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Abstract. Over the past twenty years, the field of plasmonics has been revolutionized
with the isolation and utilization of two–dimensional materials, particularly graphene.
Consequently there is significant interest in rapid, robust, and highly accurate computa-
tional schemes which can incorporate such materials. Standard volumetric approaches
can be contemplated, but these require huge computational resources. Here we describe
an algorithm which addresses this issue for nonlocal models of the electromagnetic re-
sponse of graphene. Our methodology not only approximates the graphene layer with
a surface current, but also reformulates the governing volumetric equations in terms of
surface quantities using Dirichlet–Neumann Operators. We have recently shown how
these surface equations can be numerically simulated in an efficient, stable, and accu-
rate fashion using a High–Order Perturbation of Envelopes methodology. We extend
these results to the nonlocal model mentioned above, and using an implementation of
this algorithm, we study absorbance spectra of TM polarized plane–waves scattered by
a periodic grid of graphene ribbons.
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1 Introduction

Over the past twenty years, the field of plasmonics has been revolutionized with the iso-
lation and utilization of two–dimensional materials, particularly graphene. Graphene
is a single layer of carbon atoms arranged in a honeycomb lattice which has striking
mechanical, chemical, and electronic properties [GN07, Gei09]. It was first isolated in
2004 [NGM+04] resulting in the awarding of the 2011 Nobel Prize to Geim [Gei11] and
Novoselov [Nov11]. At this point the literature on graphene is so vast that it is impossible
to describe even a fraction of it here, however, we point the interested reader to the web-
site maintained by Nature dedicated to the major developments in the field [Nat24]. The
authors have found the survey article of Bludov, Ferriera, Peres, and Vasilevskiy [BFPV13]
and survey book of Goncalves and Peres [GP16] to be particularly helpful. We point out
that, in addition to the optical phenomena that we have mentioned above, graphene has
become indispensable in applications as diverse as energy storage [OAWS21], drug deliv-
ery and tumor therapy [SSW+20], biomedical devices [SZLZ12], strain sensors [LZW+20],
and membranes [NCBL21].
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Among the many optical phenomena associated to graphene, the collective charge os-
cillations known as plasmons [JBScvac09, JScvacB13] are distinguished. Recently, the dis-
persive, nonlocal properties of these graphene plasmons have generated interest in the
engineering literature [FLTPC15, CSGDTA15, MS20, ZWG20, KBR23] and the object of this
contribution is to initiate this study. In particular, we describe a novel algorithm, inspired
by our previous work [Nic19], for simulating the scattering returns by a periodic array of
graphene strips which takes into account the effects of nonlocality.

Before beginning our description, we point out that among the many techniques for nu-
merically simulating structures featuring graphene (or other two–dimensional materials),
simply solving the volumetric Maxwell equations in either the time domain (e.g., the Time
Domain Finite Difference method [TH00]) or frequency domain (e.g., the Finite Element
Method [Jin02]) are natural options [GBM15]. Typically, the graphene is modeled with an
effective permittivity supported in a thin layer, or as a surface current with an effective con-
ductivity at the interface between two layers [HN21]. In either case, commercial black–box
Finite Element Method (FEM) software such as COMSOL Multiphysics™ [COM24] is typ-
ically utilized, however, these simulations are quite costly due to their low–order accuracy
and volumetric character.

In our recent contributions [Nic18, Nic19] we described a method which overcomes
these drawbacks by not only restating the frequency domain governing equations in terms
of interfacial unknowns, but also describing a highly accurate, efficient, and stable High–
Order Spectral (HOS) algorithm. A feature of our algorithm is that, in order to close the
system of equations, surface integral operators must be introduced which connect interface
traces of the scattered fields (Dirichlet data) to their surface normal derivatives (Neumann
data). Such Dirichlet–Neumann Operators (DNOs) have been widely used and studied in
the simulation of linear wave scattering, e.g., interfacial formulations of scattering prob-
lems [Nic12, NOJR16, Nic18, Nic19].

The object of our study is the plasmonic response that can be generated by graphene
and, as in many photonic devices, structural periodicity is one path. This can be ac-
complished in several ways, and in one of our earlier papers [Nic18] we focused upon
graphene deposited on a periodically corrugated grating. In this the height/slope of
the corrugation shape was viewed as a perturbation parameter and the resulting High–
Order Perturbation of Shapes (HOPS) scheme sought corrections to the trivially computed
flat–interface, solid graphene configuration. However, it is much more common to cre-
ate a structure with flat interfaces upon which periodically spaced ribbons of graphene
are mounted. In the paper [Nic19] we modeled this configuration by multiplying the
(constant) current function by an envelope function which transitions between one (where
the graphene is deposited) to zero (where graphene is absent). Our numerical procedure
viewed this envelope function as a perturbation of the identity function, and we termed
that scheme a High–Order Perturbation of Envelopes (HOPE) algorithm. Our purpose in
this contribution is to extend these latter results to the case of a nonlocal model for the
response of a graphene layer. As we shall show, as such a model introduces higher or-
der derivatives to the governing equations, this is a highly non–trivial extension requiring
significant theoretical and algorithmic generalizations of those found in [Nic19].

Using our HOPE method we not only rigorously demonstrate that the scattered fields
depend analytically upon the envelope perturbation parameter, but also show that the re-
sulting numerical scheme is both robust and accurate, and extremely rapid in its execution.
As with the algorithm specified in [Nic19] due to the flat interfaces of this geometry, the
relevant DNOs are reduced to simple Fourier multipliers which can be easily computed
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in Fourier space. This is to be contrasted to the case of corrugated interfaces from [Nic18]
where a stable and accurate HOPS scheme for their computation is highly non–trivial to
design and implement.

