
High–Order Perturbation of Surfaces (HOPS)
Short Course: Boundary Value Problems

David P. Nicholls

Abstract In this lecture we introduce two classical High–Order Perturbation of Sur-
faces (HOPS) computational schemes in the simplified context of elliptic boundary
value problems inspired by models in water waves. For the problem of computing
Dirichlet–Neumann Operators (DNOs) for Laplace’s equation, we outline Bruno &
Reitich’s method of Field Expansions (FE) and then describe Milder and Craig &
Sulem’s method of Operator Expansions (OE). We further show how these algo-
rithms can be extended to three dimensions and finite depth, and describe how Padé
approximation can be used as a method of numerical analytic continuation to realize
enhanced performance and applicability through a series of numerical experiments.

1 Introduction

The Calculus in general, and Partial Differential Equations (PDEs) in particular have
long been recognized as the most powerful and successful mathematical modeling
tool for engineering and science, and the study of surface water waves is no excep-
tion. With the advent of the modern computer in the 1950s, the possibility of nu-
merical simulation of PDEs at last became a practical reality. The last 50–60 years
has seen an explosion in the development and implementation of algorithms for this
purpose which are rapid, robust, and highly accurate. Among the myriad choices
are:

1. Finite Difference methods (e.g., [Str04, MM05, LeV07, Tho95]),
2. Finite Element methods (Continuous and Discontinuous) (e.g., [Joh87, KS99,

Bra01, HW08]),
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3. High–Order Spectral (Element) methods (e.g., [GO77, CHQZ88, For96, Boy01,
DFM02, HGG07]),

4. Boundary Integral/Element methods (e.g., [CK98, Kre99]).

The class of High–Order Perturbation of Surfaces (HOPS) methods we describe
here are a High–Order Spectral method which is particularly well–suited for PDEs
posed on piecewise homogeneous domains. Such “layered media” problems abound
in the sciences, e.g., in

• free–surface fluid mechanics (e.g., the water wave problem),
• acoustic waves in piecewise constant density media,
• electromagnetic waves interacting with grating structures,
• elastic waves in sediment layers.

For such problems these HOPS methods can be:

• highly accurate (error decaying exponentially as the number of degrees of free-
dom increases),

• rapid (an order of magnitude fewer unknowns as compared with volumetric for-
mulations),

• robust (delivering accurate results for rather rough/large interface shapes).

However, these HOPS schemes are not competitive for problems with inhomoge-
neous domains and/or “extreme” geometries.

In this lecture we discuss two classical HOPS methods for the solution of such
interfacial problems: Bruno & Reitich’s Field Expansions (FE) method [BR92,
BR93a, BR93b, BR93c, BR94, BR96, BR98, BR01], and Milder and Craig &
Sulem’s Operator Expansions (OE) method [Mil91a, Mil91b, MS91, MS92, CS93,
Mil96b, Mil96a]. In a future lecture we discuss a stabilized version of the FE method
(the Transformed Field Expansions–TFE–method) due to the author and Reitich
[NR01a, NR01b, NR03]. In addition to specifying the details of these two algo-
rithms (FE and OE) for a particular problem which arises in the study of water
waves, we also want to illustrate the accuracy, efficiency, speed, and ease of imple-
mentation of HOPS schemes.

The rest of the lecture is organized as follows. In § 2 we recall the classical water
wave problem and how the Dirichlet–Neumann Operator (DNO) arises as a funda-
mental object of study. In § 3 and § 4 we give the details of the Field Expansions and
Operator Expansions methods, respectively, as applied to the problem of simulating
the DNO. In § 5 we present results of numerical simulations realized with a simple
MATLAB implementation of these recursions. In § 6 we discuss generalization of
these algorithms to three dimensions and finite depth. We close with a presentation
of the Padé approximation approach in § 7 to analytic continuation for these prob-
lems, and the extremely beneficial effect this methodology can have on these HOPS
methods.
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2 Water Waves and the Dirichlet–Neumann Operator

To fix on a problem we consider a classical water wave problem [Lam93] which is
to model the evolution of the free surface of a deep, two–dimensional, ideal fluid
under the influence of gravity. The widely accepted model [Lam93] is

∆ϕ = 0 y < η(x, t),

∂yϕ → 0 y→−∞,

∂tη +∂xη(∂xϕ) = ∂yϕ, y = η(x, t),

∂tϕ +(1/2)∇ϕ ·∇ϕ + g̃η = 0 y = η(x, t).

