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Abstract. The scattering of electromagnetic waves by three-dimensional periodic structures is
important for many problems of crucial scientific and engineering interest. Due to the complexity
and three—dimensional nature of these waves, fast, accurate, and reliable numerical simulation of
these are indispensable for engineers and scientists alike. For this, High—Order Spectral methods are
frequently employed and here we describe an algorithm in this class. Our approach is perturbative
in nature where we view the deviation of the permittivity from a constant value as the deformation
and we pursue regular perturbation theory. More specifically, we expand the three—dimensional,
vector—valued electric field in a Taylor series in this small deformation parameter, derive recursions
that each term in this series must satisfy, invoke a novel elliptic theory to establish bounds on the
size of each correction, and thereby show that the purported Taylor series does, in fact, converge.
Beyond this, we show that each of these terms in the Taylor series is jointly analytic in all three
spatial variables by estimating solutions of governing equations for derivatives of these terms. This
work extends our previous contribution regarding the Helmholtz equation to the full vector Maxwell
equations, by providing a rigorous analyticity theory, both in deformation size and spatial variable
(provided that the permittivity is, itself, analytic).
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1. Introduction. The scattering of electromagnetic waves by three—dimensional
periodic structures is important for many problems of crucial scientific and engineering
interest. Examples abound in areas as disparate as surface enhanced spectroscopy
[26], extraordinary optical transmission [9], cancer therapy [10], and surface plasmon
resonance (SPR) biosensing [17, 21, 24, 32].

Due to their central role in these nanotechnologies, simulations of these waves
have been conducted with all of the classical numerical algorithms for approximating
solutions to the relevant governing partial differential equations. This includes the Fi-
nite Difference [38, 23], Finite Element [20, 19], Discontinuous Galerkin [16], Spectral
Element [8], and Spectral [15, 6, 4, 37] methods. While these are tempting choices, due
to their volumetric nature they require a large number of unknowns (N = N, N, N, for
a three—dimensional simulation) and mandate the inversion of large, non-symmetric
positive definite matrices (of dimension N x N). Such properties are still an object
of current study (for instance, see [11, 25]).

For the specific application of SPR, sensors which we have in mind in the current
contribution, their pervasiveness stems from two properties of an SPR, namely its
extremely strong and sensitive response. More specifically, over the range of tens of
nanometers in incident wavelength, the reflected energy can fall from nearly 100 % by
a factor of 10 or even 100 before returning to almost 100 %. Obviously, to approximate
such a structure with the required accuracy, the numerical algorithm should produce

*D.P.N. gratefully acknowledges support from the National Science Foundation through Grant
No. DMS-2111283.

fDepartment of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
Chicago, IL 60607, U.S.A. (davidn@uic.edu).

*Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
Chicago, IL 60607, U.S.A. (lietvo@uic.edu).



2 DAVID P. NICHOLLS AND LIET VO

high fidelity results in a rapid and robust manner. For this reason we will focus upon
High—Order Spectral (HOS) methods [15, 6, 4, 37] which can deliver precisely this
behavior.

Returning to the classical approaches listed above, for the problem of scattering
by homogeneous layers (which is one important avenue to generating SPRs) it is
clearly unnecessary to discretize the bulk of each layer and state-of-the-art solvers
seek interfacial unknowns with the knowledge that information inside the layers can
readily be computed from appropriate integral formulas. Boundary element (BEM)
[36] and boundary integral (BIM) [7, 22] methods are two such approaches and can
produce spectrally accurate solutions in a fraction of the time of their volumetric
competitors.

In previous work [27] the authors investigated a novel algorithm very much in
the spirit of these HOS approaches, and inspired by the “High—Order Perturbation of
Surfaces” (HOPS) algorithms which have proven to be so appealing for layered media
[30, 31]. A HOPS scheme is one which views the layer interfaces as perturbations of flat
ones and then makes recursive corrections to the scattering returns from this classical,
exactly solvable, configuration [39]. By contrast, our new “High—Order Perturbation
of Envelopes” (HOPE) schemes [27] consider a more general permittivity function,
e(x,y, z), which does not necessarily have layered structure. We followed the lead of
Feng, Lin, and Lorton [13, 14] and adopted a perturbative philosophy (much like a
HOPS algorithm) by viewing the permittivity as a perturbation of a trivial one, e.g.,

e(w,y,2) =€~ 0(ef(x,y,2)), €€RT, E(x+dpy+dy,z2)=E(,y,2),

where £ is a permittivity “envelope.” In this previous contribution we focused upon
the two—dimensional scalar problems governing electromagnetic radiation in Trans-
verse Electric (TE) and Transverse Magnetic (TM) polarizations. This new approach
has computational advantages over volumetric solvers in certain configurations (e.g.,
where the support of £ is small or where the set on which &£ significantly changes is
small). A particular choice we pursued was an approximate indicator function which
is nearly zero/unity to denote the absence/presence of a material.

Among the contributions of [27] was a new, extensive, and rigorous analysis. More
specifically, we proved not only that the domain of analyticity of the scattered field
in 6 can be extended to a neighborhood of the entire real axis (up to topological
obstruction), but also that this field is jointly analytic in parametric and spatial
variables provided that £(x,y, z) is spatially analytic. In the current paper we extend
some of these results to the three-dimensional vector electromagnetic case governed
by the full time-harmonic Maxwell equations. More specifically, the scattered field is
an outgoing, quasiperiodic solution of the time-harmonic Maxwell equations

curl [curl [E]] — €k2E = 0,

c.f. (3.4), which we show can be expanded in a convergent Taylor series
E = E(z,y,20) = > _ Eu(x,y,2)5",
£=0

c.f. (4.2), where the Ey(z,y, z) are jointly analytic in (x,y, z) provided that &(x,y, 2)
is spatially analytic. The demonstration of these results required addressing both
the vectorial and three—dimensional nature of the scattered fields. This necessitated
the generalization of the relevant elliptic existence, uniqueness, and regularity result,
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and the derivation of more complicated source terms in the recursive problems due
to the subtly coupled boundary conditions. We delay for future consideration the
issue of the analytic continuation of our results to perturbations ¢ of arbitrary (real)
size. (This requires an analysis of the variable coefficient Maxwell equations [3] which
is more subtle than what we present here, however, we believe that this is a result
which can be established with our current framework.) In the current contribution
we also discuss a numerical method based upon the HOPE recursions that we used
to establish these analyticity results, including the specification of an implementation
that we used to simulate a scattering configuration with a known solution. Here also,
we required highly non—trivial extensions of the results found in [27] as the vecto-
rial and three-dimensional character of the solutions, coupled to the more involved
boundary conditions, gave rise to a substantial increase in both the algorithmic and
computational complexity of our implementation.

