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S U M M A R Y 

One of the important open questions in the theory of free-surface ideal fluid flows is the 

dynamic stability of traveling wave solutions. In a spectral stability analysis, the first variation 

of the governing Euler equations is required which raises both theoretical and numerical issues. 

With Zakharov's 1968 and Craig & Sulem's 1993 formulation of the Euler equations in mind, 

we address the question of analyticity properties of first, and higher, variations of the Dirichlet-

Neumann operator. This analysis will have consequences not only for theoretical investigations, 

but also for numerical simulations of the spectral stability of traveling water waves. We present 

the outcome of some computational experiments, as well as describe future applications of these 

results. 

IX 



CHAPTER 1 

INTRODUCTION 

We begin by considering the famous governing equations for the evolution of an ideal fluid 

flow with a free air-fluid interface. The Navier-Stokes and Euler equations have been studied 

extensively since their initial formulation. Work by Zakharov (Zak68) demonstrated the Hamil-

tonian structure of the Euler equations, highlighting the importance of two surface quantities, 

the fluid interface shape and the velocity potential evaluated there. Craig & Sulem (CS93) 

then reformulated the problem into evolution equations posed entirely at the surface. Cru­

cial in their reformulation is the appearance of the Dirichlet-Neumann Operator (DNO). We 

will view these surface formulation evolution equations, together with the DNO, as forming a 

dynamical system. Using some elementary dynamical systems theory, we find that the first 

functional variation of the Dirichlet-Neumann Operator is of significant interest. The DNO 

itself has been shown to posess a number of desirable characteristics, including analyticity with 

respect to the boundary shape, which justify a perturbation series expansion. These results are 

available through a number of approaches. Here, we apply techniques similar to those used by 

Nicholls k, Reitich (NR03) to investigate the first variation of the DNO. We find that this opera­

tor possesses various desirable characteristics, and its series expansion is particularly amenable 

to numerical implementation. We execute several computational experiments in which cur­

rent methodologies are tested against existing techniques. The results indicate that our new 

method should be utilized over alternative methods, particularly for extreme profiles which are 
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very rough or of large amplitude. Our theoretical and computational work provides a possible 

new direction into the spectral stability analysis of the Euler equations. 



C H A P T E R 2 

E Q U A T I O N S OF M O T I O N 

The following sections elucidate the background of our problem at hand. We describe the 

basic governing equations, as historically formulated. Common assumptions are made clear, as 

are certain motivations. We define the domain of interest. 

2.1 Navier-Stokes and Euler Equations 

The most famous equations in fluid mechanics are arguably the Navier-Stokes Equations. 

A detailed treatment and elementary analysis of these equations is available from many sources 

(Ach90), which we provide here for background. The equations are: 

~ + (u- V ) u + - V p - i / A u - g = 0 (2.1.1a) 
at p 

V - u = 0, (2.1.1b) 

where u is the velocity field, p is the fluid density, p is the fluid pressure, v is the kinematic 

fluid viscosity, and g is the gravitational force vector. It is often desirable to represent g as the 

gradient of a potential, g = — V%, where % = gy. Equation (2.1.1b), V • u = 0, indicates that 

the fluid is incompressible. Incompressiblity is one of several assumptions that, when made 

together, define an ideal fluid. The other assumptions are that the fluid is inviscid [y = 0), 

irrotational (V x u = 0), and of constant density (p=l). 

3 
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The assumption of irrotationality implies that the velocity field u can be written as the 

gradient of a scalar velocity potential: u = V<£. By substituting u = V<f> into (2.1.1b), we see 

that this velocity potential will satisfy Laplace's equation A0 = 0. 

Applying the vector identity (V • F)F = (V x F) x F + V ( - F 2 ) and using the fact that 

V x u = 0, (2.1.1a) can be written as: 

V ( ^ + P + ^ | V 0 | 2 + X ) = O . 

Integrating yields: 

f+P+lm2+x = f(t), 

where /(£) is an arbitrary function of t, whose presence does not effect the velocity field u. 

Because of this, we may choose it at our convenience. Relative to atmospheric thickness, water 

wave amplitudes are negligible, and we may assume that atmospheric pressure is constant and 

equal to, say, po along the entire free surface. Specifying the air-fluid interface by y = r)(x,t), 

the water pressure at y = rj(x, t) is also constant and equal to the same value po- By choosing 

/(*) = Po, we have: 

^ + ^|V^»|2 + OT = 0 a,ty = r}(x,t). 