In these ϕ(x,y, t) is the velocity potential (u=∇ϕ), η(x, t) is the air–water interface,
and g̃ is the gravitational constant.

At the center of this problem is the solution of the elliptic Boundary Value Prob-
lem (BVP)

∆v = 0 y < g(x),

∂yv→ 0 y→−∞,

v = ξ y = g(x).

In particular, upon solving this problem, the Dirichlet–Neumann Operator (DNO)

G(g)[ξ ] := [∂yv− (∂xg)∂xv]y=g(x) ,

allows one to recast the water wave problem as [Zak68, CS93]

∂tη = G(η)ξ ,

∂tξ =−g̃η−A(η)B(η ,ξ ),

where

A =
[
2
(
1+(∂xη)2)]−1

,

B = (∂xξ )2− (G(η)ξ )2−2(∂xη)(∂xξ )(G(η)ξ ).

For many problems of practical interest it suffices to consider the classical periodic
boundary conditions, e.g.,

v(x+L,y) = v(x,y), g(x+L) = g(x), L = 2π,

which permits us to express functions in terms of their Fourier Series

g(x) =
∞

∑
p=−∞

ĝpeipx, ĝp =
1

2π

∫ 2π

0
g(s)e−ips ds.

Thus, from here we focus on the BVP
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∆v = 0 y < g(x), (1a)
∂yv→ 0 y→−∞, (1b)
v = ξ y = g(x), (1c)
v(x+2π,y) = v(x,y), (1d)

and the DNO it generates.

3 The Method of Field Expansions

Our first HOPS approach for approximating DNOs solves the BVP, (1), directly. Its
origins can be found in the work of Rayleigh [Ray07] and Rice [Ric51]. The first
high–order implementation is due to Bruno & Reitich [BR93a, BR93b, BR93c] and
was originally denoted the “method of Variation of Boundaries.” To prevent confu-
sion with subsequent methods it was later renamed the method of Field Expansions
(FE). The “key” to the method is the realization that interior to the domain (i.e.,
y <−|g|

∞
) the solution of Laplace’s equation by separation of variables is

v(x,y) =
∞

∑
p=−∞

ape|p|yeipx. (2)

This HOPS approach uses the fact that, for a sufficiently smooth boundary pertur-
bation g(x) = ε f (x), the field, v = v(x,y;ε), depends analytically upon ε .

Assume that the interface is shaped by g(x) = ε f (x) where f ∼ O (1) and, ini-
tially, ε � 1. We will be able to show a posteriori that v depends analytically upon
ε so that

v = v(x,y;ε) =
∞

∑
n=0

vn(x,y)εn.

Inserting this expansion into the governing equations, (1), and equating at orders
O (εn) yields

∆vn = 0 y < 0, (3a)
∂yvn→ 0 y→−∞, (3b)
vn = Qn y = 0, (3c)
vn(x+2π,y) = vn(x,y). (3d)

The crucial term is the boundary inhomogeneity

Qn(x) = δn,0ξ (x)−
n−1

∑
m=0

Fn−m(x) ∂
n−m
y vm(x,0),
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where Fm(x) := f m(x)
m! and δn,m is the Kronecker delta. This form comes from the

expansion

v(x,ε f ;ε) =
∞

∑
n=0

vn(x,ε f )εn =
∞

∑
n=0

ε
n

n

∑
m=0

Fn−m(x) ∂
n−m
y vm(x,0).