The rest of the paper is organized as follows. In § 2 we recall the governing
equations complete with a discussion of transparent boundary conditions in § 3. We
describe the HOPE algorithm in § 4 and begin our theoretical developments with a
description of the relevant function spaces in § 5. We state and prove our results on
parametric analyticity in § 6 and joint parametric/spatial analyticity in § 7. In § 8
we discuss our numerical results which features a discussion of our implementation
in § 8.1 and the Method of Manufactured Solutions (MMS) in § 8.2 (which delivers
a configuration with known solution). In § 8.3 and § 8.4 we provide evidence of the
stable and accurate behavior that our HOPE algorithm displays as the number of
perturbation orders grows in the cases of small and large permittivity deviations,
respectively. In § 8.5 we study the same question in the context of spatial refinement
and, again, notice the robust and high—order nature of our method. In Appendix A
we establish a joint analyticity result in the special case of lateral smoothness. (We
provide the proofs of our new elliptic estimate and our novel numerical analysis in
Appendices A and B of the Supplementary Material.)

2. Governing Equations. We consider materials modeled by the time—harmonic
Maxwell equations in three dimensions with a constant permeability 4 = pg and no
currents or sources,

(2.1) curl [E] —iwpoH =0, curl [H] + iweE =0,

where (E, H) are the electric and magnetic vector fields, and we have factored out
time dependence of the form exp(—iwt) [3]. The permittivity e(z,y, z) is biperiodic
with periods d, and d,, and is specified by

e z > h,
e(x,y,2) =1 W (x,y,2), —h<z<h,
elw), z < —h,

where €™ ) € R, and ) (z + d,,y + dy,z) = €@ (x,y,2), and

lim @ _ W I (v) _ )
[im € (z,y,2) = €, i e (z,y,2) =€

Using the permittivity of vacuum, €y, we can define

[ V)

w
k3 = weopo = = ()2 = M2 me {u,w},
0
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and ¢g = 1/,/éopo is the speed of light in vacuum.
This structure is illuminated from above by plane—wave incident radiation of the
form

(2.2a) E™(x,y, 2) = Aexplioz + ify — iy z),
(2.2b) H™(z,y, 2) = Bexp(iozx + ify — iy"z),
where

1
A-k=0, B=—kxA, |A=|B|=1,

WHo
and
a sin(6) cos(¢)
k= B | =k [sin@)sin() |,
() —cos(0)

where (6, ¢) are the angles of incidence.

3. Transparent Boundary Conditions. Following our previous work [27] we
aim to both rigorously specify the appropriate far—field boundary conditions and
reduce the infinite domain to one of finite size. Conveniently, a variant of the scheme
presented in Bao & Li [3] accomplishes both. In the upper domain {z > h} we seek a
solution as the sum of the incident radiation and an upward propagating (reflected)
component, e.g.,

E = Einc +Ereﬂ
= Aexp(ioz +iBy — iy Wz) + co 0 exp(ioz + iBy + iy (z — h))

(3.1) + Y iy gexp(iogn + iy +iv8Y (2 — h)),
(p,a)#(0,0)

[33, 39] where

ap =a+ (2r/d)p, By =B+ (27/dy)q,

oy VR 0z =g, a2 < dmig,
Tp,g =

_ ) ) , m € {u,w},
z\/ag + 62 —eMkg, o2 + 7 > emE2,

since € ™) ¢ RT. If we set o0 = Up,0 — Aexp(—iy™h), implying Go,0 = co,0 +
Aexp(—iy(™h), then

E = Aexp(iaz + ify — irWz) — Aexpliazx + iBy + iv™ (z — 2h))

oo oo
+ Z Z Up,q exp(iapr + 16,y + i%(fq) (z—h)),

p=—00 g=—00
and E(z,y,h) = u(x,y). It is a simple matter to show that

0.E = (—in") Aexpliazx + iBy — ir™ z)
— (v Aexp(iaz + iBy + iy (2 — 2h))
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oo oo

+ Z Z w](,“q) )ip,q €xpic,x + 8.y + Z’yz(,“)( —h)),

pP=—00 qg=—00
so that
—0.E(x,y,h) = (iy") Aexp(iox + iBy — iv"h)
+ (iv") Aexpliox + iy + iy (—h))
+ Z Z z’yp q )iip,q €xp(iopx + 1684y).
p=—00 qg=—00

If we define the function
(3:2) d(x,y) = (21'7(“) exp(—iy ™ )) Aexp(iaz +iBy),

and the order—one Fourier multiplier (the externally directed Dirichlet—Neumann op-
erator for the Maxwell equation on {z > h})

Z Z z’yp p Ufp q exp(iapx + i64Yy),

p=—00g=—00

then we see that we can express the Upward Propagating Condition (UPC) [1] exactly
with the boundary condition

_BZE(J:’ Y, h) - Tu[E(x’ Y, h)] = Qﬁ(l‘,y)

In a similar fashion, in {# < —h} we seek a solution which is purely downward
propagating (transmitted)

oo oo

(3.3) E=E""= 3" " iy expliopr +iBey — i93%) (2 + h)),

P=—00 g=—00

[33, 39]. Clearly E(x,y,—h) = w(x,y) and, with the calculation

0. E(x,y,— Z Z ’L’)/p q )y, g exp iy + i8,y),

pP=—00 q=—00

we define the analogous order—one Fourier multiplier (again, the externally directed
Dirichlet—-Neumann operator for the Helmholtz equation on {z < —h})

Z Z Z’yp p Q/JP q exp(iapz +iBgYy),
p=—00 g=—00
we can state the Downward Propagating Condition (DPC) [1] transparently using
azE(-Ta Y, _h) - Tw [E(J}, Y, _h)] = 0.