This is commonly known as Bernoulli's condition at the free surface. 
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A second condition at the free surface is commonly known as the Kinematic Condition. 

This condition is often stated as requiring that fluid particles on the free surface stay at the 

free surface for all time. The mathematical representation is given by: 

-£ ~ j - + yx<t> • VxV = 0 at y = r)(x, t), (2.1.2) 

The final boundary condition that must be specified is at the lower boundary of our domain. 

Here, we require only that our fluid does not penetrate the bottom. Because the fluid is inviscid, 

we do not enforce a "no-slip" condition that is often associated with phyical domain boundaries. 

For the remainder of this work, we consider the problem posed on the domain S/^, defined 

below. This domain is characterized by periodicity in the lateral directions, with a flat bottom 

at depth y = —h and a free surface y = rj(x, t) with mean zero: 

ShtV = {(x,y)\(x,y) G R ^ 1 x R, -h < y < rj(x,t)}. (2.1.3) 

where d = 2,3. The periodicity in the lateral x direction is with respect to a (d— l)-dimensional 

lattice T, so that, for instance, r\{x + 7, t) = rj(x,t) V7 € I\ One of the primary difficulties 

associated with Free Boundary Problems (FBP) such as the Euler equations is that the domain 

on which the PDEs are posed evolves with time. Some details regarding this difficulty will be 

discussed later. 
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Let us summarize the situation so far, now that we have obtained a complete specification 

of the boundary conditions. The velocity potential (f> together with the time-dependent free 

surface rj must satisfy: 

in Sh>ri (2.1.4a) 

&ty = -h (2.1.4b) 

at y = f] (2.1.4c) 

at y = r), (2.1.4d) 

together with periodicity with respect to T. The final two equations are the kinematic and 

Bernoulli conditions, enforced at the free surface. They will henceforth be referred to as the 

evolution equations. 

2.2 The Dirichlet-Neumann Operator 

At this point, we introduce the Dirichlet-Neumann Operator to permit a restatement of 

(2.1.4) at the boundary. While the surface formulation of the problem due to Zakharov (Zak68) 

is implicit in nature, introduction of the DNO by Craig & Sulem (CS93) clarifies the issue. 

In general, the DNO is a boundary operator that takes Dirichlet data as input and returns 

Neumann data. Clearly, the explicit representation of this operator is highly dependent on 

A(j> = 0 

dycf> = 0 

dtr) - dy(j) + Vxr) • Vx<j> = 0 

%<!> - 9 V + 1 |V^»|2 = 0 
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the problem geometry. For concreteness, we define the DNO with respect to a generic elliptic 

problem which mirrors our present context of free-surface fluid flow: 

Av = 0 in Shi9 (2.2.1a) 

v(x,g(x)) = ax) (2.2.1b) 

dyv(x, -h) = 0 (2.2.1c) 

v(x + "f,y) = v(x,y) V 7 E I\ (2.2.1d) 

So long as g is sufficiently smooth, (2.2.1) admits a unique solution v, whose normal derivative 

at the surface y = g is easy to calculate. The DNO carries out this procedure by mapping the 

Dirichlet data, £, to the Neumann data: 

G(9)[£] := [Vv}y=g • N = dyv(x,g(x)) - Vxg • Vxv{x,g{x)), 

where N = (—\7xg,l)T is an exterior normal to Sh,g-

2.3 Surface Formulation 

Zakharov's (Zak68) seminal formulation of the Euler equations as a Hamiltonian system is 

implicit in nature, thus it is desirable to find a more explicit surface formulation. Craig k. Sulem 

(CS93) posed equations (2.1.4) in terms of only surface quantities, £(x,t) = <f>(x,r](x,t),t), the 

velocity potential at the free surface, and rj(x,t). After some straightforward applications of 

the chain rule, dt4> and Vcj) are rewritten in terms of dtt, and V£. Inspecting the terms in 



(2.1.4c), we see that the DNO makes its first explicit appearance. The evolution equations are 

now formulated solely at the surface: 

dtV = G(Vm (2.3.1a) 

dtt = -9v - —,—-—^ fiv^i2 - (G^m)2 

2(l + |Vs77|2J L 

- 2 (Vs£ • Vxr/) G(r,)[£] + | V ^ | 2
 |VXTJ|2 ~ ( V ^ • Vxr?)2] . (2.3.1b) 

Any analysis of the Euler equations, in particular the dynamic stability of traveling waves, 

can be performed equivalently on the surface equations (2.3.1). 

