
High–Order Perturbation of Surfaces (HOPS)
Short Course: Analyticity Theory

David P. Nicholls

Abstract In this contribution we take up the question of convergence of the clas-
sical High–Order Perturbation of Surfaces (HOPS) schemes we introduced in the
first lecture. This is intimately tied to analyticity properties of the relevant fields and
Dirichlet–Neumann Operators, and we show how a straightforward approach cannot
succeed. However, with a simple change of variables this very method delivers not
only a clear and optimal analyticity theory, but also a stable and high–order numer-
ical scheme. We justify this latter claim with representative numerical simulations
involving all three of the HOPS schemes presented thus far.

1 Introduction

Over the past two lectures we have derived several High–Order Perturbation of Sur-
faces (HOPS) schemes for the numerical simulation of (i.) solutions to boundary
value problems, (ii.) surface integral operators (e.g., the Dirichlet–Neumann Oper-
ator), and (iii.) free and moving boundary problems (e.g., traveling water waves).
These HOPS methods are rapid (amounting to surface formulations accelerated by
FFTs), robust (for perturbation size sufficiently small), and simple to implement
(Operator Expansions is a one–line formula, while Field Expansions is two lines!).
The derivation of all of these schemes is based upon the analyticity of the unknowns,
but we have not yet specified under what conditions this is true. In this contribution
we describe a straightforward framework for addressing this question which can be
extended to give the most generous hypotheses known.

The first result on analyticity properties of Dirichlet–Neumann Operators (DNOs)
with respect to boundary perturbations is due to Coifman & Meyer [CM85]. In this
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work the DNO was shown to be analytic as a function of Lipschitz perturbations of
a line in the plane. Using a different formulation Craig, Schanz, and Sulem [CSS97]
and Craig & Nicholls [Nic98, CN00] proved analyticity of the DNO for C1 pertur-
bations of a hyperplane in three and general d dimensions, respectively. All of these
results depend upon delicate estimates of integral operators appearing in surface
formulations of the problem defining the DNO.

Using a completely different approach (which we describe here), the author
and F. Reitich produced a greatly simplified approach to establishing analyticity
of DNOs and their related fields (at the cost of slightly less generous hypotheses, C2

smoothness of the boundary perturbation) [NR01a, NR01b, NR03] which has the
added benefit of generating a stabilized numerical approach. This has been general-
ized and extended in a number of directions, first to the Helmholtz equation by the
author and Reitich [NR04a, NR04b], and the author and Nigam [NN04, NN06]. This
was then extended to traveling water waves by the author and Reitich [NR05, NR06]
(see also the work of the author and Akers [AN10]) and the stability of these by the
author [Nic07] (see also [AN12b, AN12a, AN14]). On the theoretical side, the au-
thor and Hu [HN05, HN10] showed how this very framework could be used to real-
ize these analyticity results with the optimal smoothness requirements (Lipschitz
perturbation) provided one is prepared to work with quite complicated function
spaces for the field. The method was also extended to doubly perturbed domains
by the author and Taber [NT08, NT09], while the author and Fazioli generalized
this to the case of variations of the DNO with respect to the boundary shape in
[FN08, FN10]. A rigorous numerical analysis of this algorithm for a wide array of
problems was conducted by the author and Shen [NS09]. In this paper we revisit
the proof presented in the original contribution [NR01a] which, after many years of
experience, has been further simplified and distilled.

The rest of the lecture is organized as follows. In § 2 we discuss a straightfor-
ward approach to an analyticity proof which fails. In § 3 we outline an alternative
formulation of the problem which requires a transparent boundary condition (§ 3.1)
and a change of variables (§ 3.2), and results in the method of Transformed Field
Expansions–TFE– (§ 3.3). In § 4 we produce an analyticity proof which, as a side
benefit, results in a stabilized numerical procedure described in § 5 which includes
numerical tests (§ 5.1).

2 A Convergence Proof Fails

Inspired by the classical model for waves on the surface of an ideal, deep, two–
dimensional fluid [NR01a] we consider the laterally 2π–periodic Laplace problem
with Dirichlet data at an irregular interface
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∆v = 0 y < g(x), (1a)
∂yv→ 0 y→−∞, (1b)
v = ξ y = g(x). (1c)

Supposing that g(x) = ε f (x), the Field Expansions (FE) method is built upon the
assumption that v depends analytically upon ε so that

v = v(x,y;ε) =
∞

∑
n=0

vn(x,y)εn.