Eliminating the magnetic field from (2.1) and gathering our full set of governing
equations we find the following problem to solve,

(3.4a) curl [curl [E]] — €V E2E = 0, in S,,
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(3.4b) _9.E —T,[E] = ¢, at Ty,
(3.4¢) 0.E — T,,[E] = 0, at T_p,
(3.4d) E(x+dy,y+dy, z) = expliad, +ifdy)E(z,y, 2),

where

Sy = (0,dy) x (0,dy) x (=, h), Tap = (0,dy) x (0,dy) x {z = +h}.

4. A High—Order Perturbation of Envelopes Method. Following the lead
of our previous work [27] we do not pursue the solution of (3.4) by a classical volumet-
ric approach, e.g. [3], but rather a perturbative one where we think of our configuration
as a small deviation from a trivial structure,

(4.1) €W (x,y,2) = (1 — 0&(x,y, 2)) = € — (€€ (x,y, 2)),

where € € R" is a constant, and § < 1. In our previous work on the Helmholtz
equation in either TE or TM polarization, we showed that if £(z, z) is smooth enough
then the transverse components of £ or H depend analytically upon ¢. In light of
this we posit that, for the full Maxwell equations which we consider here, the field
E = E(z,y, z;0) depends analytically upon § so that

o0
(4.2) E =E(x,y,2;0) = ZEg(x,y, 2)8°,

=0
converges strongly in a function space. It is not difficult to see that these Ey, must
satisfy

(4.3a) curl [curl [Ey]] — ek2E, = —ek2EF, 4, in S,,
(4.3b) — 0,E) — Tu[Ez] = (5@10(;5, at I'y,
(4.3¢c) 0.Ey — Tw|E( =0, at Ty,
(4.3d) Ey(z + dy,y + dy, 2) = exp(iad, + iBdy) Ey(2,y, 2),

where d¢,o is the Kronecker delta function. It is easy to see that
Eo(x,y,2) = A== o? 4 5% 4 ()% = ek,

and our HOPE scheme can be viewed as computing corrections to this by

o0
E(x,y,2) = Aelortiby=i7z 4 Z Ey(z,y,2)0".
=1
There are many possibilities for the envelope function £(z,y, z) and each leads to
a slightly different perturbation approach. For instance, consider the function
_ tanh(w(z — a)) — tanh(w(z — b))
= 5 ;
with sharpness parameter w, which is effectively zero outside the interval (a,b) while

being essentially one inside (a,b), c.f. [27]. We can approximate a slab of material
with thickness 2d and a gap of width 2¢ in vacuum by selecting

D,5(2) :

E—¢€

e=1, E(x,z):( = )@d,d(zm—@g,g(x)}, §=1.

See Figure 4.1 with the choices d = 1/4, g = 1/10, and w = 50 on the cell [-1,1] X
—1,1].
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Envelope function &(z, z) Permittivity function €(z, z)

1 1
0.8 0.8
0.6 0.6
0.4 0.4 5 i
0.2 0.2
N e - -
0.2 -0.2
0.4 0.4 F i
-0.6 -0.6
-0.8 -0.8
-1 -1 . - :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x T

Fic. 4.1. Contour plots of £(z,z) (left) and V) (z,2) (right).

5. Function spaces. In this section, we present function spaces and theoretical
results that are necessary for our analysis later. We point out that due to the vectorial
nature of the Maxwell equations, these are extensions of the results we utilized in our
previous study [27]. For any real number s > 0, we have the classical interfacial
quasiperiodic L? Sobolev norm

o7 = D0 > Ap.a)* ol

p=—00 g=—00

~ 2 Ay |2 ~ 2
UP;Q’ + ’UPJI‘ + UP;Q’ ’

L2
|Op,ql” =

where

2 2 i 1 oy —iapm—i
(D)) :=1+pl"+1qgI°, ¥ ,:= A v (2, y)e ™Y dy dy,

for j € {x,y, z}. From this we define the interfacial quasiperiodic Sobolev space [22]
H*(T) = {v(z,y) € (L*(D))* | |lolly. < oo}, T :=(0,ds) x (0,dy).

In addition, we mention that the dual space of H®, H~®, can be defined by the
norm above with a negative index. We also recall the space of s-times continuously
differentiable scalar functions with Holder norm

P 4 t
9lce = _max _ [0:0,0%9|,..

Finally, we define the volumetric laterally quasiperiodic Sobolev space as
H*(S,) = {u(x,y,2) € (L*(Su))° | llull . < oo},
where
) s 0o 0o ) h ) 0
Wt =30 3 Y e [ (it
j=0 p=—00 g=—00 -

We close with an essential result [12, 28] required for our later proofs.
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LEMMA 5.1. Let s > 0 be an integer and D be either T or S,. If g € C*(D) and
w € H*(D) then gw € H*(D) and

lgwl g < M(s,D)lg

C's w”HS )

where M is some positive constant.
Furthermore, we recall the following elementary result [29, 27].
LEMMA 5.2. Let s > 0 be an integer, then there exists a constant S > 0 such that

S

(s41)2 (s+1)2 2
2 RGeS ZZ TG e DR Y

7=0 j=0r= 0

6. Analyticity. At this point we are in a position to extend our previous re-
sults [27] by demonstrating the analytic dependence of the full electric field, E =
E(z,y,z;0), upon ¢, sufficiently small. More specifically, we show that the expansion
(4.2) converges strongly in an appropriate function space.

