2, & \text{for Transverse Magnetic (TM) polarization}, 
\end{cases}
\]

for \( 1 \leq j \leq m - 1 \).

2.2. Numerical Method: The Fresnel Solver

It is well known [16] that the most general solutions of (2a) are

\[ v_j(x, y) = \left( U_j e^{i\beta_j y} + D_j e^{-i\beta_j y} \right) e^{i\alpha x}, \quad D_1 = U_m = 0, \]

\[ v_j(x, y) = \left( U_j e^{i\beta_j y} + D_j e^{-i\beta_j y} \right) e^{i\alpha x}, \quad D_1 = U_m = 0, \]

Y. Hong and D.P. Nicholls: Preprint submitted to Elsevier
where \( \beta^j := \sqrt{(kj)^2 - a^2} \), and the upward/downward propagating wave conditions enforce \( D_1 = U_m = 0 \), respectively. The remaining constants \( \{U_1, D_2, U_2, \ldots, D_{m-1}, U_{m-1}, D_m\} \) are determined from the boundary conditions (2b)–(2e). This results in a linear system of equations to be solved

\[
A\bar{v} = \bar{r}, \quad \bar{v} := (U_1, D_2, U_2, \ldots, D_{m-1}, U_{m-1}, D_m)^T, \quad \bar{r} := e^{|\beta_1|}(-1, (i\beta), 0, \ldots, 0)^T,
\]

and \( A \) is pentadiagonal with readily derived entries [16]. We denote the direct solution of the Fresnel equations, \( A\bar{v} = \bar{r} \), as the Fresnel Solver which, we point out, can be accomplished in linear (in \( m \)) time via the Thomas Algorithm [7].

We point out that the solution of these equations is the order-zero approximation produced by our recently developed High-Order Perturbation of Surfaces (HOPS) algorithm [4] implemented with a Transformed Field Expansions approach. As this methodology is designed for structures with corrugated interfaces the full power of this algorithm is not necessary in the current context, however, in a forthcoming publication we will describe the extension of our algorithm to the case of corrugated interfaces which will require the full HOPS methodology.

2.3. A Variational Autoencoder

Generative models in combination with neural networks, such as variational autoencoders (VAEs), are used to learn complex distributions underlying datasets, see e.g. [6, 13]. Described simply, VAEs consist of an encoder, a latent space, and a decoder (see Figure 1a). VAEs presume that a given training sample is generated from a latent representation, which is then sampled by a decoder (with a prior Gaussian distribution). As a generative neural network,

![Diagram](image)

(a) Depiction of a variational autoencoder. (b) Depiction of an active learning implementation.

Figure 1: Depictions of (a.) a variational autoencoder and (b.) an active learning algorithm.

VAEs have been successfully utilized in various domains from image generation and natural language processing to anomaly detection and clustering tasks (see, e.g., [6] and references therein). VAEs are regularized autoencoders which also feature an encoder and decoder. The encoder maps high-dimensional data to low-dimensional latent vectors that capture principal features, then the decoder maps the latent vector back to the high-dimensional space. While there are many applications of autoencoders (such as dimensionality reduction, anomaly detection, and noise removal) they are not generally adequate as generative models [3]. Indeed, once the autoencoder is trained there is no opportunity to produce any new content with both encoder and decoder. By contrast, a VAE regularizes the encoding distribution to ensure that its latent space has good properties to generate a new dataset. More precisely, the encoder in the VAE maps input data points not to the latent space but to the distribution of the latent space. Then, the encoder produces the mean and covariance matrix values that are a function of the input data. The decoder exploits the latent space distribution as an input to generate distributions of data. In the VAE, the loss function consists of reconstruction loss and regularization loss. The reconstruction loss is identical to that used by autoencoders, while the regularization loss is the Kullback-Leibler (KL) divergence between the Gaussian distribution from the encoder and a standard Gaussian distribution [2].

For the optical system we consider here the input vector \( x \) consists of a collection of refractive indices and layer thicknesses. The VAE architecture aims to learn a stochastic mapping between the observed data space \( x \) and a latent space \( z \) which can be interpreted as a directed model with a joint distribution \( p_{y}(x, z) \) such that
\[ p_\theta(x, z) = p_\theta(x|z)p_\theta(z), \] where \( \theta \) is a learnable parameter and \( p_\theta(z) \) is the prior distribution of the latent variable. The conditioned distribution \( p_\theta(x|z) \) can be parameterized by a decoder but the distribution is generally intractable. To resolve this issue a VAE introduces another deep neural network (encoder) to map \( x \) back to the latent vector \( z \) by approximating the posterior distribution (see Figure 1a). With the encoder and decoder networks, the likelihood function for the training has a tractable representation and can be derived by the evidence lower bound (ELBO): \[ \text{Loss} = E_{q(z|x)}[\log(p(x|z))] - D_{KL}[q(z|x)||p(z)], \] where \( D_{KL} \) stands for the KL divergence. In this paper, we employ a conditional variational autoencoder (CVAE), which is an extension of the VAE suitable for incorporating a control on a specified condition [13]. The CVAE is believed to insert label information in the latent space to force a deterministic, constrained, representation of the learned data. In contrast to a VAE, a CVAE has control on the data generation process so, by changing the conditional variable (which refers to the reflectivity in our model), inputs of an optical system for a specified reflectivity can be generated.

![Histogram of the original dataset.](image1.png)

(a) Histogram of the original dataset.