Before proceeding, we recall that while the dependence of the DNO upon the Dirichlet 

data, £, is linear, the g dependence is genuinely nonlinear. In particular, this dependence 

is parametrically analytic (NR01) (see also (NR03; HN05; NT08)) which implies the strong 

convergence (see Theorem 4.4.2) of the following expansion: 

oo 

G(gM] = G(6/)K] = £GnCf)[£]era (2.3.2) 
n=0 

for g(x) = ef(x) sufficiently small. Using this expansion the action of the DNO can be approx­

imated by the truncated Taylor series: 

N 

G"(0)K]:=£Gn(/)K]€», 
n=0 
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a method which has been used with great success in a number of numerical simulations (CS93; 

Sch97; Nic98; NicOl; CN02; GN05; GN07). Our purpose is to justify a similar expansion for 

the first variation of the DNO for use in spectral stability simulations. 



C H A P T E R 3 

S P E C T R A L S T A B I L I T Y OF W A T E R WAVES A N D T H E V A R I A T I O N 

OF T H E D N O 

In this section, we motivate our study of variations of the DNO by interpreting the evolution 

equations (2.3.1) as a dynamical system. One of the fundamental questions in dynamical 

systems theory is the stability of solutions, for instance the evolution of a small perturbation 

of an equilibrium solution. Stability can be determined from the growth or decay of this 

perturbation. 

3.1 Dynamic Stability and the Functional Variation 

Consider the generic dynamical system: 

dtu = F(u), (3.1.1) 

which possesses an equilibrium solution u(x,t) = it (re). To decide upon the dynamic stability 

of it, one adds to it a small perturbation: 

u(x,t) = u(x) + Su(x, t), <5<1, 

10 
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and studies the evolution of u. This form of u in (3.1.1) results in: 

dtu = 8uF(u)[u] + 0(6). (3.1.2) 

Here, the notation 8uF(u)[u) denotes the first functional variation of the right hand side F 

of (3.1.1). For the purposes of this paper, we use Gateaux's definition of the variation of a 

functional F with respect to a function ip at </?o m the direction ip as: 

5<pF{!p0){il>} := lim - [F(<p0 + r ^ ) - F(<po)]. (3.1.3) 
T—»0 T 

We will be using the following notation from this point onward: 

VF(<A>)M:=^(1)(^o)M. 

3.2 Spectral Stability Form 

The evolution of the perturbation u partially determines the stability results. Assuming a 

form: 

u(x, t) = extw{x) (3.2.1) 

and ignoring the term 0(d) in (3.1.2) comprises a linear spectral stability analysis: 

Xw = SuF(u)[w] =: A{x)[w\. (3.2.2) 
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The analysis is linear due to the neglect of the 0(5) term, and is spectral due to analysis of the 

eigenvalues A. 

3.3 Surface Formulation as Dynamical System 

The importance of computing the variation of the DNO becomes apparent when we view 

the surface formulation of the evolution equations (2.3.1) (modified slightly to incorporate a 

moving reference frame and solving for the time derivatives) as a dynamical system, with 

u(x,t) = 
V(x,t) 

and F representing the right-hand-side of (2.3.1). In this context the stationary equilibrium 

solution u(x) represents a traveling Stokes wave, which appears stationary in the moving ref­

erence frame. After perturbing the Stokes wave by u(x,t), we require the first variation of F. 

Since this right-hand-side involves the DNO, a stability analysis will involve the first variation 

of the DNO. 

It is of significant concern to specify which perturbations w(x) in (3.2.1) will be considered. 

A natural first choice is the set of periodic functions with respect to the same lattice of period­

icity T which controls u. However, results for more general classes of perturbation are desirable. 