Following the FE philosophy, we insert this into the problem, (1), above yielding

∆vn = 0 y < 0, (2a)
∂yvn→ 0 y→−∞, (2b)
vn = Qn y = 0. (2c)

In this latter system we have shown in the first lecture that

Qn(x) = δn,0ξ (x)−
n−1

∑
m=0

Fn−m(x) ∂
n−m
y vm(x,0), Fm(x) :=

f m(x)
m!

, (3)

where δn,m is the Kronecker delta. We can now wonder whether one can establish
analyticity of v directly from these recursions, (3)? The “natural” approach would
be to appeal to classical elliptic theory and use the triangle inequality. Recall that,
under suitable conditions, the solution of the elliptic problem, (2), at order n > 0
should satisfy

‖vn‖X ≤Ce ‖Qn‖Y ,

for two function spaces (e.g., X = H2 and Y = H3/2 [LU68]). Now, we apply the
estimate to our recursions, (3),

‖vn‖X ≤Ce

∥∥∥∥∥δn,0ξ −
n−1

∑
m=0

Fn−m(x) ∂
n−m
y vm(x,0)

∥∥∥∥∥
Y

≤Ce

{
δn,0 ‖ξ‖Y +

n−1

∑
m=0

∥∥Fn−m(x) ∂
n−m
y vm(x,0)

∥∥
Y

}
. (4)

We claim that this last estimate is useless as the sum is unbounded!

Proof. The boundary condition at order n is

vn(x,0) = δn,0ξ (x)−
n−1

∑
m=0

Fn−m∂
n−m
y vm(x,0).

Recalling, from separation of variables, that
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vn(x,y) =
∞

∑
p=−∞

an,pe|p|yeipx,

we find

∞

∑
p=−∞

an,peipx = δn,0

∞

∑
p=−∞

ξ̂peipx−
n−1

∑
m=0

Fn−m

∞

∑
q=−∞

|q|n−m am,qeiqx.

At wavenumber p we obtain

an,p = δn,0ξ̂p−
n−1

∑
m=0

∞

∑
q=−∞

F̂n−m,p−q |q|n−m am,q.

To simplify our demonstration we make the choices:

f (x) = ξ (x) = 2cos(x) = eix + e−ix.

With this we discover a number of things. First, regarding the solution at order zero,
we have

a0,p =

{
1 p =±1,
0 p 6=±1

.

Second, the powers of f satisfy

f 0 = 1,

f 1 = eix + e−ix,

f 2 = e2ix +2+ e−2ix,

f 3 = e3ix +3eix +3e−ix + e−3ix,

...

f n = enix +ne(n−2)ix + . . .+ne(2−n)ix + e−nix,

so that Fn = f n/n! = enix/n!+ . . .+ e−nix/n!. Upon defining Pn := an,n+1 we can
show that

Pn = δn,0−
n−1

∑
m=0

(m+1)n−m

(n−m)!
Pm,

since F̂n,m = 0, |m|> n, and we can show (by induction) that

an,m = 0, |m|> n+2.

We now appeal to the following theorem of Friedman and Reitich [FR01] which
shows that, for this subset of Fourier coefficients, Pn = an,n+1, while the sum con-
verges for ε sufficiently small, the relevant majorizing sequence (corresponding to
the bound (4)) diverges for any non–zero choice of ε .



High–Order Perturbation of Surfaces (HOPS) Short Course: Analyticity Theory 5

Theorem 1 (Friedman & Reitich [FR01]).

• The sum ∑
∞
n=0 Pnεn converges for ε < 1/e.

• Consider the majorizing sequence Θn (i.e., |Pn| ≤Θn) defined by

Θn = δn,0 +
n−1

∑
m=0

(m+1)n−m

(n−m)!
Θm.

The sum ∑
∞
n=0 Θnεn diverges for all ε > 0.

A graphical depiction of this result is given in Figure 1 which demonstrates a non–
zero radius of convergence for Pn and a nonexistent domain of convergence for Θn.
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n versus n.