Bounded, periodic solutions of Laplace’s equation can be expressed as

vn(x,y) =
∞

∑
p=−∞

an,pe|p|yeipx. (4)

Inserting this form into the surface boundary condition, (3c), delivers

∞

∑
p=−∞

an,peipx =
∞

∑
p=−∞

Q̂n,peipx,

where, since

e|p|ε f =
∞

∑
m=0

ε
mFm |p|m ,

we have

Qn(x) = δn,0

∞

∑
p=−∞

ξ̂peipx−
n−1

∑
m=0

Fn−m(x)
∞

∑
p=−∞

|p|n−m am,peipx.

Summarizing, we have the FE Recursions

an,p = δn,0ξ̂p−
n−1

∑
m=0

∞

∑
q=−∞

F̂n−m,p−q |q|n−m am,q. (5)

The FE recursions deliver the solution everywhere well inside the problem do-
main. However, two questions immediately arise: Is the expansion

v(x,y) =
∞

∑
p=−∞

ape|p|yeipx

valid at the boundary? Is this expansion valid near the boundary? For rigorous an-
swers to these questions we refer to Bruno & Reitich’s first contribution [BR92], the
work of the author and Reitich [NR01a, NR01b, NR03], and the third lecture in this
series.

Assuming for the moment that there is some validity at the boundary, recall that
we wish to compute the Neumann data

ν(x) = [∂yv− (∂xg)∂xv]y=g(x) .

Expanding in ε
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∞

∑
n=0

νn(x)εn =
∞

∑
n=0

[∂yvn(x,ε f )− ε(∂x f )∂xvn(x,ε f )]εn,

and equating at order O (εn) gives

νn(x) =
n

∑
m=0

Fn−m∂
n+1−m
y vm(x,0)−

n−1

∑
m=0

(∂x f )Fn−1−m∂x∂
n−1−m
y vm(x,0).

At each wavenumber we have

ν̂n,p =
n

∑
m=0

∞

∑
q=−∞

F̂n−m,p−q |q|n+1−m am,q

−
n−1

∑
m=0

∞

∑
q=−∞

F̂ ′n−1−m,p−q(iq) |q|
n−1−m am,q, (6)

where F ′m(x) := (∂x f )Fm(x). Together, formulas (5) and (6) can be implemented in a
high–level computing language to deliver a fast and accurate method for simulating
the action of the DNO, G : ξ → ν .

4 The Method of Operator Expansions

The second HOPS approach we investigate considers the DNO alone without
explicit reference to the underlying field equations. For this reason the method
has been termed the method of Operator Expansions (OE). The first high–order
implementation for electromagnetics (the Helmholtz equation) is due to Milder
[Mil91a, Mil91b] and Milder & Sharp [MS91, MS92]. The first high–order imple-
mentation for water waves (the Laplace equation) is due to Craig & Sulem [CS93].
Once again, we use, in a fundamental way, the representation, (2),

v(x,y) =
∞

∑
p=−∞

ape|p|yeipx.

This HOPS method uses the fact that, for a boundary perturbation g(x) = ε f (x), the
DNO, G = G(ε f ), depends analytically upon ε .

Again, assume that the interface is shaped by g(x) = ε f (x) where f ∼O (1) and,
initially, ε � 1. We now focus on the definition of the DNO, G,

G(g)[ξ ] = ν ,

and seek the action of G on a basis function, exp(ipx). To achieve this we use a
bounded, periodic solution of Laplace’s equation

vp(x,y) := e|p|yeipx. (7)
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Inserting the solution vp(x,y) into the definition of the DNO gives

G(g)[vp(x,g(x))] = [∂yvp− (∂xg)∂xvp]y=g(x) .

We assume that everything is analytic in ε and expand(
∞

∑
n=0

ε
nGn( f )

)[
∞

∑
m=0

ε
mFm |p|m eipx

]
=

∞

∑
n=0

ε
nFn |p|n+1 eipx

− ε(∂x f )
∞

∑
n=0

ε
nFn(ip) |p|n eipx.