For this we require an elliptic estimate for our inductive proof which is established
in Appendix A of the Supplementary Material. For future convenience, we define the
following differential operator associated to the Maxwell system

Lo = curlcurl — k3.
As is well known [3], the issue of uniqueness of solutions to the Maxwell problem

(6.1) LoV =0, in 8,
(6.1b) 8.V —T,[V] =0, at T,
(6.1c) 0,V — T, [V] =0, at T'_p,
(6.1d) V(z+dy,y+dy, 2) = expliad, +ifdy)V(z,y, 2),

c.f. (4.3), which should have only the trivial solution V = 0, is a subtle one and
certain illuminating frequencies w will induce non—uniqueness in some configurations.
Unfortunately a precise characterization of the set of forbidden frequencies is elusive
and all that is known is that it is countable and accumulates at infinity [3]. To
accommodate this state of affairs we define the set of permissible configurations

P :={(w,€) | V =0 is the unique solution of (6.1)}.

With this we can now state the following fundamental elliptic regularity result.
THEOREM 6.1. Given any integer s > 0, if (w,€) € P, F € H%(S,), div [F] €
H*(S,), Q € H*TY2(T), and R € H*Y/2(T), then there exists a unique solution

(6.2a) Lov =F, in Sy,
(6.2b) — 0, v —Tyv] =Q at Ty,
(6.2¢) d.v—Tyv] =R at T'_p,
(6.2d) vz +dy,y+dy,2) = eladatibdy (3 g 2),

satisfying

(6.3) [l groe < Ce (1F ] e + 1V [Fll| grosr + (1@l grosrz + 1Rl grosar2)
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where C, > 0 is a constant.

We can now prove our analyticity result.

THEOREM 6.2. Given any integer s > 0, if (w,€) € P, and £ € C**2(S,) then
the series (4.2) converges strongly. More precisely,

(6.4) | Eell o2 < KBY, ¥ £>0,

for some constants K, B > 0.
Proof. We prove the estimate (6.4) by induction. For £ = 0 the system (4.3) can
be written as

£0E0 = 0 in SU,
— 8 EO — [Eo] (b at Fh,
aon - w[EO} =0 at 1—‘,}“

Eo(x + dp,y + dy, 2) = e*BTP0 B2y, 2).
So, we can apply Theorem 6.1 with F' =0, Q = ¢, and R = 0 to obtain
[ Eoll rove < Ce |l gresase = K.

Now, we assume that (6.4) is true for all £ < L and apply Theorem 6.1 to the system
(4.3) for E;, with F, = —€k}€FEL_1 and Qr = Ry, = 0. This gives
1B less < Co (3B . + v [REEA]] )
< Cok2 el 2|EEL 1|l ot
< 203 ¢ T [€] v | Brr v
< 2C. k2 €| M |E|pose KB
< KB*,

provided that
B > 2C.k2 |e| M |E

COs+2 -

0
From this we can derive the exponential order of convergence of the HOPE

method. More precisely, defining the L-th partial sum of (4.2),

l‘y, ZEnyv a

we obtain the following error estimate for the HOPE method.
THEOREM 6.3. If (w,€) € P and E is the unique solution of (3.4), under the
assumptions of Theorem 6.2 we have the estimate

|E = E*|| j.n < K(BS)*H,

for some constants K >0 and B > 2C.k2 |e| M |E
Proof. Since

cs+2 provided that |§| < 1/B.

E(x,y,2) — E*(z,y, 2 Z Ey(z,y,2)8%,
(=L+1
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we have, by Theorem 6.2,

|E = Bl jpie < > Bt g6 < ) KBS
(=L+1 (=L+1

By gathering terms and re-indexing we have

(BS)H+1

15— B0 < (B0 Y 85) < k2

£=0

< K(B&)EH,
for |Bd| < 1, where we have used the elementary fact that

oo

1
L _

Z @ = 1—a

£=0
provided that || < 1.0

REMARK 6.1. A careful inspection of our result seems to indicate that the appli-
cability of our method is extremely limited in the high—frequency regime as we require

1 1

o< &= = —— :
B 2C,k2 e M |E| oo

Without taking into account the ko dependence of C., it would appear that the disk of
analyticity is proportional to ko_2 as kg — oo which is quite restrictive. However, as
we plan to show in a future publication, the domain of analyticity contains a neighbor-
hood of the entire real axis so that, provided one can access this via suitable analytic
continuation technique (e.g., Padé approzimation [2]), deformations of any size can
be accommodated.

7. Joint Analyticity. We close our theoretical developments with a result on
joint analyticity of the scattered field with respect to not only the perturbation pa-
rameter &, but also the spatial coordinates (z,vy, z). As with the analogous result for
the Helmholtz equation found in [27], this will require analyticity of the permittiv-
ity envelope function &£ (z,y,z). More precisely, we will show that the E, from (4.2)
satisfy conditions analogous to those in the following definition of analyticity.

DEFINITION 7.1. Given an integer m > 0, if the functions f = f(x,y) and
E =E&(x,y, z) are real analytic and satisfy the following estimates

2,0y c n" ot

) | = T+ D2+ 1)
B O N
Fttt+s)! om = Sr+120+1)2(s+1)%

for all r,t,s > 0, for some constants Cy,Ce,n,0,( > 0, then f € C4(I') and € €
Cin(So)-

The space Cy, is the space of real analytic functions with radius of convergence
(specified by 7, 0, and ¢) measured in the C™ norm. It is clear that the incident
radiation function ¢, (3.2), is jointly analytic in z and y as we now explicitly state.

LEMMA 7.2. The function

p(z,y) = (22'7(“) exp(—iv(“)h)> Aexp(iaz +iBy),
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is real analytic and satisfies

for allr,t >0, for some constants Cy,n,0 > 0.

Now we present the fundamental elliptic estimate (proven in Appendix A) which
is required in our following proof.