3 A Change of Coordinates

One answer to the question of why this proof fails is that the “classical” HOPS
schemes require the differentiation of the field (e.g., in the case of FE) and/or field
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trace (e.g., in the case OE) across the boundary of the problem domain, y = g(x).
One classical technique for analyzing free– and moving–boundary problems such
as these which addresses this concern is a simple change of variables mapping the
domain from the deformed geometry {y < g(x)} to a flat one {y′ < 0}. We pursue
a particular (non–conformal) choice which, in the theory of gratings, is called the
C–method [CMR80, CDCM82, LCGP99] and, in atmospheric sciences, is known
as σ–coordinates [Phi57]. Now, the differentiations take place within the problem
domain and/or at its boundary. With this strategy we realize a straightforward ana-
lyticity proof, and derive a stable and robust numerical algorithm.

3.1 A Transparent Boundary Condition

Before we state the change of variables we describe a domain decomposition which
is very useful for HOPS methods. Once again, consider the BVP (1) generating the
DNO

G(g)ξ = [∂yv− (∂xg)∂xv]y=g(x) . (5)

We choose b > |g|
∞

and define the artificial boundary {y = −b}. It is easy to see
that the BVP above, (1), is equivalent to:

∆v = 0 −b < y < g(x),

v = ξ y = g(x),

∆w = 0 y <−b,

∂yw→ 0 y→−∞,

v = w y =−b,

∂yv = ∂yw y =−b.

If we denote ψ(x) := v(x,−b), we can solve the problem

∆w = 0 y <−b, (6a)
w = ψ y =−b, (6b)
∂yw→ 0 y→−∞, (6c)

and, defining the (second) DNO,

S[ψ] := ∂yw(x,−b),

see that the original BVP, (1), is equivalent to

∆v = 0 −b < y < g(x), (7a)
v = ξ y = g(x), (7b)
∂yv−S[v] = 0 y =−b. (7c)
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Such a strategy involves a “Transparent Boundary Condition” posed at the Artificial
Boundary {y = −b} and this strategy has been widely employed (see, e.g., [JN80,
HW85, KG89, Giv91, GK94, Giv92, GK95, Giv99]).

All that remains is to specify S from (6). We note that the unique, bounded,
periodic solution is given by

w(x,y) =
∞

∑
p=−∞

ψ̂pe|p|(y+b)eipx.

With this we can compute

∂yw(x,y) =
∞

∑
p=−∞

|p| ψ̂pe|p|(y+b)eipx,

so that

S[ψ] = ∂yw(x,−b) =
∞

∑
p=−∞

|p| ψ̂peipx = |D|ψ,

which defines the order–one Fourier multiplier |D|.

3.2 The Change of Variables

To describe the idea behind our Transformed Field Expansions (TFE) approach we
fix on the problem (7), and consider the “domain flattening” change of variables

x′ = x, y′ = b
(

y−g(x)
b+g(x)

)
,

which maps {−b < y < g(x)} to {−b < y′ < 0}. Note that these can be inverted by

x = x′, y =
y′(b+g(x′))

b
+g(x′).

Defining the transformed field

u(x′,y′) := v(x′,y′(b+g(x′))/b+g(x′)),

since

∂y′

∂x
= b

(
(−∂xg)(b+g)− (y−g)(∂xg)

(b+g)2

)
= b

(
(−∂xg)(b+g)− (y′(b+g)/b)(∂xg)

(b+g)2

)
=−(∂x′g)

(
b+ y′

b+g

)
,

it is not difficult to show that
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∂xv = (∂x′u)(∂xx′)+(∂y′u)(∂xy′) = ∂x′u−
∂x′g
b+g

(b+ y′)∂y′u

so that
(b+g)∂x = (b+g)∂x′ − (∂x′g)(b+ y′)∂y′ .

Also,

∂yv = (∂x′u)(∂yx′)+(∂y′u)(∂yy′) =
b

b+g
∂y′u,

so that
(b+g)∂y = b∂y′ .

We summarize these as

M(x)∂x = M(x′)∂x′ +N(x′,y′)∂y′ , M(x)∂y = b∂y′ ,

where
M(x′) := b+g(x′), N(x′,y′) :=−(∂x′g)(y

′+b).

Laplace’s equation, (7a), implies

0 = M2
∆v = M2

∂
2
x v+M2

∂
2
y v

= M∂x [M∂xv]− (∂xM)M∂xv+M∂y [M∂yv] .

Applying the change of variables yields

0 =
[
M∂x′ +N∂y′

][
M∂x′u+N∂y′u

]
− (∂x′M)

[
M∂x′u+N∂y′u

]
+b∂y′

[
b∂y′u

]
= M∂x′ [M∂x′u]+N∂y′ [M∂x′u]+M∂x′

[
N∂y′u

]
+N∂y′

[
N∂y′u

]
− (∂x′M)M∂x′u− (∂x′M)N∂y′u+b∂y′

[
b∂y′u

]
.