At O
(
ε0
)

this reads
G0
[
eipx]= |p|eipx,

so that we can conclude that

G0[ξ ] = G0

[
∞

∑
p=−∞

ξ̂peipx

]
=

∞

∑
p=−∞

ξ̂pG0
[
eipx]= ∞

∑
p=−∞

|p| ξ̂peipx =: |D|ξ ,

which defines the order–one Fourier multiplier |D|. At order O (εn), n > 0, we find

n

∑
m=0

Gm( f )
[
Fn−m |p|n−m eipx]= Fn |p|n+1 eipx− (∂x f )Fn−1(ip) |p|n−1 eipx,

which we can write as

Gn( f )
[
eipx]= Fn |p|n+1 eipx− (∂x f )Fn−1(ip) |p|n−1 eipx

−
n−1

∑
m=0

Gm( f )
[
Fn−m |p|n−m eipx] .

or, using ∂xeipx = (ip)eipx,

Gn( f )
[
eipx]= Fn |D|n+1 eipx− (∂x f )Fn−1∂x |D|n−1 eipx

−
n−1

∑
m=0

Gm( f )
[
Fn−m |D|n−m eipx] .

Since (ip)2 =−|p|2 we deduce that |D|2 =−∂ 2
x and we arrive at

Gn( f )
[
eipx]= (−Fn∂

2
x − (∂x f )Fn−1∂x

)
|D|n−1 eipx

−
n−1

∑
m=0

Gm( f )
[
Fn−m |D|n−m eipx] .

Next, since
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∂x [Fn∂xJ] = Fn∂
2
x J+(∂x f )Fn−1∂xJ,

we have

Gn( f )
[
eipx]=−∂xFn∂x |D|n−1 eipx−

n−1

∑
m=0

Gm( f )
[
Fn−m |D|n−m eipx] .

As we have the “action” of Gn on any complex exponential exp(ipx), we write down
the Slow OE Recursions

Gn( f ) [ξ ] =−∂xFn∂x |D|n−1
ξ −

n−1

∑
m=0

Gm( f )
[
Fn−m |D|n−m

ξ
]
, (8)

for any function

ξ (x) =
∞

∑
p=−∞

ξ̂peipx.

So, what is wrong with this set of recursions, (8)? To compute Gn one must
evaluate Gn−1, which requires the application of Gn−2, etc. Since the argument of
Gm changes as m changes, these cannot be precomputed and stored. Therefore, a
naive implementation will require time proportional to O (n!). One can improve
this by storing Gm as an operator (a matrix in finite dimensional space), and thus
computing Gn requires time proportional to O

(
nN2

x
)
. Happily we can do even better

by using the self–adjointness properties of the DNO.
It can be shown that the DNO, G, and all of its Taylor series terms Gn are self–

adjoint: G∗ = G and G∗n = Gn. This can be used to advantage by recalling that
(AB)∗ = B∗A∗, ∂ ∗x =−∂x, and F∗n = Fn. Now, one takes the adjoint of Gn to realize
the Fast OE Recursions

Gn( f ) [ξ ] = G∗n( f ) [ξ ] =−|D|n−1
∂xFn∂xξ −

n−1

∑
m=0
|D|n−m Fn−mGm( f ) [ξ ] . (9)

As above, formula (9) can be implemented on a computer to deliver an alternative,
fast and accurate method for simulating the action of the DNO, G : ξ → ν .

5 Numerical Tests

Now that we have two HOPS schemes for approximating DNOs, we can test them
and compare their performance. For this we make use of the following exact solu-
tion. Recall the solution we used for the OE formula

vp(x,y) := e|p|yeipx.