THEOREM 7.3. Given any integer m > 0, if (w,€) € P, F(z,y,z) € C2(S,) such
that

max{’

for allr,t,s > 0 and for some constants Cp,n,0,( >0, and Q, R € C¥(I")) satisfying

arat nr et

H1/2 ('f’+1)2 (t—l—l)Q,

ol

oroLos

zYy“z

W+H5»Hmw

8r8t8€ 777“ at CS
zYyYz v [F <
v+t+@@”[]mp}—CFv+n2a+02w+nf

oy o " ot
(r+1)! H1/2 (7’—1—1)2 (t+1)2’
orot 0 ot

*Y R <(Cp—m— ,
‘u+t’Lm Blrr1)2(t+1)?

for all v,t > 0 and some constants Cr,Cqg > 0. Then, there exists a unique solution

v e CY(S,) of

,Co’l) = .F7 in Sv7
—0.v—T,[v] =Q, at Ty,
0,v — Tylv] = R, at T_p,

V(@ + dyyy + dy, 2) = Ty (2, y, 2),
satisfying

T]T ot CS

SR R G

0;,050% ‘

(7.1) ‘ mv

‘HQ

for all r,t,s > 0 where

C,=C(h)(Cr+Co+Cr)>0

and C(h) > 0 is a constant.

We now give the recursive estimate which is essential for our joint analyticity
result.

LEMMA 7.4. For any integer m > 0, if € € C¥(S,) such that

0,6,0: co M0
rttts) |gm = Sr+12+ 12 (s+1)2

for all r,t,s > 0 and some constants Cg,n,0,( > 0, and

0;040: g0 ¢
(r+t+s)!

Ee e (r+12(t+1)2(s+1)2

Vi<,
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for allr,t,s > 0 and for some constants K, B > 0. Then,

o { Hl}

< CKBM!
for all r,t,s > 0 and some constant C > 0.
Proof. Recall that

0;,0,0%

0,0,0%
_ry?r g _TayTE
(r+t+s)!

r+t+s)! "

div [FL]

HO’
nr at Cs
(r+1)2(t+1)2(s+1)2

Fp = —eklEEL 1,
so, using Leibniz’s rule, we obtain,

0,,0,02 k2erltls! S oI 5“’6 95— 97 9k ot
_TEY: o %o A 92 % 9: 1 .
(r+t+s)!FL r—i-t—l—s'ZZZ(r—j k)!(s—e)!g GU kN e TRt

§=0 k=0 ¢=0

Using the inequality r!t!s! < (r + ¢+ s)! and

aroL o3 oy, a;a; oy, 8;8;
max 7yFL 7dlv [FL] < 7FL ,
(r+t+s)! go |l (r+t+s)! ot (r+t+s)! 2
we obtain
8r8f8s s 8r 7 8t—k as_[ 8j 8k 8@
Y-z Yy z x Y “z
A% n| caryyy ( ) (2% %s.,
(r+t+s)! 2 i — k)l (s=0)! gtk 2 0
j at—k as—é
E 2 M Y z
OJ Ong% e Gl P
03 0y o
T
Vi -
or.ot s r—j gt—k Csfi
< zk2 n
SRV DD Celr p kT P - 1 17
§=0 k=0 ¢=0
% KBL71 77] ak CZ

(G+12(k+1)2((+1)2
nr et (:s
(r+1)2+1)2(s+ 1)2

r ( )2 2
Xz(r—j—i—l g+12Z t—k+1 k+1)2

nr (gt CS
(r+12@+1)2(s+1)2’

< ekiCeMSKBL!

where S is a positive constant such that

r

(r+1)>2
>
Z(r—j+1)2(j+1)2 <8 vrzo,
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c.f. Lemma 5.2. Therefore, the proof is complete by choosing
C > ek2CeMS3.
We conclude with our joint analyticity theorem.

THEOREM 7.5. Given any integer m > 0, if (w,€) € P, and € € C¥(S,) such
that

0;0,0: co. o' ¢
rtits) |om = SGr+12{E+1)2(s+1)2

for all ryt,s > 0 and some constants Cg,n,0,( > 0. Then the series (4.2) converges
strongly. Moreover the Ey(x,y, z) satisfy the joint analyticity estimate

(72) Y 0! ¢
' rritt+s) ‘Y r+12(t+1)2(s+1)2

for all l;r,t,s > 0 and some constants K, B > 0.
Proof. We prove (7.2) by induction, beginning with ¢ = 0. Applying Theorem 7.3
with F' =0, @ = ¢, and R = 0 we obtain

a;ata; T ot s
7?/'E0 <K n 5 5 ¢ 55
(r+t+s)! 7| 42 (r+1)2@+1)2(s+1)

for all 7, t,s > 0, where K = C(h)Cy. Next we assume that (7.2) is valid for all £ < L
which implies

0;,050% oLy
e r+t+s) 0 (r+t+s)!d1v ]
HO H1
T t s
< kBt 4 < Vi< L.

(r+ 12+ 1) (s + 1)

With ¢ = L we invoke Lemma 7.4 and apply Theorem 7.3 with F' = F, Cp =
CKB' 1, Q=0,and R =0, to arrive at

L0t ;3 o r ot cs
ME < KBL—l n >0
’ (r+t+s) LHH2 =cme Cr DG he=0

The proof is complete by choosing B > C(h)C. O

8. Numerical Results. We now present numerical results of an implementation
of the HOPE recursions, (4.3), which demonstrate the accurate and stable results one
can obtain with this algorithm. We will see that for smooth envelopes (e.g., £ analytic)
our method yields accurate solutions in a robust and efficient manner.

8.1. Implementation. We have produced a concrete instance of the HOPE
algorithm which begins with a truncation of the expansion (4.2) at order ¢ = L,

L

(8.1) E(x,y,20) = E"(x,y,26) == Y _ E(,y,2)5".
=0
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Each of the functions E,; should approximately satisfy (4.3) which we accomplish
with a High—Order Spectral (HOS) method [15, 6, 4, 37]. Due to the quasiperiodic
lateral boundary conditions, we used a Fourier—Chebyshev method which makes the
approximation

N./2—1 N,/2-1 N,

By~ El{VWNy’NZ = Z Z ZEZ’P,%TTT(Z/h)@mp”iﬁqya Eypqr € C,
p=—Ng/2¢=—N,/27=0

and T;. is the r—th Cheybshev polynomial. To find the unknowns E‘47p7q,r we adopt the
collocation approach which demands that the equations (4.3) be true at the gridpoints

{xj :](dx/Nx) | 0 Sj < Na: - 1}7 {yk = k(dy/Ny) | 0 < k < Ny - l}a
{zm = hcos(mm/N.) | 0 <m < N, }.
This delivers a system of linear equations which can be resolved in an efficient and

stable manner with the repeated use of fast Fourier and Chebyshev transforms [15, 6,
4, 37].