Attempting to put as many terms in “divergence form” as possible:

0 = ∂x′
[
M2

∂x′u
]
− (∂x′M)M∂x′u+∂y′ [NM∂x′u]− (∂y′N)M∂x′u

+∂x′
[
MN∂y′u

]
− (∂x′M)N∂y′u+∂y′

[
N2

∂y′u
]
− (∂y′N)N∂y′u

− (∂x′M)M∂x′u− (∂x′M)N∂y′u+∂y′
[
b2

∂y′u
]
.

This leads to

div′
[(

M2 MN
MN b2 +N2

)
∇
′u
]
− (∂x′g)

(
M
N

)
·∇′u = 0,

where we have used
−2∂x′M−∂y′N =−∂x′g.

We write this as
div′

[
A∇
′u
]
− (∂x′g)B ·∇′u = 0,
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where

A :=
(

M2 MN
MN b2 +N2

)
, B :=

(
M
N

)
.

We note that
A = b2I +A1(g)+A2(g), B = B0 +B1(g),

where

A1(g) =
(

2bg −b(y′+b)(∂x′g)
−b(y′+b)(∂x′g) 0

)
,

A2(g) =
(

g2 −(y′+b)g(∂x′g)
−(y′+b)g(∂x′g) (y′+b)2(∂x′g)2

)
,

and

B0 =

(
b
0

)
, B1(g) =

(
g

−(y′+b)(∂x′g)

)
.

Therefore, we can write
b2

∆
′u = F(x′;g,u), (8)

where

F :=−div′
[
A1∇

′u
]
−div′

[
A2∇

′u
]
+(∂x′g)B0 ·∇′u+(∂x′g)B1 ·∇′u, (9)

and F = O (g).
The interfacial boundary condition, (7b), becomes

u(x′,0) = v(x,g(x)) = ξ (x) = ξ (x′).

We write the transparent boundary condition, (7c), as

M∂yv−MS[v] = 0,

and, noting that u(x′,−b) = v(x,−b), we find

b∂y′u−MS[u] = 0,

so that
b∂y′u−bS[u] = J(x;g,u), (10)

where
J = gS[u]. (11)

To close, we write the definition of the DNO, (5), as

MG(g)[ξ ] = [M∂yv− (∂xg)M∂xv]y=g .

In our new coordinates we have
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MG =
[
b∂y′u− (∂x′g)M∂x′u− (∂x′g)N∂y′u

]
y′=0 ,

which, since N(x′,0) =−(∂x′g)b, we rewrite as

bG = b∂y′u−b(∂x′g)∂x′u−g(∂x′g)∂x′u+b(∂x′g)
2
∂y′u−gG,

or
bG = b∂y′u+H(x;g,u), (12)

where

H(x;g,u) :=−b(∂x′g)∂x′u−g(∂x′g)∂x′u+b(∂x′g)
2
∂y′u−gG. (13)

3.3 Transformed Field Expansions

Gathering all of these equations and dropping the primes we find that we must seek
a (L = 2π) periodic solution of

b2
∆u = F −b < y < 0,

u = ξ y = 0,
b∂yu−bS[u] = J y =−b,

to compute the DNO
bG = b∂yu+H.

Supposing that g = ε f , ε � 1 for now, our High–Order Perturbation of Surfaces
(HOPS) approach, denoted the “Transformed Field Expansions” (TFE) method,
seeks solutions of the form

u = u(x,y;ε) =
∞

∑
n=0

un(x,y)εn, G = G(ε f )[ξ ] =
∞

∑
n=0

Gn( f )[ξ ]εn.

These can be shown to satisfy

b2
∆un = Fn −b < y < 0 (14a)

un = δn,0ξ y = 0 (14b)
b∂yun−bS[un] = Jn y =−b, (14c)

and
bGn = b∂yun +Hn. (15)

In these



High–Order Perturbation of Surfaces (HOPS) Short Course: Analyticity Theory 11

Fn =−div [A1( f )∇un−1]−div [A2( f )∇un−2]

+ (∂x f )B0 ·∇un−1 +(∂x f )B1( f ) ·∇un−2,

and

Jn = f S[un−1],

Hn =−b(∂x f )∂xun−1− f Gn−1− f (∂x f )∂xun−2 +b(∂x f )2
∂yun−2.