If we choose a wavenumber, say r, and a profile f (x), for a given ε > 0, it is easy to
see that the Dirichlet data
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ξr(x;ε) := vr(x,ε f (x)) = e|r|ε f (x)eirx

generates Neumann data

νr(x;ε) := [∂yvr− ε(∂x f )∂xvr] (x,ε f (x))

= [|r|− ε(∂x f )(ir)]e|r|ε f (x)eirx.

Using this we can, with a Fourier spectral method in mind [GO77, CHQZ88], sam-
ple the ξr at equally spaced points, appeal to either the FE or OE algorithms de-
scribed above, and compare our outputs to νr evaluated at these same gridpoints.

To be more specific, for either HOPS algorithm we choose a number of equally–
spaced collocation points, Nx, and perturbation orders, N. For the FE algorithm we
utilize (5) to find approximations aNx

n,p for −Nx/2 ≤ p ≤ Nx/2− 1 and 0 ≤ n ≤ N
and form

ν
Nx,N
FE (x) :=

N

∑
n=0

Nx/2−1

∑
p=−Nx/2

aNx
n,peipx

ε
n. (10)

All nonlinearities are approximated on the physical side using pointwise multiplica-
tion, while Fourier multipliers are implemented in wavenumber space by invoking
an FFT, applying the (diagonal) Fourier multiplier operator, and then appealing to
the inverse FFT algorithm. In the same way, the OE method uses (9) to provide
approximations νNx

n,p which are then used to generate ν
Nx,N
OE just as in (10).

We consider a problem with geometric and numerical parameters

L = 2π, ε = 0.02, f (x) = exp(cos(x)), Nx = 64, N = 16, (11)

and note that f is real analytic and that all of its derivatives are L = 2π–periodic (so
that its Fourier series decays exponentially fast). In Figure 1 we display results of
our numerical experiments with the FE algorithm as N is refined from 0 to 16. We
repeat this in Figure 2 for the OE recursions, and plot them together in Figure 3.
Here we note the stable and rapid convergence one can realize with this algorithm
as the perturbation order N is increased.

6 Generalizations

Having described two rather simple and efficient algorithms for the simulation of
solutions to Laplace’s equation on a semi–infinite domain in two dimensions, one
can ask, are these algorithms restricted to this simple case? Happily we can answer
in the negative and now describe how to generalize the algorithms to three dimen-
sions (§ 6.1) and finite depth (§ 6.2). Other generalizations are possible (e.g., to
Helmholtz [NR04a, NR04b, MN11] and Maxwell [BR93c, Nic14] equations, and
the equations of elasticity [FN14]) but would take us rather far afield.
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Fig. 1 Relative error in FE algorithm versus perturbation order N for smooth interface configura-
tion, (11), with Taylor summation.

6.1 Three Dimensions

A generalization of crucial importance is to the more realistic situation of a gen-
uinely three–dimensional fluid. In this case the air–fluid interface, y = g(x) =
g(x1,x2) is two–dimensional rather than one–dimensional. Such a generalization for
Boundary Integral/Element methods requires a new formulation as the fundamental
solution changes from

Φ2(r) =C2 ln(r),

to
Φ3(r) =C3r−1.

One of the most appealing features of our HOPS methods is the trivial nature of
the changes required moving from two to three dimensions. This can be seen by
inspecting the solution of Laplace’s equation, c.f. (2),

v(x,y) =
∞

∑
p1=−∞

∞

∑
p2=−∞

ape|p|yeip·x, p = (p1, p2) ∈ Z2.
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Fig. 2 Relative error in OE algorithm versus perturbation order N for smooth interface configura-
tion, (11), with Taylor summation.

Once again assuming g(x1,x2) = ε f (x1,x2), f ∼ O (1), ε � 1, we expand

v = v(x,y;ε) =
∞

∑
n=0

vn(x,y)εn.

We find the same inhomogeneous Laplace problem, (3), at every perturbation order
n which has solution, c.f. (4),

vn(x,y) =
∞

∑
p1=−∞

∞

∑
p2=−∞

an,pe|p|yeip·x.