REMARK 8.1. A rigorous numerical analysis of this method can be conducted very
much in the spirit of [18]. In Appendiz B of the Supplementary Material we begin this
study and are able to establish the following result.

THEOREM 8.1. Let E be the solution of the full Mazwell system, (3.4), and let
r > 2, then

|~ BENN0N-|| LS (B 4 (VAT NE 4 NI [0l gnse
for any constant
B > C.kieM ||

giving convergence for § < 1/B.

8.2. The Method of Manufactured Solutions. To test the validity of our
implementation, we utilized the Method of Manufactured Solutions (MMS) [5, 34, 35].
To describe this, consider the general system of partial differential equations subject
to generic boundary conditions

Pv =0, in Q,
Bv =0, at 0Q.

It is typically just as easy to implement a numerical algorithm to solve the nonhomo-
geneous version of this set of equations

Pv=F, in Q,
Bv=J, at 0.

To validate our code we began with the “manufactured solution,” o, and set
Fo :=Pv, J,:=DBo.

Thus, given the pair {F,, J,} we had an ezact solution of the nonhomogeneous prob-
lem, namely ©. While this does not prove an implementation to be correct, if the
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function ¢ is chosen to imitate the behavior of anticipated solutions (e.g., satisfying
the boundary conditions exactly) then this gives us confidence in our algorithm.
In the present setting we considered the prototype Maxwell problem, c.f. (6.2),

,C()’IN) = Fv, in SU7
— 0,0 —T,[0] = Qu, at I'p,
0.0 — Ty[0] = Ry, at T'_p,

@(I + dway + dy7 Z) = eiadz+iﬁdy1~}(z7y7 Z)v
with
de =dy=2m, h=5/2, ko=13, 0=¢=0,

and the (biperiodic) manufactured solution,

A\ . _
{J($7yﬁz) = A2 61a5z+zﬁfy+z'75,tz,
As
_ Ai(ias) + A(iBr)

Alzl, AQZ 5 A3: 5 s=t=1.

N

Z’S’s,t

We coupled this with (essentially) the choice of envelope function mentioned above in
§4,

E—¢€
€=09, &(z,y,2)= ( z > D_g4(z) {1 —DPyp(x)},
where we selected
a=mw/2, b=3w/2, d=1/4, 6=1.

For our test we supplied the “exact” input data, {F,, Q,, Ry} to our HOPE algorithm
and compared the output of this, v*PP*** with v by computing the error

(8.2) Error := |0 — 0"PPT¥|, .

To evaluate our implementation and demonstrate the behavior of our scheme, we
followed the lead of [27] and report on results in the “small deviation” (¢’ = 1.1) and
“large deviation” (¢’ = 1.6) regimes. We further evaluated our scheme by studying
the effect of the sharpness of the transition from € to € in £(z,y, z;w) by choosing
w = 2 (smooth transition) and w = 200 (sharp transition).

8.3. Small Deviation. In Figure 8.1 we display our results of simulations of the
small deviation (¢ = 1.1) configuration with transition parameter choices w = 2 (left)
and w = 200 (right). In both figures we have selected 6 =1 and N,, = N, = N, = 24,
and note the steady and stable convergence of our method. In both the smooth and
sharp transition cases we realize an error of nearly machine zero (10~'4) by L = 12.
This, of course, is in complete alignment with the results we have established above
(§ 6) on analyticity of the field with respect to the deviation parameter ¢.
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Error versus L Error versus L
10° 10°

Error
Error

10710 1070

10—15 10'15
0 0

F1G. 8.1. Error, (8.2), in HOPE simulation of small deviation configuration (¢/ = 1.1) with
transition parameter w = 2 (left: smooth transition) and w = 200 (right: sharp transition) versus
perturbation order L. (Ny = Ny =N, =24,6=1.)

8.4. Large Deviation. We repeated these simulations in the large deviation
setting (¢/ = 1.6) and, in Figure 8.2, we exhibit our findings, again, with transition
parameter choices w = 2 (left) and w = 200 (right). As before, we selected § = 1 and
Ny =N, = N, =24 for w = 2. For w = 200 we chose N, = N, = N, = 32 and
note the steady and stable convergence of our method. Of course the results are less
impressive in this much more challenging setting, but by L = 40 one can realize errors
on the order of 10~!* for the smooth transition. In the case of the sharp transition we
achieved errors of magnitude 1071% with L = 120. As before this agrees completely
with our novel analyticity results in § 6.

. Error versus L Error versus L
10 10°
001
10% 1 102
] ]
I I 4
8 g 10
10710 ] 10°
108
1078 10710 »
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120
L L

F1G. 8.2. Error, (8.2), in HOPE simulation of large deviation configuration (¢ = 1.6) with
transition parameter w = 2 (left: smooth transition) and w = 200 (right: sharp transition) versus
perturbation order L. (Ny = Ny =N, =24 (w=2) and Ny = Ny, = N, =32 (w=200),6=1.)

8.5. Spatial Discretization. To close out our MMS simulations we fized the
perturbation order, L, and varied the spatial discretization parameters N; = N, = N,
among values from 4 to 24. In Figure 8.3, we summarize our results in the case of a
small deviation (left: ¢/ = 1.1, L = 20) and large deviation (right: ¢ = 1.6, L = 40)
with w = 2 at § = 1. In line with our joint analyticity results in § 7 we note the
spectral rate of convergence of our simulations to errors of 10714 and 10~'2 for the
smooth and sharp transitions, respectively, as N, = N, = N, increased from 4 to 24.
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Error versus N' Error versus N
10° 10°
10° 105}
= =
E E
= =
10710 1070
10'15 10'15
0 5 10 15 20 25 0 5 10 15 20 25
N N

Fic. 8.3. Error, (8.2), in HOPE simulation with transition parameter w = 2 for small deviation
(left: ¢ = 1.1) and large deviation (right: ¢ = 1.6) versus Ny = Ny = N, (L =20 (¢ = 1.1),
L=40 (¢ =16),5=1).