The rest of the paper is organized as follows: In Section 2 we recall the governing equa-
tions of our model [Nic18,Nic19] for the response of a two–dimensional material mounted
between two dielectrics. In Section 3 we describe our surface formulation of these equa-
tions, specializing to the patterned, flat–interface configuration in Section 3.1. We prescribe
our HOPE methodology in Section 3.2. We state and prove our analyticity results in Sec-
tion 4. We conclude with numerical results in Section 5, with a discussion of implementa-
tion issues in Section 5.1 and simulation of absorbance spectra in Section 5.2.

2 Governing Equations

Following [Nic18], the structure we consider is displayed in Figure 1, a doubly layered, y–
invariant medium with periodic interface shaped by z=g(x), g(x+d)=g(x). This interface
separates two domains filled with dielectrics of permittivities ϵu in Su :={z>g(x)} and ϵw
in Sw := {z< g(x)}, respectively. This is illuminated with time–harmonic (of dependence
exp(−iωt)) plane–wave radiation of incidence angle θ, frequency ω, and wavenumber
ku =

√
ϵuω/c0,

vinc= ei(αx−γuz), α= ku sin(θ), γu = ku cos(θ).

x

z

z = g(x)

vinc = exp(−iγuz)

Su

Sw

Figure 1: Plot of two–layer structure with periodic interface.

As we detailed in [Nic18], if we choose as unknowns, {u(x,z),w(x,z)}, the laterally
quasiperiodic transverse components of either the electric or magnetic fields, then the gov-
erning equations in this two–layer configuration are

u−w+Aτw∂Nw= ξ, z= g(x), (2.1a)
τu∂Nu−τw∂Nw+Bw=τuν, z= g(x), (2.1b)
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where ∂N =N ·∇, N=(−∂xg,1)T,

τm =

{
1, TE,
1/ϵm, TM,

A=

{
0, TE,
|N|σ̂/(ik0), TM,

B=

{
(ik0)σ̂/|N|, TE,
0, TM,

for m∈{u,w}, and

ξ(x)=− vinc∣∣
z=g(x) , ν(x)=− ∂Nvinc∣∣

z=g(x) .

Of particular note is σ̂=σ/(ϵ0c0), the dimensionless surface current which models the ef-
fects of the graphene (or other two–dimensional material) deposited at the interface be-
tween the two layers.

3 Surface Formulation

Following [Nic12, Nic18] we now reformulate the problem (2.1) in terms of surface inte-
gral operators, in this case Dirichlet–Neumann Operators (DNOs). For this we define the
Dirichlet traces

U(x) :=u(x,g(x)), W(x) :=w(x,g(x)),

and the outward pointing Neumann traces

Ũ(x) :=−(∂Nu)(x,g(x)), W̃(x) :=(∂Nw)(x,g(x)).

In terms of these (2.1) read

U−W+AτwW̃= ξ, (3.1a)

−τuŨ−τwW̃+BW=τuν. (3.1b)

These specify two equations for four unknowns which would be problematic except that
U and Ũ are connected, as are W and W̃. We formalize this with the following definitions
[Nic17].

Definition 3.1. Given the unique quasiperiodic upward propagating solution [Are09] to

∆u+k2
uu=0, z> g(x), (3.2)

subject to the Dirichlet condition, u(x,g(x))=U(x), the Neumann data, Ũ(x), can be com-
puted. The DNO G is defined by

G(g) :U→ Ũ.

Definition 3.2. Given the unique quasiperiodic downward propagating solution [Are09]
to

∆w+k2
ww=0, z< g(x), (3.3)

subject to the Dirichlet condition, w(x,g(x)) = W(x), the Neumann data, W̃(x), can be
computed. The DNO J is defined by

J(g) :W→W̃.

Negating the second equation, (3.1) can now be written as(
I −I+Aτw J

τuG τw J−B

)(
U
W

)
=

(
ξ

−τuν

)
. (3.4)
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3.1 The Patterned, Flat–Interface Configuration

The configurations of interest to engineers [BFPV13,GP16] often feature flat layer interfaces
with patterned graphene sandwiched in between. For this we use the modeling assump-
tions

g(x)≡0, σ̂≈ σ̂BGKX(x;δ),

where σ̂BGK is a (dimensionless) Bhatnagar–Gross–Krook (BGK) model for the graphene
[FLTPC15],

σ̂BGK= σ̂Drude

{
1−v2

F

(
3 f +2i/τ

4 f ( f +i/τ)2

)
∂2

x

}
=: σ̂loc−σ̂nloc∂2

x,

where the local term comes from a Drude model [BFPV13, GP16],

σ̂Drude=
σ0

ϵ0c0

(
4EF

π

)
1

h̄γ̃−ih̄ω
=

2EFe2

ϵ0c0

(
1

Γ−ih f

)
,

where σ0 = πe2/(2h) is the universal AC conductivity of graphene [GP16], e > 0 is the
elementary charge, h is Planck’s constant, h̄=h/(2π), EF is the (local) Fermi level position,
and γ̃ is the relaxation rate. (Γ= h̄γ̃ is another frequently used notation.) Further, vF is the
Fermi velocity, f =ω/(2π) is the ordinary frequency of the incident radiation, and τ is the
carrier lifetime. We will also have use for the following decomposition of A= Aloc−Anloc
and B=Bloc−Bnloc,

Aloc=

{
0, TE,
|N|σ̂loc/(ik0), TM,

, Anloc=

{
0, TE,
|N|(σ̂nloc/(ik0))∂2

x, TM,
,

and

Bloc=

{
(ik0)σ̂loc/|N|, TE,
0, TM,

, Bnloc=

{
(ik0)(σ̂nloc/|N|)∂2

x, TE,
0, TM,

.