4 A Convergence Proof Succeeds

We now have a recursive sequence of elliptic BVPs, (14), to solve which can be suc-
cessfully estimated (under generous hypotheses). One can ask why these recursions
are “better.” An answer is that all derivatives (tangential and normal) are taken at lo-
cations within the problem domain. Additionally, no more than first derivatives of f
appear, and no more than second powers of f (and its derivative) appear. Our recur-
sive estimation strategy requires two (classical) elements (i.) an “Algebra Lemma”
to handle products of functions, and (ii.) an “Elliptic Estimate” to bound solutions of
the BVP, (14), in terms of the inhomogenous terms. The proofs of each can be found
in classical texts; see, e.g. Ladyzhenskaya & Ural’tseva [LU68] or Evans [Eva98].

Lemma 1. Given an integer s≥ 0 and any σ > 0, there exists a constant M =M (s)
such that if f ∈Cs([0,2π]), w ∈ Hs([−b,0]× [0,2π]) then

‖ f w‖Hs ≤M (s) | f |Cs ‖w‖Hs ,

and if f̃ ∈Cs+1/2+σ ([0,2π]), w̃ ∈ Hs+1/2([0,2π]) then∥∥ f̃ w̃
∥∥

Hs+1/2 ≤M (s)
∣∣ f̃ ∣∣Cs+1/2+σ ‖w̃‖Hs+1/2 .

Theorem 2. Given an integer s≥ 0, if F ∈Hs([−b,0]×[0,2π]), ξ ∈Hs+3/2([0,2π]),
J ∈ Hs+1/2([0,2π]), then the unique solution of

b2
∆w = F −b < y < 0,

w = ξ y = 0,
b∂yw−bS[w] = J y =−b,

satisfies
‖w‖Hs+2 ≤Ce

{
‖F‖Hs +‖ξ‖Hs+3/2 +‖J‖Hs+1/2

}
,

for some constant Ce =Ce(s).
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4.1 The Analyticity Result

In order to establish our desired result, we begin by demonstrating that the field, u,
depends analytically upon ε .

Theorem 3. Given any integer s ≥ 0, if f ∈Cs+2([0,2π]) and ξ ∈ Hs+3/2([0,2π])
then un ∈ Hs+2([−b,0]× [0,2π]) and

‖un‖Hs+2 ≤ KBn,

for constants K,B > 0.

With this in hand we are able to show the following.

Theorem 4. Given any integer s ≥ 0, if f ∈Cs+2([0,2π]) and ξ ∈ Hs+3/2([0,2π])
then Gn ∈ Hs+1/2([0,2π]) and

‖Gn‖Hs+1/2 ≤ K̃Bn,

for constants K̃,B > 0.

For these we require the following inductive lemma.

Lemma 2. Given an integer s≥ 0, if f ∈Cs+2([0,2π]) and

‖un‖Hs+2 ≤ KBn, ∀ n < n̄,

for constants K,B > 0, then there exists a constant C̄ > 0 such that

max
{
‖Fn̄‖Hs ,‖Jn̄‖Hs+1/2

}
≤ KC̄

{
| f |Cs+2 Bn̄−1 + | f |2Cs+2 Bn̄−2

}
.

Proof. For simplicity we focus on the term

Fn̄ =−div [A1∇un̄−1]+ . . .=−∂x [Axx
1 ∂x [un̄−1]]+ . . . ,

where Axx
1 (x) = 2b f (x). We can estimate

‖Fn̄‖Hs ≤ ‖Axx
1 ∂x [un̄−1]‖Hs+1 + . . .≤M |Axx

1 |Cs+1 ‖un̄−1‖Hs+2 + . . .

≤M (2b | f |Cs+1)KBn̄−1 + . . .

So, if we choose
C̄ > 2bM ,

then we are done.

Now we are in a position to prove Theorem 3.

Proof (Theorem 3). We work by induction in n: At order n = 0 we use the elliptic
estimate to deduce

‖u0‖Hs+2 ≤Ce ‖ξ‖Hs+3/2 ,
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so we set K := Ce ‖ξ‖Hs+3/2 . Now, we suppose that the inductive estimate is valid
for all n < n̄ and use the elliptic estimate at order n̄:

‖un̄‖Hs+2 ≤Ce
{
‖Fn̄‖Hs +‖Jn̄‖Hs+1/2

}
.