This problem is addressed by the "Generalized Principle of Reduced Instability" developed by 

Mielke (Mie97), which is essentially the Floquet theory of differential equations with periodic 
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coefficients (DK06). This method distills the general setting of I? perturbations to the study 

of the "Bloch waves": 

w(x) = eip-xW(x), 

where W(x) is periodic with respect to Y. The period lattice of the linear operator A(x) is the 

same as that of the original problem, since A inherits its properties from u. The theory shows 

that the full I? spectral stability problem can be decided by simply considering Bloch waves 

with p € -P(r'), the fundamental cell of wavenumbers (e.g., if T = (2ir)Z, then V = Z, and 

P ( r ' ) = [0,1]). Thus we are left with the spectral problem (Mie97) 

Ap[W] = XW, 

c.f. (3.2.2), where Ap is the "Bloch operator" 

Ap[W] := e-ip-xA[eip-xW]. 

The crucial spectral identity (see (Mie97), Theorems 2.1 and A.4) is: 

L2-spec(.4) = l|u-spec(.4) = closure [ [ J spec(^lp) , (3.3.1) 
\peP{T') J 

where Lfu is the space of uniformly local I? functions. Thus, we can obtain information about 

stability with respect to all of these perturbations by simply considering periodic perturbations 

W{x) and Ap with p 6 -P(r') appearing as a parameter (Mie97). 



14 

For the current theoretical developments, this Bloch analysis is equivalent to considering 

the linear operator A acting on "Bloch periodic" (quasiperiodic) functions w(x) which satisfy 

the "Bloch boundary conditions": 

w(x + j) = eip'Jw(x), V 7 6 T . 

Notice that if p is a rational number then these functions will be periodic with respect to the 

lattice T. 



C H A P T E R 4 

T H E D I R I C H L E T - N E U M A N N O P E R A T O R 

The purpose of this section is to familiarize the reader with the Dirichlet-Neumann Operator 

(DNO) and some of the techniques used to analyze it. Recall that the DNO is an operator which 

maps given Dirichlet data to the corresponding Neumann data on the boundary. In the setting 

of free-surface fluid flows, the DNO has representation: 

G(gm := [Vv]y=g • N = dyv(x,g(x)) - Vxg • Vxv(x,g(x)). (4.0.1) 

For certain geometries, this operator is simple to define. Namely, the case where g{x) = 0 

results in: 

G(0m = dyv(x,0). (4.0.2) 

The solution v to (2.2.1) is represented in the g = 0 case as: 

^^."^m^^ ( 4 ' ° - 3 ) 

and therefore 

G(P)[€\ = dyv(x,0) = J2 \k\tanh(\k\h)ikJ
k-x. (4.0.4) 

fcer' 

15 
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We can use Fourier multiplier notation D := —iVx to compactly express this operator as 

G(0)K] = |£>|tanh(|D|/i)C. (4-0.5) 

The tanh term reflects the finite depth of our domain. In the limit h —> oo, we have G(0) —* \D\ 

4.1 Perturbation Expansion Methods 

The simplicity of the DNO in the case of separable geometry suggests a perturbative ap­

proach about the idle state g[x) = 0. We assume a small amplitude surface deformation, 

g(x) = ef(x), e < l , and expand our operators and fields as: 

oo 

v(x,y) = Y^vn(x,y)en 

n=0 
oo 

n=0 
oo 

oo 

G(1)(6/)[e]{^} = E G ^ ( / ) ^ e n 

re=0 

4.2 Operator Expansions 

The question now lies in the determination of terms in the expansions. Two common 

methods include Operator Expansions (OE) (Mil91) and Transformed Field Expansions (TFE) 

(NR01). The former method, which we describe here, involves expanding the definition of the 
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DNO as given in (4.0.1), without calculating the full field. For a given solution of (2.2.1a), 

(2.2.1c), and (2.2.1d), 

vk(x, y) = cosh(\k\(y + h))eik-x, (4.2.1) 

we have 

G(e/)[cosh(|fc|(e/ + h))^*] = {dy - eVxf • Vx)(cosh(\k\(y + h))eik-x)\y=ef. (4.2.2) 

Our goal is to use the linearity of G in the Dirichlet (square-bracket) argument to isolate its 

action on the basis function etk'x. Once we have this, we sum over all k € T' to find the action on 

an arbitrary function £(x). We expand the argument cosh(|fc|(e/ + h))elk'x in a Taylor series, as 

well as G itself. We obtain expressions for the even and odd numbered terms of G. For clarity, 

we express the operators as Fourier multipliers. For n = 0 we have the familiar: 

G0'(/) = |DiB|tanh(|DiB|/i). (4.2.3) 

For odd numbered terms n = 2j — 1 > 0, we have: 

G23-1V) = ( 2 P i ) ! D * • / ! W " 1 ^ P * | 2 C , ' - 1 ) 