Also, X(x;δ) is a d–periodic (in x) envelope function which we use to model the pattern-
ing. For this we permit the envelope to be varied with a parameter δ, e.g.,

X(x;δ)=X0+δX1(x), (3.5)

where X0 ̸=0 as explained below, and

X1(x)=−X0+


√

1−4
(

x−d/2
w

)2
, d/2−w/2< x<d/2+w/2,

0, else,

and w is the ribbon width; see Figure 2. This profile was specified in [BFPV13] to model
not only the patterning but also edge effects.

With these assumptions, and denoting G0 =G(0) and J0 = J(0), we consider the modi-
fication of (3.4), (

I −I+AX(x;δ)τw J0
τuG0 τw J0−BX(x;δ)

)(
U
W

)
=

(
ξ

−τuν

)
. (3.6)



6

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Figure 2: Plot of the current envelope function, X(x)=X0+X1(x).

Remark 3.3. Importantly, in the flat–interface case, g(x)≡ 0, the DNOs can be explicitly
specified in terms of Fourier multipliers. Considering the upper layer DNO, G0, we recall
the Rayleigh expansions [Pet80, Yeh05]

u(x,z)=
∞

∑
p=−∞

Ûpeiαpx+iγu,pz, (3.7)

where

αp =α+(2π/d)p, γm,p =


√

k2
m−α2

p, p∈Um,

i
√

α2
p−k2

m, p ̸∈Um,
m∈{u,w}, (3.8a)

and the propagating modes are

Um :=
{

p∈Z | α2
p ≤ k2

m

}
, m∈{u,w}, (3.8b)

which gives the exact solution of (3.2) with Dirichlet data u(x,0) = U(x). From this the
Neumann data can readily be shown to be

Ũ(x)=−∂zu(x,0)=
∞

∑
p=−∞

−iγu,pÛpeiαpx,

which gives

G0[U]=
∞

∑
p=−∞

−iγu,pÛpeiαpx =:−iγu,DU,

defining the order–one Fourier multiplier, γu,D. In analogous fashion, based on the Rayleigh
expansion solution of (3.3),

w(x,z)=
∞

∑
p=−∞

Ŵpeiαpx−iγw,pz, (3.9)

one can demonstrate that

J0[W]=
∞

∑
p=−∞

−iγw,pŴpeiαpx =:−iγw,DW.
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3.2 A High–Order Perturbation of Envelopes Method

As we shall see, (3.6) is straightforward to solve provided that X(x)≡ X0 ∈ R. In this
case the equations are diagonalized by the Fourier transform and the solution can be
found wavenumber–by–wavenumber. We build upon this observation by considering
envelope functions of the form (3.5) and proceeding with (regular) perturbation theory.
As we are considering deformations of the envelope (through the parameter δ), we term
such a scheme a “High–Order Perturbation of Envelopes” (HOPE) method to contrast with
“High–Order Perturbation of Surfaces” (HOPS) algorithms where the height/slope of the
interface shape is the perturbation parameter [NR01].

For this HOPE approach we posit expansions

{U,W}={U,W}(x;δ)=
∞

∑
ℓ=0

{Uℓ,Wℓ}(x)δℓ, (3.10)

and derive recursive formulas for the {Uℓ,Wℓ}. It is not difficult to see that, at order ℓ≥0,
one must solve(

I −I+AX0τw J0
τuG0 τw J0−BX0

)(
Uℓ

Wℓ

)
=δℓ,0

(
ξ

−τuν

)
+

(
−AX1(x)τw J0Wℓ−1

BX1(x)Wℓ−1

)
, (3.11)

where δℓ,q is the Kronecker delta, and W−1 ≡ 0. We will presently show that (3.10) con-
verge strongly in appropriate Sobolev spaces. Importantly, these recursions also result in
a numerical algorithm that delivers HOS accuracy.

Remark 3.4. As we have pointed out that the operators G0 and J0 are diagonalized by the
Fourier transform, we can state the condition of “non–resonance” which we require for
uniqueness of solutions. As we shall see, in Transverse Electric (TE) polarization (A = 0
and τm =1) we will require that the determinant function

∆TE
p :=(̂G0)p+(̂J0)p−BX0

=−iγu,p−iγw,p−ik0σ̂locX0−ik0σ̂nlocX0α2
p, (3.12)

satisfies, for some µ>0, min−∞<p<∞

{∣∣∣∆TE
p

∣∣∣}>µ. In Transverse Magnetic (TM) polarization
(B=0) it must be that the determinant function

∆TM
p :=τu (̂G0)p+τw (̂J0)p−τuτw AX0(̂G0)p (̂J0)p

=−τuiγu,p−τwiγw,p+τuτw

(
σ̂loc

ik0

)
X0γu,pγw,p

+τuτw

(
σ̂nloc

ik0

)
X0γu,pγw,pα2

p, (3.13)

satisfies, for some µ>0, min−∞<p<∞

{∣∣∣∆TM
p

∣∣∣}>µ.