Lemma 2 tells us that

‖un̄‖Hs+2 ≤Ce2C̄K
{
| f |Cs+2 Bn̄−1 + | f |2Cs+2 Bn̄−2

}
.

So, we are done if we choose

B > max
{

4CeC̄,2
√

CeC̄
}
| f |Cs+2 .

We can now prove the analyticity of the Dirichlet–Neumann operator.

Proof (Theorem 4). Once again, we use induction in n: At order n = 0 we have

G0(x) = ∂yu0(x,0),

so, from the previous theorem,

‖G0‖Hs+1/2 =
∥∥∂yu0

∥∥
Hs+1/2 ≤ ‖u0‖Hs+2 ≤ K,

and we choose K̃ ≥ K. Now, we assume the inductive estimate is true for all n < n̄
and estimate

‖Gn̄‖Hs+1/2 =
∥∥∂yun̄

∥∥
Hs+1/2 +(1/b)‖Hn̄‖Hs+1/2 ,

A lemma similar to Lemma 2 delivers

‖Hn̄‖Hs+1/2 ≤ K̃C̄
{
| f |Cs+2 Bn̄−1 + | f |2Cs+2 Bn̄−2

}
.

Again, we are done if we choose

B > max
{

4CeC̄,2
√

CeC̄
}
| f |Cs+2 .

Remark 1. We note that the theory can be extended in a number of ways. In partic-
ular to finite depth (h < ∞), three dimensions (by simply viewing p ∈ Z2) [NR01a],
and joint analyticity with respect to multiple boundaries [NT08]. Furthermore, an-
alytic continuation can be justified by considering perturbations about a generic
real–valued function f0(x) [NR03]. Finally variations of the DNO with respect to
boundary deformations can also be shown to be analytic [FN08].
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5 Stable Numerics

In light of the powerful and straightforward proof we were able to deliver for the
analyticity of both the field and DNO, one can wonder about a numerical simulation
based upon these TFE recursions. We recall the recursions for the un, (14), and
Gn, (15), and the first thing we notice is the inhomogeneous nature of these, i.e.
Fn,Jn,Hn 6≡ 0 in general. Consequently, a method based upon separation of variables
(such as FE and OE) is no longer available, thus a volumetric approach is mandated.

As we specify this method, we note that we have already expanded in a Taylor
series in the perturbation parameter ε and this is our first “discretization.” We work
recursively at each perturbation order, so that once we know {u0, . . . ,un−1} and
{G0, . . . ,Gn−1} we can form {Fn,Jn,Hn}. The periodic lateral boundary conditions
suggest a Fourier expansion in the x–variable. Finally, at each perturbation order
and each wavenumber one must solve a two–point boundary value problem. For
this we choose a Chebyshev collocation method [GO77, CHQZ88], and thus we
approximate u by

uN,Nx,Ny(x′,y′;ε) :=
N

∑
n=0

Nx/2−1

∑
p=−Nx/2

Ny

∑
`=0

ûn(p, `)eipx′T`(2y′/b+1)εn,

where the ûn(p, `) are determined by a collocation approach [NR03, NR04b].

5.1 Numerical Tests

We now seek to validate and evaluate this third HOPS scheme, TFE, for approxi-
mating DNOs, and compare its performance against that of the previous approaches,
FE and OE. Recall the exact solution we used in a previous lecture to test the FE and
OE algorithms. If we choose a wavenumber, say r, and a profile f (x), for a given
ε > 0, it is easy to see that the Dirichlet data

ξr(x;ε) := vr(x,ε f (x)) = e|r|ε f (x)eirx,

generates Neumann data

νr(x;ε) := [∂yvr− ε(∂x f )∂xvr] (x,ε f (x))

= [|r|− ε(∂x f )(ir)]e|r|ε f (x)eirx.

We consider a problem with geometric and numerical parameters

L = 2π, ε = 0.5, b = 1, f (x) = exp(cos(x)),
Nx = 256, Ny = 64, N = 16. (16)
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In Figure 2 we display results of our numerical experiments with the FE, OE, and
TFE algorithms as N is refined from 0 to 16 using Taylor summation. We repeat this
with Padé approximation in Figure 3 for this moderate perturbation. We notice that,

N
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FE(Taylor)
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TFE(Taylor)

Fig. 2 Relative error in FE, OE, and TFE algorithms with Taylor summation versus perturbation
order N for configuration, (5.1), with moderate deformation ε = 0.5.

while this deformation is not small, the TFE computation demonstrates it is within
the disk of analyticity of the DNO. The instabilities in the FE and OE methods (first
reported in [NR01a]) render these methods useless with Taylor summation. We do
point out that the analytic continuation technique of Padé approximation not only
enhances the TFE results, but also renders the FE and OE simulations useful.