- E (2(j-_
1

a)_1)!^(/)[/2°-')-1|ga!|
2^-1)Go] 

j~2 1 
- E (2(J- _ s _ ^Gto+iWlfU—VlD^-'-V], (4.2.4a) 
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and for even numbered terms n = 2j > 0 we have: 

G2j(f) = ~yDx • fWx\Dx\W-VG0 

- E (2(j -\) - 1 ) !G^+i(/)t/2( f~' )~1l^l2( f" f l"1)Go]. (4.2.5a) 

Self adjointness properties of the DNO, for instance G* = G, G* = Gn, |D|* = |£>|, allow us to 

finally write the terms as: 

G0(/) = \DX\ taDh(\Dx\h), (4.2.6a) 

3-1 1 

_ V _ G n l n |2C?'-s-l) f2(j-s)-ln (f\ 

- E ( 2 ( j - 1
8 - i ) ) i | g a | 2 ( j " ' " 1 ) / a C J " ? " 1 ) G 2 a + l ( / ) ' ( 4 2 - 6 b ) 

G2j(/) = ^ G o l A ^ ' " 1 ^ * • /2 jAc 

-E(2l-^i^i20-s)/2^G2s(/) 
i - 1 1 

- E ( 2 ( j _ a ) _ 1)!Go|gxl2(J-'-1)/2(f-f l)-1G2H-i(/)- (4.2.6c) 
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To find G^l\ we simply take the functional variation of each term in the expansion above, 

taking care to note the expansion order: 

5rjGo{f){w} = 0, 

< 5 , A > - i ( / ) M = (2( j - i ) ) l l g ' l 2 C ? ' " 1 ) j P » ' f2(J~1)v>D* 

-E 

-E 

-E 
J-2 

-E 
s=0 

<S„G2 j(/)M 
(2j 

i - i 

-E 
i-i 

-E 
s=0 

i- i 

-E 
J - l 

-E 
s=0 

2 ( j - 5 - l ) ) l 

1 

2 ( j - S ) - l ) ! 

1 
2 ( j - s - l ) - l ) ! 

1 

G o | ^ | 2 ( i - s - 1 ) / 2 ( ^ s _ 1 ) ^ G 2 s ( / ) 

Go\Dx\^-s-Vf2^-HnG2s{f) 

]Dx]2{j-s-i)f2(3-s-i)-iwG2s+i{f) 

Dx\W-°-VfV-8-%G2s+i(f), 2{j-s-l))\ 

1 Go\Dx\^^Dx.f^wD,. 

|AB |2(7'- f l )/2°'-a)-1™G2s(/) 
2 ( i - S ) - l ) ! ' 

2 ( j - s ) ) ! 

1 

2{j-8-l))l 

1 

2 ( j - S ) - l ) ! 

G o p x | 2 « - s - 1 V 2 ° ' - s - 1 ) ^ G 2 a + 1 ( / ) 

G o | ^ | 2 ( j ' - s - 1 ) / 2 ° " s ) - 1 ^ G 2 s + 1 ( / ) . 

(4.2.7a) 

(4.2.7b) 

(4.2.7c) 

While we note that 5vGo(f){w} = 0, it is not the case that GQ = 0. When using the superscript 

(1) to denote variation, we choose to let the subscript denote the power of e in the expansion. 
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Since 5vGi(f){w} = DxwDx£ — GQWGQ£, is 0(1), we see that the perturbation order in the 

variation is reduced by one, and we account for that in the subscript: 

G§\f){w} = DxwDx - GowGo, 

cg^C/JM = pj=Ty.GolDxl2{i~1)Dx • f2J~lwD* 

s=0 

3-1 

-E 
s=0 

3-1 

-E 

-E 
s=0 

,(1) 
G g - 2 ( / ) M = (2(J 

j ' - i 

-E 
s=0 

-E 
s=0 

3-2 

-E 
s=0 
i-2 

-E 
s=0 

2 ( j - S ) - l ) ! ' 

1 P x | 2 0 - ) / 2 ( 7 - ) G W ( / ) 

2 ( J - « ) ) ! 

1 

2 ( j - s - l ) ) ! 

2 ( j - 5 ) - l ) ! 

1 
- 1 ) ) ! 

2 ( j - s - l ) ) ! 

1 

2 ( j - S ) - l ) ! 