We now describe precise progress on this in the following lemma.

Lemma 3.5. If X0>0, for any p∈Z

∆TE
p ̸=0, ∆TM

p ̸=0.
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Proof. We begin with the notation

z= z′+iz′′∈C, z′,z′′∈R,

and recall that, for σ̂loc= σ̂′
loc+iσ̂′′

loc,

σ̂′
loc=

(2EFe2)Γ
ϵ0c0(Γ2+h2 f 2)

>0, σ̂′′
loc=

(2EFe2)h f
ϵ0c0(Γ2+h2 f 2)

>0.

Furthermore, we have, c.f. (3.8),

γm,p =

{
γ′

m,p, p∈Um,
iγ′′

m,p, p ̸∈Um,
γ′

m,p,γ′′
m,p ≥0,

for m∈{u,w}, so that either

{γ′
m,p ≥0 and γ′′

m,p =0} or {γ′
m,p =0 and γ′′

m,p ≥0}.

From the nonlocal current model we examine the term

Q=v2
F

(
3 f +2i/τ

4 f ( f +i/τ)2

)
,

and calculate

Q=
v2

Fτ(3 f τ+2i)
4 f ( f τ+i)2 =

v2
Fτ

4 f ( f 2τ2+1)2 (3 f τ+2i)( f τ−i)2

=
v2

Fτ

4 f ( f 2τ2+1)2 [ f τ(3 f 2τ2+1)−2i(2 f 2τ2+1)],

therefore we have

Q′=
v2

Fτ2(3 f 2τ2+1)
4( f 2τ2+1)2 >0, Q′′=−v2

Fτ(2 f 2τ2+1)
2 f ( f 2τ2+1)2 <0.

Finally, another crucial term in both polarizations is

Σ := σ̂loc

(
1+Qα2

p

)
=
(
σ̂′

loc+iσ̂′′
loc
)(

(1+Q′α2
p)+iQ′′α2

p

)
=
(

σ̂′
loc(1+Q′α2

p)−σ̂′′
locQ′′α2

p

)
+i

(
σ̂′

locQ′′α2
p+σ̂′′

loc(1+Q′α2
p)
)

.

While the imaginary part is indeterminate, we can state that, due to the signs of {σ̂′
loc,σ̂′′

loc,Q′,Q′′},
the real part satisfies

Σ′=Re{Σ}= σ̂′
loc(1+Q′α2)−σ̂′′

locQ′′α2
p >0.

We begin with the case of TE polarization where we have, from the parity of Σ′,

Re{i∆TE
p }=γ′

u,p+γ′
w,p+k0X0Σ′>0.
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For TM polarization we have

i∆TM
p =τuγu,p+τwγw,p+τuγu,pτwγw,p

(
X0

k0

)
Σ,

and begin with the case of a Rayleigh singularity in the upper layer, γu,p=0. We point out
that, if ϵw ̸=ϵu then γw,p ̸=γu,p =0 for this choice of p. In this case

i∆TM
p =τwγw,p ̸=0.

Clearly, a Rayleigh singularity in the lower layer, γw,p =0, can be handled simlarly. So, we
now fix on the situation of no Rayleigh singularities,

{γ′
m,p >0 and γ′′

m,p =0} or {γ′
m,p =0 and γ′′

m,p >0},

and divide the calculation into four parts:

1. Case γ′
u,p =γ′

w,p =0. Here

Re{i∆TM
p }=−τuγ′′

u,pτwγ′′
w,p

(
X0

k0

)
Σ′<0.

2. Case γ′
u,p =γ′′

w,p =0. Here

Im{i∆TM
p }=τuγ′′

u,p+τuγ′′
u,pτwγ′

w,p

(
X0

k0

)
Σ′>0.

3. Case γ′′
u,p =γ′

w,p =0. Here

Im{i∆TM
p }=τwγ′′

w,p+τuγ′
u,pτwγ′′

w,p

(
X0

k0

)
Σ′>0.

4. Case γ′′
u,p =γ′′

w,p =0. Here

Re{i∆TM
p }=τuγ′

u,p+τwγ′
w,p+τuγ′

u,pτwγ′
w,p

(
X0

k0

)
Σ′>0.

The conclusion of these four computations is that ∆TM
p ̸=0.

4 Analyticity

Before describing our theoretical results we pause to specify the function spaces we will
require. For any s≥0 we recall the classical L2–based Sobolev norm

∥U∥2
Hs :=

∞

∑
p=−∞

⟨p⟩2s ∣∣Ûp
∣∣2 , ⟨p⟩2 :=1+|p|2 , Ûp :=

1
d

∫ d

0
U(x)eiαpx dx,

which gives rise to the Sobolev space

Hs([0,d]) :=
{

U(x)∈L2([0,d]) | ∥U∥Hs <∞
}

.

With this definition it is a simple matter to prove the following Lemma.
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Lemma 4.1. For any s≥0 there exist constants CG,CJ >0 such that

∥G0U∥Hs ≤CG∥U∥Hs+1 , ∥J0W∥Hs ≤CJ∥W∥Hs+1 ,

for any U,W∈Hs+1.

We also recall, for any integer s ≥ 0, the space of s–times continuously differentiable
functions with the Hölder norm

| f |Cs = max
0≤ℓ≤s

∣∣∣∂ℓx f
∣∣∣

L∞
.

For later reference we recall the classical result [Eva10].