8.6. Energy Defect. While our simulations with the MMS provide convincing
evidence for the correctness, stability, and accuracy of our numerical implementation,
it does not directly address the problem of plane—wave scattering we described in
§ 2. Of course this is by necessity as there is no closed—form solution for plane—
wave scattering by a generic periodic structure. However, it is well-known that if the
structure is composed entirely of lossless media (so that Im{e} = 0) there is a principle
of conservation of energy [39] which is often used as a diagnostic of convergence (see,
e.g., [30, 31]). The survey of Bao & Li [3] (Chapter 2) gives an excellent derivation
and rigorous proof of this result which we summarize here. Recalling from (2.2) the
incident radiation

E™(a,y,2) = Aexpliaz +ify — ir'")2),

and the Rayleigh expansions in the upper layer,

oo oo

E(z,y,2) = Z Z Up,q expliopx + By + ngq)zﬁ

p=—00 g=—00

c.f. (3.1), and lower layer,

o0 o0

‘Etrans(m7 Y, Z) — Z Z ’Lf)p’q exp(iapl‘ + Zﬁqy - 2’71(;%)2)7

p=—00q=—00

c.f. (3.3), we have the formulas for the (p, ¢)-th reflected and transmitted efficiencies

(u) ~ 2
T | lip,g ()
Tp,q = ) p,q) € u 5
P.q <,Y(u) > |A‘2 ( )
(w) N 2
b — | Jpa |Wp,q] (p,q) € )
p.q ’Y(“) |A‘2 ’ ) )

where the sets of propagating modes are defined by

yUm .— {(p7q) cZ?| afj +63 < €(m)k;g}, m € {u,w}.
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Conservation of energy demands that

Z Tpqt Z tpg =1,

(pq) U (p,q)eu (™)

so that, in an ideal computation, the energy defect

(8.3) A=1— > rpg— Y. b

(p,g)eu(™ (p,g)eU ™)

should be identically zero. Of course, our numerical simulation will experience errors,
but we can evaluate its capabilities for plane-wave scattering by studying A as the
numerical parameters, {N,, Ny, N, L}, are refined.

To compute these efficiencies we recall that we simulate E = E(z,y, ), the total
field, in S,. Evaluating at ', we find that

E(z,y,h) = E™(x,y,h) + E*Y(z,y, h)

= Aexp(iaz +ify — i'y(“)h) + Z Z Up,q exp(iapr + 16,y + i’yz(,f‘q)h),

p=—00 g=—00

so that
o Jep=in®m) {EC Ry~ Aesp(-iv®m) | () = (0.0),
Pq ” —
exp(—isd ) E( ), 4 (p,q) # (0,0),

—

where E(-, -, h)p , 1s the (p, q)—th Fourier coefficient of E(x,y, k). In a similar manner,
evaluating F at I'_;, we have

E('Ta Y, _h) = Etrans(x7 Y, _h)

= > Y dpgexpliops +iByy — iv)) (=h)),

p=—00 g=—00

so that
Wy, = exp(—ivy h) {E(" K _h)p,q} ’

where E(-i,\—h)p,q is the (p, ¢)—th Fourier coefficient of E(z,y, —h).

With all of this in hand we can now revisit the computations we presented in
8§ 8.3, 8.4, and 8.5. Regarding the small deviation ¢ = 1.1 (c.f. § 8.3), we present
results for w = 2 and w = 200 in Figure 8.4. Here we see that, after L = 6 orders
we have achieved our best energy defect (107%) for w = 2, and by L = 10 orders we
obtain the smallest discrepancy (1071%) when w = 200.

For the large deviation ¢ = 1.6 (c.f. § 8.4), our results for w = 2 and w = 200 are
in Figure 8.5. Here we see that, after L = 9 orders we have achieved our best energy
defect (1078) for w = 2, and by L = 11 orders we obtain the smallest discrepancy
(10~°) when w = 200.

Finally, regarding the spatial discretization (c.f. § 8.5), our results for ¢ = 1.1 and
€’ = 1.6 are displayed in Figure 8.6. Here we see that, after N = N, = N, = N, = 24
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Energy Defect versus L Energy Defect versus L
102 10°
10
" 5 10°F
] 21
£ £
< <
SN =]
5 10 B
E g
= ST
108
>
1010 1075t v b
0 5 10 15 20 0 5 10 15 20
L L

Fi1G. 8.4. Energy defect, (8.3), in HOPE simulation of small deviation configuration (¢ =1.1)
with transition parameter w = 2 (left: smooth transition) and w = 200 (right: sharp transition)
versus perturbation order L. (Ny = Ny =N, =24, 6=1.)

o Energy Defect versus L Energy Defect versus L

Energy Defect
3
S
Energy Defect
S
&

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
L L

F1G. 8.5. Energy defect, (8.3), in HOPE simulation of large deviation configuration (¢ = 1.6)
with transition parameter w = 2 (left: smooth transition) and w = 200 (right: sharp transition)
versus perturbation order L. (Ny = Ny =N, =24, 6=1.)

we have achieved our best energy defect (107%) for ¢ = 1.1, and by N = N, = N, =
N, = 24 we obtain the smallest discrepancy (107°) when €’ = 1.6.

Appendix A. Proof of an Elliptic Estimate: Joint Analyticity.

In this appendix we establish the elliptic estimate, Theorem 7.3, required to prove
joint analyticity of the scattered field using the inductive proof described in § 7. As
our proof is inductive in the vertical, z, derivative, we begin with the following lateral
regularity result.