We now reconsider these calculations in the context of a much larger deformation
size ε = 1.0 (twice as large). In Figures 4 and 5 we show results generated by the FE,
OE, and TFE algorithms as N is refined from 0 to 16 using Taylor and Padé sum-
mation, respectively. As is evident from the TFE simulation, here the deformation
is large enough so that we are no longer within the disk of analyticity of the DNO.
While none of the HOPS algorithms deliver any accuracy with Taylor summation
(as they are prohibited by the theory), Padé approximation allows one to access the
domain of analyticity outside the disk of convergence.
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Fig. 3 Relative error in FE, OE, and TFE algorithms with Padé summation versus perturbation
order N for configuration, (5.1), with moderate deformation ε = 0.5.

Remark 2. As with FE and OE, the TFE algorithm can be extended to finite depth
(h < ∞) and three dimensions (using p ∈ Z2) [NR01b].

Dedication. The author would like to dedicate this contribution to his wonderful
daughter, Emma. Without her love and enthusiasm, life would not be near as much
fun. He learned many things at the “Theory of Water Waves” programme at the Isaac
Newton Institute, but none was more surprising than Emma’s demonstration of how
exciting it is to ride around Cambridge on the upper level (at the front, of course) of
a double–decker bus.

Acknowledgements The author gratefully acknowledges support from the National Science
Foundation through grant No. DMS–1115333.

The author also would like to thank the Issac Newton Institute at the University of Cambridge
for providing the facilities where this meeting was held, as well as T. Bridges, P. Milewski, and M.
Groves for organizing this exciting meeting.



High–Order Perturbation of Surfaces (HOPS) Short Course: Analyticity Theory 17

N

0 2 4 6 8 10 12 14 16

R
el
at
iv
e
E
rr
or

10
-5

10
0

10
5

10
10

10
15

Relative Error versus N

FE(Taylor)

OE(Taylor)

TFE(Taylor)

Fig. 4 Relative error in FE, OE, and TFE algorithms with Taylor summation versus perturbation
order N for configuration, (5.1), with large deformation ε = 1.0.

References

[AN10] Benjamin F. Akers and David P. Nicholls. Traveling waves in deep water with gravity
and surface tension. SIAM Journal on Applied Mathematics, 70(7):2373–2389, 2010.

[AN12a] Benjamin F. Akers and David P. Nicholls. Spectral stability of deep two–dimensional
gravity–capillary water waves. Studies in Applied Mathematics, 130:81–107, 2012.

[AN12b] Benjamin F. Akers and David P. Nicholls. Spectral stability of deep two–dimensional
gravity water waves: Repeated eigenvalues. SIAM Journal on Applied Mathematics,
72(2):689–711, 2012.

[AN14] Benjamin Akers and David P. Nicholls. Spectral stability of finite depth water waves.
European Journal of Mechanics B/Fluids, 46:181–189, 2014.

[CDCM82] J. Chandezon, M.T. Dupuis, G. Cornet, and D. Maystre. Multicoated gratings: a differ-
ential formalism applicable in the entire optical region. J. Opt. Soc. Amer., 72(7):839,
1982.

[CHQZ88] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spec-
tral methods in fluid dynamics. Springer-Verlag, New York, 1988.

[CM85] R. Coifman and Y. Meyer. Nonlinear harmonic analysis and analytic dependence. In
Pseudodifferential operators and applications (Notre Dame, Ind., 1984), pages 71–78.
Amer. Math. Soc., 1985.

[CMR80] J. Chandezon, D. Maystre, and G. Raoult. A new theoretical method for diffraction
gratings and its numerical application. J. Opt., 11(7):235–241, 1980.



18 David P. Nicholls

N

0 2 4 6 8 10 12 14 16

R
el
at
iv
e
E
rr
or

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Relative Error versus N

FE(Pade)

OE(Pade)

TFE(Pade)

Fig. 5 Relative error in FE, OE, and TFE algorithms with Padé summation versus perturbation
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