Lemma 4.2. For any integer s≥0 there exists a constant K=K(s) such that

∥ f U∥Hs ≤K | f |Cs ∥U∥Hs .

We now begin the rigorous analysis of the expansions (3.10) and, for this, we appeal to
the general theory of analyticity of solutions of linear systems of equations. For a particular
description of the procedure, we follow the developments found in [Nic17] for the solution
of

A(δ)V(δ)=R(δ), (4.1)

which is (3.1) of [Nic17] with ε replaced by δ. In [Nic17], given expansions

A(δ)=
∞

∑
ℓ=0

Aℓδ
ℓ, R(δ)=

∞

∑
ℓ=0

Rℓδ
ℓ, (4.2)

we seek a solution of the form

V(δ)=
∞

∑
ℓ=0

Vℓδ
ℓ, (4.3)

which satisfies

Vℓ=A−1
0

[
Rℓ−

ℓ−1

∑
q=0

Aℓ−qVq

]
, ℓ≥0.

We restate the main result here for completeness.

Theorem 4.3 ( [Nic17]). Given two Banach spaces Y and Z, suppose that:

(H1) Rℓ∈Z for all ℓ≥0, and there exist constants CR >0, BR >0 such that

∥Rℓ∥Y ≤CRBℓ
R, ℓ≥0.

(H2) Aℓ :Y→Z for all ℓ≥0, and there exists constants CA >0, BA >0 such that

∥Aℓ∥Y→Z ≤CABℓ
A, ℓ≥0.

(H3) A−1
0 : Z→Y, and there exists a constant Ce >0 such that∥∥∥A−1

0

∥∥∥
Z→Y

≤Ce.
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Then the equation (4.1) has a unique solution (4.3), and there exist constants CV > 0 and BV > 0
such that

∥Vℓ∥Y ≤CV Bℓ
V , ℓ≥0,

for any
CV ≥2CeCR, BV ≥max{BR,2BA,4CeCABA},

which implies that, for any 0≤ρ<1, (4.3) converges for all δ such that BVδ<ρ, i.e., δ<ρ/BV .

From (3.6) it is easy to identify

A=

(
I −I+AX(x;δ)τw J0

τuG0 τw J0−BX(x;δ)

)
, V=

(
U
W

)
, R=

(
ξ

−τuν

)
.

All that remains is to find the forms (4.2), and establish Hypotheses (H1), (H2), and (H3).
As we shall shortly see, the analysis depends strongly upon the polarization (TE/TM) of
our fields so we break our developments into these two cases.

4.1 Transverse Electric Polarization

In Transverse Electric polarization A≡0 and τm =1, and we see that (3.6) becomes(
I −I

G0 J0−BX(x;δ)

)(
U
W

)
=

(
ξ
−ν

)
, (4.4)

so that

A0=

(
I −I

G0 J0−BX0

)
; A1=

(
0 0
0 −BX1(x)

)
; Aℓ≡

(
0 0
0 0

)
, ℓ≥2,

and

R0=

(
ξ
−ν

)
; Rℓ≡

(
0
0

)
, ℓ≥1.

As we shall see in the next Lemma, the natural spaces in which to work for TE polarization
are, for real s≥0,

Y=Hs+1×Hs+2, Z=Hs+1×Hs,

so that ∥∥∥y
∥∥∥2

Y
=
∥∥∥y

1

∥∥∥2

Hs+1
+
∥∥∥y

2

∥∥∥2

Hs+2
, ∥z∥2

Z =∥z1∥
2
Hs+1+∥z2∥

2
Hs .

Hypothesis (H1): With these definitions it is a simple matter to show that

∥R0∥2
Z =∥ξ∥2

Hs+1+∥ν∥2
Hs <∞,

given that
ξ=−eiαx, ν= iγueiαx,

so that ξ,ν∈ Ht for any t≥0. Thus Hypothesis (H1) is established with any choices of CR
and BR such that CRBR =∥R0∥Z.
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Hypothesis (H2): Considering generic U∈Hs+1 and W∈Hs+2 we study∥∥∥∥A0

(
U
W

)∥∥∥∥2

Z
=∥U−W∥2

Hs+1+∥G0U+ J0W−BX0W∥2
Hs

≤∥U∥2
Hs+1+∥W∥2

Hs+1+C2
G∥U∥2

Hs+1+C2
J ∥W∥2

Hs+1

+|ik0σ̂loc|2 |X0|2∥W∥2
Hs +|ik0σ̂nloc|2 |X0|2

∥∥∂2
xW

∥∥2
Hs

≤C2
0

(
∥U∥2

Hs+1+∥W∥2
Hs+2

)
=C2

0

∥∥∥∥(U
W

)∥∥∥∥2

Y
,

where we have used Lemma 4.1, and we have the desired mapping property of A0. We
turn to A1 and find∥∥∥∥A1

(
U
W

)∥∥∥∥2

Z
=∥−BX1(x)W∥2

Hs

≤|ik0σ̂loc|2 K2 |X1|2Cs ∥W∥2
Hs +|ik0σ̂nloc|2 K2 |X1|2Cs

∥∥∂2
xW

∥∥2
Hs

≤C2
1 |X1|2Cs ∥W∥2

Hs+2

≤C2
1 |X1|2Cs

∥∥∥∥(U
W

)∥∥∥∥2

Y
,

where we have used the Algebra property, Lemma 4.2, which mandates integer s≥0. Thus,
we are done with Hypothesis (H2) if we choose CA =max{C0,C1} and BA = |X1|Cs .
Hypothesis (H3): The crux of the matter, as always in regular perturbation theory, is the
invertibility of the linearized operator A0 and its mapping properties. For this we prove
the following result.