![Histogram of the CVAE augmented dataset.](image2.png)

(b) Histogram of the CVAE augmented dataset.

**Figure 2:** Histogram of the (a.) original and (b.) CVAE augmented data sets.

### 2.4. Active Learning

Active learning is a machine learning strategy which interactively queries a user to generate new data points with desirable properties. These queries are usually in the form of unlabeled data and, to improve the underlying machine learning model, it is crucial for the system to propose records for interactive labelling effectively. Active learning is often called optimal experimental design (OED) in the engineering literature (see, e.g., [11, 12]) as it finds the most uncertain points and adds them into the training set in an iterative way [10]. In this paper we develop surrogate models using deep learning techniques (implemented by a multilayer perceptron (MLP)) to identify efficient device designs. However, in order to improve these designs, additional training of the surrogate model becomes increasingly expensive. We aim to obtain a better model by adding minimal additional training data, and, for this purpose, we adopt an active learning strategy that selects only training points which enhance the accuracy of the MLP surrogate model. To produce such training samples, the CVAE is used to generate an optimal system design which hopefully gives small reflectivity (see Figure 1b). To be more precise, let \( L \) be the number of training set data points initially generated by the Fresnel solver, and, with these \( L \) points, we train our CVAE model to generate \( K \) many optical systems (which hopefully possess small reflectivity) by imposing the smallness of the reflectivity as the condition on the CVAE. Few (say \( P \) many) of these \( K \) optical systems generated by the CVAE produce the reflectivity expected by the condition enforced since the randomly generated training set does not contain sufficient data close to our target. However, they are sufficiently close that they merit further investigation with our (relatively expensive) Fresnel solver and we add them to our training set; this is then repeated \( M \) times. This algorithm is depicted in Figure 1b. The initial reflectivity histogram of randomly generated data (the “initial training set”) is plotted in Figure 2a while the augmented dataset generated by our CVAE and active learning process is shown in Figure 2b.

### 3. Numerical Experiments

We applied our algorithm to the design of an anti-reflection (AR) coating for a silicon solar cell consisting of three layers of dielectrics [1]. This thin-film stack was designed to minimize the average reflection at an air-silicon interface
over the incident illumination angle range \([0, \pi/3]\) and wavelength range \([400, 1100]\) nm in TM polarization as in (1). As a benchmark, we compared our results with those from [1] which provides a guaranteed global optimum solution using a parallel branch-and-bound method. Their algorithm required extensive searching through the full design space and utilized more than two weeks of CPU time to solve for the global optimum.

To be consistent with [1] we generated an \(L = 50,000\) member training set from our Fresnel solver whose refractive indices and layer thicknesses were randomly selected from the intervals \([1.09, 2.60]\) and \([5, 200]\), respectively. Here we supplemented with active learning using \(K = 5000\) at each of \(M = 3\) iterations resulting in \(P = 2000\) additional datapoints. A histogram of the resulting reflectivities are given in Figure 3 which shows that the optimized devices generated from our CVAE and deep active learning algorithms have average reflectivities from approximately 1.5% to 3%, which is quite a small range of values compared to a randomly generated set. A fraction of the suggested devices were near the global optimum, and the best device had an efficiency of 1.52%. The total computing time that our CVAE and deep active learning algorithm required for training was less than 30 minutes with a single GPU (NVIDIA RTX-3090). All of the devices sampled from our algorithm were near the global optimum, showing the ability of the generative network to produce a narrow distribution of devices. Another feature of such biased data generation is the construction an accurate regression model using the MLP. Figure 4 shows that the MLP model trained by the augmented data set (generated by the active learning algorithm) gives a better result than the model trained by the original (normally distributed) dataset. The reflectivity map of the best device (with efficiency 1.52 %) is depicted in Figure 5, with the full set of incidence angles on the left and three choices of the angle on the right. We remark that the data-driven design under consideration can be generalized to an arbitrary number of layers, and the machine learning procedure becomes more effective since the computational cost is highly expensive in this case.

4. Conclusions

In this paper we introduced a deep learning aided optimization algorithm for thin-film multilayer optical systems. We constructed a deep generative neural network, based on a variational autoencoder, to perform optimization of photonic devices. The incorporation of the variational autoencoder helps to improve our search for the optimal grating design. Benchmark calculations of our algorithm for the problem of designing anti-reflection coatings show that the generative model is effective in searching for global optima, is computationally efficient, and outperforms a number of alternative design algorithms.

References


Y. Hong and D.P. Nicholls: Preprint submitted to Elsevier
Optimization of Optical Systems with Deep Learning

(a) Regression using deep learning with the original dataset. This plot shows reflectivities which range from 2% to 50%.

(b) Regression using deep learning with the original dataset. This plot shows only reflectivities which range from 2% to 7%.

(c) Regression using deep active learning with the augmented dataset. This plot shows reflectivities which range from 2% to 50%.

(d) Regression using deep active learning with the augmented dataset. This plot shows only reflectivities which range from 2% to 7%.

Figure 4: Regression model comparison with the original and augmented datasets. Clearly, the relative $L^2$-errors of the regression model with the augmented datasets are lower than the original regression model.

(a) Optimal grating reflectivity versus incident angle (degrees) and wavelength (nanometers).

(b) Optimal grating reflectivity versus three choices of incident angle (degrees) and wavelength (nanometers).

Figure 5: Optimal grating reflectivity versus incident angle and wavelength.
Optimization of Optical Systems with Deep Learning