THEOREM A.l. Given any integer m > 0, if (w,€) € P, F(x,y,z) € C%(Sy)
such that

20, . %0 SO
max | ot o™ SO e

for all r;t > 0 and for some constants Cr,n,0 >0, and Q, R € C¥(T')) satisfying

%%(4 o
G+ g = O+ 12 (E+1)2
8;8; r ot

n
—Y_R <Cr—t—g——s
V+0!Hmm_ NG
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Energy Defect versus N Energy Defect versus N
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Fia. 8.6. Energy defect, (8.3), in HOPE simulation with transition parameter w = 2 for small
deviation (left: ¢ = 1.1) and large deviation (right: ¢ = 1.6) versus Ny = Ny = N, (L = 20
(€ =11), L=40 (¢ =16),6=1).

for all r,t > 0 and some constants Cr,Cq > 0, then there exists a unique solution
v e CY(S,) of

(A.1a) Lov = F, in Sy,
(A.1Db) —d.v—Tyv] = Q, at T,
(A.1lc) 0.v — Ty[v] = R, atT'_p,
(A.1d) v( + dy,y + dy, 2) = =T By (g g 2),
satisfying
9,0y . -0 0 ot
G P e e e VER

for all r,t > 0 where

Qe = Ce(CF+CQ+OR) >0,

and C(h) > 0 is a constant.
Proof. Applying the operator 930, /(r +t)! to (A.1) we obtain

0{ o, ]_ ot

G I O T S,
5 [ 20 o[ 20 1 oo, 0 .
G I T e N T B G T i
oot ar ot oot
Ty o -y _ 7Yy
{v+w4 ﬂ4w+mﬂ I arton
arot g
(T + g)"U(I + dmvy + dyaz) = eladz+lﬂdymv(xvy7z)'

Applying Theorem 6.1 to this system and using the hypothesis on F', Q, and R, we

obtain
orot . oot
< Ce< Y + ||div { Y F]
2 (r+t)! |l g0 (r+t)! 1

o,0p,
(r+1t)!

v
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+‘ o, QH ‘ 6;8; R )
Hl/2 7’+t) H1/2
T et

n
<C(Cr+Co+CRr)——s+—,
< CelCr + Co +Cr) gy Gy 1
and we are done by choosing C, = C.(Cr + Cg + Cr). O

We are now in a position to establish our main result.

Proof. [Theorem 7.3]. We prove (7.1) by induction in s, and the case s = 0 is
verified by the previous result, Theorem A.1. We now assume that

0:0,0: <, o C  We<s Vrt=0
Gatts) |l s 2@ 2 sz o= Tl

which implies that, for j € {x,y, 2},

I PR o ¢ ys<s Ynt>0
it |y =+ 12(E+12(s+n2 5% Thi="
We now examine
50 0% H 9,008 H . 950 0%
TR e ————— 0,
(r+t+73)! (r+t+3)! . (r+t+3)! 0
araLo3 a1 o3
G TR A [Cnrsihch
. =
ar0 95! ar0 93!
7,'1) 7,' mv
(r+t+73)! e (r+t+3)! 2
aroL 9! OO o
778311) + V=Y Z
(r+t+3)! (r +t+s)'
H?2 H?!

The first three terms can be bounded by our inductive hypothesis as they involve
z derivatives of order 5 — 1. The fourth term we denote W and analyze as follows.

Writing

) orotHe—1
W= || 2= 020 €
Crtrai|l {z,y,2},
H1

it is clear that W < W?* + W¥ + W*. To estimate W* and WY we recall that the
inhomogeneous Maxwell equations

—Av + Vdiv [v] — kiév = F,
give

0z (00" 4 0yvY 4 0,v7)
0*v = —F — kev — 9%v — 8511 + | 0y (0pv™ + Oyv¥ + 0,07)
0, (00" + Oyv¥ + 0,v7%)

Therefore, we can write 9%v® and 92vY as

0% = —F® — k2ev® — 8%”4—831}“’—1—880
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020Y = —FV — JZev? — 920 + 0,0,0" + 9,0.v".

With these and the inductive hypothesis on v we obtain

or 6; o5t 5 || 9% 8; o3t o, 8;“ o5t
(r+t+3)! o (r+t+73)! (r+t+3)! .
87"85—&-18?—1 ar+18€/8§—1
ry "z Yy r vE z
(r+t+§)!a"”v H1+ (r+t+3)! ~ "
o5 8; 031 5 || 9% 85 931 oy 8;“ 951
—————F" + koé —— " —"
(r+t+3)! (r+t+3)! (r+t+3)!
H?2 H?2
3T8;+18§71 8r+la‘7§a§fl
T z y x z 2z
* (r+t+§)!v (r+t+§)!v
<C n" ot < 270(t+1)2(§+1)2+Q(r+1)2(§+1)2
T2 ()2 H1)2\C (6+2)2 $? C(r+2? 32

0" ot C§ 86 + 4n
<CrtmrmrerE ()

where the last inequality is obtained by using the inequalities

G+, (+D*
# - (t+22

In analogous fashion we obtain
n" 0t < 860 + 477)
WY <C, .
T+ 1)2(t+1)2%(5+1)2 ( ¢

All that remains is to estimate W# which we accomplish by applying the divergence
operator to the Maxwell equations (noting that div [curl [¢]] = 0 for any 1) giving

—k2ediv [v] = div F,

which implies that

z 1 : xT Y
0,v° = —%dlv [F] — 0,v% — 9yvY,
and
1
0*v* = —5=0.div [F] = 0,0.v" — 0,0,v".
kge '
Therefore,
1 8rat 85—1 8r+1at 85—1 ar6t+16§—1
W* < — || —2=—0.div [F + [ ——L20,0" == 9,0
“ k|| (r+t+3) v [F] - (r+t+73)! Y m (r+t+73)! v m
< 1 6;8;82_1 o.div [F] N 8;"“8;85_1 . 8;8;“85_1 ”
5z .div —— ——
~ ke || (r+t+3)! " (r+t+3s)! (r+t+3s)! e
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The first term is readily estimated from the hypothesis of F'. The second and third
terms can be addressed by our inductive hypothesis for v and v¥ as they just involve
z derivatives of order 5 — 1. Thus, we obtain

n" ot < <49 + 417)
W# < C, .
S G2\ ¢
Finally, collecting all the estimates for W*, W¥ and W?#, we arrive at

n" 6 ¢ (209 + 12n)
(r+1)2(t+1)2(GE+1)? ¢ '

W*+ WY+ W= <C.
The proof is complete by choosing ¢ > 200 + 125. O
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