Lemma 4.4. Given s≥0 if Q∈Hs+1 and R∈Hs, and X0 ̸=0 then there exists a unique solution of(
I −I

G0 J0−BX0

)(
U
W

)
=

(
Q
R

)
, (4.5)

satisfying

∥U∥Hs+1 ≤Ce{∥Q∥Hs+1+∥R∥Hs},
∥W∥Hs+2 ≤Ce{∥Q∥Hs+1+∥R∥Hs},

for some constant Ce >0.

Proof. Upon expressing

U(x)=
∞

∑
p=−∞

Ûpeiαpx, W(x)=
∞

∑
p=−∞

Ŵpeiαpx,

we find that (4.5) demands(
1 −1

−iγu,p −iγw,p−BlocX0+BnlocX0

)(
Ûp
Ŵp

)
=

(
Q̂p
R̂p

)
.
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The exact solution is easily seen to be

Ûp =
{iγw,p+(ik0)σ̂locX0+(ik0)σ̂nlocX0α2

p}Q̂p+ R̂p

∆TE
p

,

Ŵp =
iγu,pQ̂p+ R̂p

∆TE
p

.

Since we are “nonresonant” (see Remark 3.4) and, since X0 ̸=0, 1/∆TE
p =O(⟨p⟩−2) as p→∞

we find

∥U∥2
Hs+1 =

∞

∑
p=−∞

⟨p⟩2(s+1) ∣∣Ûp
∣∣2≤ ∞

∑
p=−∞

⟨p⟩2(s+1)
{

CQ
∣∣Q̂p

∣∣2+CR⟨p⟩−4 ∣∣R̂p
∣∣2},

which delivers

∥U∥Hs+1 ≤Ce{∥Q∥Hs+1+∥R∥Hs−1}≤Ce{∥Q∥Hs+1+∥R∥Hs}.

In a similar manner,

∥W∥2
Hs+2 =

∞

∑
p=−∞

⟨p⟩2(s+2) ∣∣Ŵp
∣∣2≤ ∞

∑
p=−∞

⟨p⟩2(s+2)
{
⟨p⟩−2CQ

∣∣Q̂p
∣∣2+CR⟨p⟩−4 ∣∣R̂p

∣∣2},

which gives
∥W∥Hs+2 ≤Ce{∥Q∥Hs+1+∥R∥Hs}.

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 4.3 to
deduce.

Theorem 4.5. Given an integer s≥0, if X0 ̸=0 and X1 ∈Cs([0,d]) there exists a unique solution
pair, (3.10), of the TE problem (4.4) satisfying

∥Uℓ∥Hs+1 ≤CU Dℓ, ∥Wℓ∥Hs+2 ≤CW Dℓ, ∀ ℓ≥0, (4.6)

for any D>C |X1|Cs where CU and CW are universal constants.

4.2 Transverse Magnetic Polarization

Meanwhile, in Transverse Magnetic polarization B≡0 and we see that (3.6) becomes(
I −I+AXτw J0

τuG0 τw J0

)(
U
W

)
=

(
ξ

−τuν

)
, (4.7)

so that

A0=

(
I −I+AX0τw J0

τuG0 τw J0

)
; A1=

(
0 AX1(x)τw J0
0 0

)
; Aℓ≡

(
0 0
0 0

)
, ℓ≥2,

and,

R0=

(
ξ

−τuν

)
; Rℓ≡

(
0
0

)
, ℓ≥1.
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It will become clear presently that the natural spaces for TM polarization are, for real s≥0,

Y=Hs+1×Hs+3, Z=Hs×Hs,

so that ∥∥∥y
∥∥∥2

Y
=
∥∥∥y

1

∥∥∥2

Hs+1
+
∥∥∥y

2

∥∥∥2

Hs+3
, ∥z∥2

Z =∥z1∥
2
Hs +∥z2∥

2
Hs .

Hypothesis (H1): Akin to the TE case

∥R0∥2
Z =∥ξ∥2

Hs +∥τuν∥2
Hs <∞,

and Hypothesis (H1) is established with any choices of CR and BR such that CRBR=∥R0∥Z.
Hypothesis (H2): Once again, considering generic U∈Hs+1 and W∈Hs+3 we consider∥∥∥∥A0

(
U
W

)∥∥∥∥2

Z
=∥U−W+AX0τw J0W∥2

Hs +∥τuG0U+τw J0W∥2
Hs

≤∥U∥2
Hs +∥W∥2

Hs +|τu|2 C2
G∥U∥2

Hs+1

+

{∣∣∣∣ σ̂loc

ik0

∣∣∣∣2 |X0|2+1

}
|τw|2 C2

J ∥W∥2
Hs+1+

{∣∣∣∣ σ̂nloc

ik0

∣∣∣∣2 |X0|2
}
|τw|2 C2

J
∥∥∂2

xW
∥∥2

Hs+1

≤C2
0

(
∥U∥2

Hs+1+∥W∥2
Hs+3

)
=C2

0

∥∥∥∥(U
W

)∥∥∥∥2

Y
,

again using Lemma 4.1, and we have the required mapping property of A0. We now
consider A1∥∥∥∥A1

(
U
W

)∥∥∥∥2

Z
=∥AX1(x)τw J0W∥2

Hs

≤
∣∣∣∣ σ̂loc

ik0

∣∣∣∣2 K2 |X1|2Cs |τw|2∥W∥2
Hs+1+

∣∣∣∣ σ̂nloc

ik0

∣∣∣∣2 K2 |X1|2Cs |τw|2
∥∥∂2

xW
∥∥2

Hs+1

≤C2
1 |X1|2Cs ∥W∥2

Hs+3

≤C2
1 |X1|2Cs

∥∥∥∥(U
W

)∥∥∥∥2

Y
,

where we have used Lemma 4.2. Thus, we are done with Hypothesis (H2) if we choose
CA =max{C0,C1} and BA = |X1|Cs .
Hypothesis (H3): We now study the invertibility of the operator A0.