Following the development from before we find, c.f. (5),

an,p = δn,0ξ̂p−
n−1

∑
m=0

∞

∑
q1=−∞

∞

∑
q2=−∞

F̂n−m,p−q |q|n−m am,q.

As before, if we seek the Neumann data

ν(x) = [∂yv− (∂xg)∂xv]y=g(x) ,
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Fig. 3 Relative error in FE and OE algorithms versus perturbation order N for smooth interface
configuration, (11), with Taylor summation.

and expand

ν(x;ε) =
∞

∑
n=0

νn(x)εn,

then FE delivers approximations to νn from the an,p. More precisely, for F ′m(x) :=
(∇x f )Fm(x), c.f. (6),

ν̂n,p =
n

∑
m=0

∞

∑
q1=−∞

∞

∑
q2=−∞

F̂n−m,p−q |q|n+1−m am,q

−
n−1

∑
m=0

∞

∑
q1=−∞

∞

∑
q2=−∞

F̂ ′n−1−m,p−q · (iq) |q|
n−1−m am,q,

Regarding the OE methodology, we once again assume that the interface is
shaped by g(x1,x2) = ε f (x1,x2), f ∼ O (1), ε � 1. As before, we seek the ac-
tion of G on a basis function, exp(ip ·x). To achieve this we use a bounded, periodic
solution of Laplace’s equation, c.f. (7),

vp(x,y) := e|p|yeip·x.
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We make the expansion

G(ε f ) =
∞

∑
n=0

Gn( f )ε,

and seek forms for the Gn. Using the methods outlined ealier, we can show that

G0 [ξ ] = |D|ξ =
∞

∑
p1=−∞

∞

∑
p2=−∞

|p| ξ̂peip·x,

and, for n > 0,

Gn( f ) [ξ ] =−divx

[
Fn∇x |D|n−1

ξ

]
−

n−1

∑
m=0

Gm( f )
[
Fn−m |D|n−m

ξ
]
,

c.f. (8). Again, these can be accelerated by adjointness considerations to

Gn( f ) [ξ ] =−|D|n−1 divx [Fn∇xξ ]−
n−1

∑
m=0
|D|n−m Fn−mGm( f ) [ξ ] ,

c.f. (9).

6.2 Finite Depth

As we will now show, the generalization to finite depth is immediate. The problem
statement, (1), is the same, save we replace ∂yv→ 0 with

∂yv(x,−h) = 0.

Once again, the key is the periodic solution of Laplace’s equation satisfying this
boundary condition, c.f. (7),

vp(x,y) :=
cosh(|p|(y+h))

cosh(|p|h)
eipx.

Since vp and ∂yvp evaluated at y = 0 will clearly become important, we introduce
the symbol

Tn,p = Tn,p(h) :=

{
1 n even
tanh(h |p|) n odd

.

We can show that the FE Recursions become

ap,n = δn,0ξ̂p−
n−1

∑
m=0

∞

∑
q=−∞

F̂n−m,p−q |q|n−m Tn−m,q(h)am,q,

c.f. (5), and that



14 David P. Nicholls

ν̂n,p =
n

∑
m=0

∞

∑
q=−∞

F̂n−m,p−q |q|n+1−m Tn+1−m(h)am,q

−
n−1

∑
m=0

∞

∑
q=−∞

F̂ ′n−1−m,p−q(iq) |q|
n−1−m Tn−1−m(h)am,q,

c.f. (6).
For the OE recursions we can show that, at order zero,

G0[ξ ] =
∞

∑
p=−∞

|p| tanh(h |p|)ξ̂peipx = |D| tanh(h |D|)ξ ,

while at higher orders (after appealing to self–adjointness)

Gn( f ) [ξ ] =−|D|n−1 Tn+1,D∂xFn∂xξ −
n−1

∑
m=0
|D|n−m Tn−m,DFn−mGm( f ) [ξ ] ,

c.f. (9).