Lemma 4.6. Given s≥0 if Q∈Hs, R∈Hs, and X0 ̸=0 then there exists a unique solution of(
I −I+AX0τw J0

τuG0 τw J0

)(
U
W

)
=

(
Q
R

)
, (4.8)

satisfying

∥U∥Hs+1 ≤Ce{∥Q∥Hs +∥R∥Hs},
∥W∥Hs+3 ≤Ce{∥Q∥Hs +∥R∥Hs},

for some constant Ce >0.
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Proof. With

U(x)=
∞

∑
p=−∞

Ûpeiαpx, W(x)=
∞

∑
p=−∞

Ŵpeiαpx,

we find that (4.8) requires(
1 −1−AX0τwiγw,p

−τuiγu,p −τwiγw,p

)(
Ûp
Ŵp

)
=

(
Q̂p
R̂p

)
.

The exact solution is easily seen to be

Ûp =
−τwiγw,pQ̂p+

{
1+ X0

ik0
(σ̂loc+σ̂nlocα2

p)
}

τwiγw,pR̂p

∆TM
p

,

Ŵp =
τuiγu,pQ̂p+ R̂p

∆TM
p

.

Once again, as we are “nonresonant” (Remark 3.4) and, since X0 ̸=0, 1/∆TM
p =O(⟨p⟩−4) as

p→∞ we find

∥U∥2
Hs+1 =

∞

∑
p=−∞

⟨p⟩2(s+1) ∣∣Ûp
∣∣2≤ ∞

∑
p=−∞

⟨p⟩2(s+1)
{

CQ⟨p⟩−6 ∣∣Q̂p
∣∣2+CR⟨p⟩−2 ∣∣R̂p

∣∣2},

which gives
∥U∥Hs+1 ≤Ce{∥Q∥Hs−2+∥R∥Hs}≤Ce{∥Q∥Hs +∥R∥Hs}.

Similarly,

∥W∥2
Hs+3 =

∞

∑
p=−∞

⟨p⟩2(s+3) ∣∣Ŵp
∣∣2≤ ∞

∑
p=−∞

⟨p⟩2(s+3)
{

CQ⟨p⟩−6 ∣∣Q̂p
∣∣2+CR⟨p⟩−8 ∣∣R̂p

∣∣2},

which delivers

∥W∥Hs+3 ≤Ce{∥Q∥Hs +∥R∥Hs−1}≤Ce{∥Q∥Hs +∥R∥Hs}.

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 4.3 to
deduce the desired result.

Theorem 4.7. Given an integer s≥0, if X0 ̸=0 and X1 ∈Cs([0,d]) there exists a unique solution
pair, (3.10), of the TM problem (4.7) satisfying

∥Uℓ∥Hs+1 ≤CU Dℓ, ∥Wℓ∥Hs+3 ≤CW Dℓ, ∀ ℓ≥0, (4.9)

for any D>C |X1|Cs where CU and CW are universal constants.

5 Numerical Results

We now discuss how the recursions outlined above can be implemented in a HOS scheme
for simulating the surface scattered fields {U,W}. After describing the implementation we
use our algorithm to simulate absorbance spectra of TM polarized plane waves incident
upon a periodic grid of graphene ribbons as described in [GDBP16].
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5.1 Implementation

A numerical implementation of our recursions is rather straightforward. To begin, we
must truncate the HOPE expansions (3.10) after a finite number, L, of Taylor orders

{U,W}≈{UL,WL} :=
L

∑
ℓ=0

{Uℓ,Wℓ}(x)δℓ,

which satisfy, in either TE or TM polarization, (3.11) up to perturbation order L. For this, in
consideration of the quasiperiodic boundary conditions and our HOS philosophy [GO77,
ST06, STW11], we utilize the finite Fourier representations

{Uℓ,Wℓ}≈{UNx
ℓ ,WNx

ℓ } :=
Nx/2−1

∑
p=−Nx/2

{Ûℓ,p,Ŵℓ,p}eiαpx, 0≤ ℓ≤L,

delivering

{U,W}≈{UL,Nx ,WL,Nx}=
L

∑
ℓ=0

Nx/2−1

∑
p=−Nx/2

{Ûℓ,p,Ŵℓ,p}eiαpx, (5.1)

and, with a collocation approach, we simply demand that (3.11) be true at the equally–
spaced gridpoints xj =(d/Nx)j, 0≤ j≤Nx−1.

Due to the fact that the operators {G0, J0} are Fourier multipliers, they can be readily
applied in Fourier space after a Discrete Fourier Transform (DFT) which we accelerate by
the Fast Fourier Transform (FFT) algorithm. Finally, we evaluate multiplication by the
function X1(x) on the physical side, pointwise at the equally–spaced gridpoints xj.

As with all perturbation schemes it is important to specify how the Taylor series in (5.1)
are to be summed. On the one hand, “direct” Taylor summation seems natural, however,
this method is limited to the disk of analyticity centered at the origin. However, it has been
our experience that the actual domain of analyticity is much larger and may include the
entire real axis (despite poles on the imaginary axis and elsewhere in the complex plane
far from the real axis) [NR03]. One way to access this extended region of analyticity is the
classical technique of Padé approximation [BGM96] which has been used successfully for
enhancing HOPS schemes in the past [NR01, NR03, NR04]. Padé approximation seeks to
estimate the truncated Taylor series f (δ)=∑L

ℓ=0 fℓδℓ by the rational function[
M
N

]
(δ) :=

aM(δ)

bN(δ)
=

∑M
m=0 amδm

∑N
n=0 bnδn

, M+N=L,

and [
M
N

]
(δ)= f (δ)+O(δM+N+1);

well–known formulas for the coefficients {am,bn} can be found in [BGM96]. These Padé
approximants have stunning properties of enhanced convergence, and we point the in-
terested reader to § 2.2 of [BGM96] and the calculations in § 8.3 of [BO78] for a complete
discussion.

5.2 Absorbance Spectra

With an implementation of our algorithm we can now address questions of importance
to practitioners. As a specific example, we consider the work of Goncalves, Dias, Bludov,
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and Peres [GDBP16] who studied the scattering of linear waves by arrays of graphene rib-
bons mounted between dielectric layers. More specifically we refer the reader to Figure 4
of [GDBP16] which shows the results of their investigations into the effect of the ribbon
period on the frequency of a Graphene Surface Plasmon (GSP) excited by the configura-
tion.

To generate this figure [GDBP16] focused upon TM polarization, set the physical pa-
rameters

ϵu =3, ϵw =4, EF =0.4 eV, Γ=3.7 meV, (5.2)

and studied normal incidence so that θ=α=0. The lateral period (which they denoted L)
of the structure was varied among d=1,2,4,8 (in microns) while the width of the graphene
in each period cell was set to d/2.

In the study of diffraction gratings, quantities of great physical interest are the efficien-
cies. Recalling the Rayleigh expansions, (3.7) and (3.9), and the definitions, (3.8), these are
given by

eu,p :=
γu,p

∣∣Ûp
∣∣2

γu,0
, ew,p :=

γw,p
∣∣Ŵp

∣∣2
γu,0

.

With these we can define the reflectance, transmittance, and absorbance respectively as

R := ∑
p∈Uu

eu,p, T := ∑
p∈Uw

ew,p, A :=1−R− ϵu

ϵw
T;

we note that all–dielectric structures possess a principle of conservation of energy which
mandates A = 0. However, as graphene has noteworthy metallic properties, an indica-
tor of a plasmonic response is given by a significant deviation of A from zero. Figure 4
of [GDBP16] is a plot of precisely this quantity, versus a range of illumination frequencies,
for the four values of d mentioned above. In particular, we note significant peaks in A, the
“absorbance spectra,” of magnitude 0.35 in the vicinities of ν=2,4,6,8 THz for the values
d = 8,4,2,1 microns, respectively. In subsequent work by Fallali, Low, Tamagnone, and
Perruisseau–Carrier [FLTPC15], this study was extended (with slightly different parame-
ters) to include the nonlocal effects produced by the model we describe above.

With an implementation of our new recursions we attempted to recreate this work with
both the local and nonlocal models. Our results, with the same physical parameters, (5.2),
supplemented with

vF =1 µm/s, τ=0.09 s, (5.3)

and numerical values Nx=128 and L=16, are displayed in Figure 3 for δ=1. It is notewor-
thy that Padé approximation was required to achieve these results as Taylor summation
diverged. We point out the remarkable qualitative agreement between the local results
(dashed curves) and those of [GDBP16], which we take as evidence for the accuracy and
utility of our approach. In addition, we point out the shifted solid curves generated by
the nonlocal model, in particular the blueshift of the peaks to higher frequencies ν as also
noted in [FLTPC15].

Of course it is always useful to have additional validation, and for this we pondered
the question of simply approximating the governing equations (3.6) with δ = 1 using a
collocation approach [GO77, ST06, STW11]: Expand the

{U,W}≈{UNx ,WNx}=
Nx/2−1

∑
p=−Nx/2

{Ûp,Ŵp}eiαpx,
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Figure 3: Plot of HOPE simulation of the absorbance spectra for normally incident plane–wave illumination of a
periodic array of graphene ribbons with periodicity d mounted between two dielectrics. The physical parameters
are specified in (5.2) and (5.3), and the numerical parameters were Nx =128 and L=16.

and demand that (3.6) be true at the gridpoints xj=(d/Nx)j, 0≤ j≤Nx−1. We implemented
this algorithm and achieved the results displayed in Figure 4. Interestingly, the difference
between these collocation results and our HOPE computations is largely negligible. Im-
portantly, with non–optimized MATLAB™ [MAT24] implementations of each algorithm,
our new HOPE approach is nearly ten times faster than the collocation approach. For this
reason we find our new algorithm to be quite compelling, though we intend to study this
issue in a variety of settings in a forthcoming publication.
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frared frequencies. Phys. Rev. B, 80:245435, Dec 2009.

[Jin02] Jianming Jin. The finite element method in electromagnetics. Wiley-Interscience [John
Wiley & Sons], New York, second edition, 2002.
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