7 Padé Summation

One of the classical problems of numerical analysis is the approximation of an an-
alytic function given a truncation of its Taylor series. Simply evaluating the trunca-
tion will be spectrally accurate in the number of terms for points inside the disk of
convergence of the Taylor series. However, one may be interested in points of ana-
lyticity outside this disk, and a numerical “analytic continuation” is of great interest.
Padé approximation [BGM96] is one of the most popular and successful choices for
this procedure, and we refer the interested reader to the insightful calculations of
§ 8.3 of Bender & Orszag [BO78] for more details.

To summarize this procedure, consider the analytic function

c(ε) =
∞

∑
n=0

cnε
n

which we approximate by its truncated Taylor series

cN(ε) :=
N

∑
n=0

cnε
n.

If ε0 is in the disk of convergence then∣∣c(ε0)− cN(ε0)
∣∣< Kρ

N .
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However, if ε0 is a point of analyticity outside the disk of convergence of the Taylor
series, cN will produce meaningless results.

The idea behind Padé summation is to approximate cN by the rational function

[L/M](ε) :=
aL(ε)

bM(ε)
=

∑
L
l=0 alε

l

∑
M
m=0 bmεm

where L+M = N and

[L/M](ε) = cN(ε)+O
(
ε

L+M+1) .
For convenience we choose the equiorder Padé approximant [N/2,N/2](ε). For the
purposes of the following discussion we assume that either N is even or, in the case
N odd, that the highest–order term cN is ignored so that L = M = N/2 is an integer.

To derive equations for the {al} and {bm} we note that

aM(ε)

bM(ε)
= c2M(ε)+O

(
ε

2M+1)
is equivalent to

bM(ε)c2M(ε) = aM(ε)+O
(
ε

2M+1) ,
or (

M

∑
m=0

bmε
m

)(
2M

∑
n=0

cnε
n

)
=

(
M

∑
m=0

amε
m

)
+O

(
ε

2M+1) .
Multiplying the polynomials on the left–hand–side and equating at equal orders in
εm for 0≤ m≤ 2M reveals two sets of equations

m

∑
j=0

cm− jb j = am 0≤ m≤M, (12a)

M

∑
j=0

cm− jb j = 0 M+1≤ m≤ 2M. (12b)

Given that the cm are known, if the bm can be computed then the first equation,
(12a), can be used to find the am. Without loss of generality we make the classical
specification b0 = 1 so that the second equation, (12b), becomes

M

∑
j=1

cm− jb j =−cm, M+1≤ m≤ 2M,

or Hb̃ =−r where
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H =


cM . . . c1

cM+1 . . . c2
...

. . .
...

c2M−1 . . . cM

 , b̃ =


b1
b2
...

bM

 , r =


cM+1
cM+2

...
c2M

 .

To see the extremely beneficial effects this procedure can have upon HOPS sim-
ulations, we revisit the calculations of § 5 save that we consider a deformation of
size ε = 0.2 (ten times as large). More specifically, we once again consider the prob-
lem (11) (with ε = 0.2) and compare Taylor summation with Padé approxmation.
In Figures 4 and 5 we show the discouraging results delivered by FE and OE in
this challenging configuration with Taylor summation. However, as we display in
Figure 6 one is able to recover nearly full double precision from the FE and OE
approximations of the Taylor coefficients provided one appeals to the analytic con-
tinuation of Padé approximation.
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Fig. 4 Relative error in FE algorithm versus perturbation order N for smooth, large interface con-
figuration, (11) (ε = 0.2) with Taylor summation.

Dedication. The author would like to dedicate this contribution to his beautiful
wife, Kristy. Without her love and support none of this work would have been pos-
sible. This was evident most recently during our family’s one–month stay in Cam-
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Fig. 5 Relative error in OE algorithm versus perturbation order N for smooth, large interface con-
figuration, (11) (ε = 0.2) with Taylor summation.

bridge to participate in the Isacc Newton Institute programme “Theory of Water
Waves” where this lecture was delivered.
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