1 

2(j - s - 1) - 1)! 

1 

(4.2.8a) 

G o | ^ | 2 ( j ' - s - 1 ) / 2 ( i - s - 1 ) ^ G 2 a + i ( / ) 

G o l ^ x l 2 0 ' - 8 - 1 5 / 2 0 ' - ^ - 1 ^ ^ . ^ / ) , (4.2.8b) 

2(j-s-l))l 

Dx\
2^-^Dx-f^-^wDx 

GQ\Dx\^-s^f^-s-^wG2s(f) 

GoMV—VfW-yiGWtf) 

Dx?{j-s-i) f2{3-s-i)-iwG2s+i{f) 

m2{j-s-i)fW-s-i)GM+iU)m ( 4 2 8 c ) 

4.3 Transformed Field Expansion 

Another approach to computing the DNO is to make a change of variables that alters the 

shape of the original problem domain. After the change of variables, the DNO is found via an 
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expansion of the transformed field. This method is called Transformed Field Expansion (TFE), 

and has a number of theoretical and practical advantages over the OE approach outlined above. 

The change of variables that constitutes the first step in TFE is: 

*-*• »'^iSi)- t"-1' 

which transforms the domain Sh,g to Sh,o- The differential operators transform by: 

(h + g(x))Vx = (h + g{x'))V* -(h + y')(Vx>g(x'))dy/ 

(h + g{x))divx = {h + g(x'))divx> -{h + y'){Vx>g[x')) • dy> 

(h + g(x))dy = hdy>, 

and the system (2.2.1) becomes a PDE and boundary conditions for the unknown transformed 

field: 

u{x>,y>),= V(x>^h+^xl)Kg(x>)). 

These equations are, upon dropping primes, 

AM = F(x, y- g, u) in Shfi (4.3.2a) 

u (x ,0 )= f (x ) (4.3.2b) 

dyu(x, -h) = 0 (4.3.2c) 

u(x + j,y) = u(x,y) V 7 € T, (4.3.2d) 



22 

where 

F = divx [Fx] + dyFy + Fh) (4.3.2e) 

and the ^-derivative, y-derivative, and homogeneous parts of F are given by: 

Fx = -p^xu - -^92^xu + ~^-Vxgdyu + -j^-gVxgdyu, (4.3.2f) 

Fy = ^ V x g • Vxu + ^9^x9 • Vxu - ^ ± ^ £ \Vxg\2 dyu, (4.3.2g 

and 

i ^ = f v * S • V s u + ^gVxg • Vxu - '^i^- \Vxg\2 dyu. (4.3.2h) 
1 V 7 V7 . 1 V7 T7 k + y ITT |2 

-Vxg -yxu + j^g\/xg -Vxu -g— IV^I c^i 

Additionally, the DNO transforms to: 

G(g)l£] = dyu(x,0) + H(x;g,u), (4.3.3a) 

where 

H = -pG{g)[£\ - Vxg • Vxu(x,0) - pVxg • Vxu(x,0) + \Vxg\2 dyu(x,0). (4.3.3b) 

The reason for the particular gathering of terms in these equations is that both F and H are 

O(g). 

Now that we have implemented the "transformation" in the TFE method, all that remains 

is to expand the field, u, and the DNO, G, in a power series in a parameter which measures 
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the boundary deformation, e.g. e in the relationship g{x) = ef(x). Using this approach, several 

authors (see, e.g., (NR01; HN05)) have shown that if e is small and / is smooth, then the 

expansion: 

i(x,y,e) = ^un{x,y)en 

n=0 

converges strongly in an appropriate function space, and each un satisfies: 

(4.3.4) 

Aun = Fn(x,y) 

un(x,0) = Snfi £(x) 

dyun(x,-h) = 0 

un(x + j,y) = un(x,y) 

in Shfi 

j e r , 

(4.3.5a) 

(4.3.5b) 

(4.3.5c) 

(4.3.5d) 

where 5n,m is the Kronecker delta, 

Fn — diva; [FXtn] + dyFy}n + Fh,n, (4.3.5e) 

Fx,n = --j^f^xUn-1 ~ J^f^xUn-2 H J—^xfdyUn-i + - T - J - /V 'xfdyUn-2 , (4.3.5f) 

F y,n 
h + y 

h 
h + y (h + y)' 

Vz/ • Vxun-\ + —r^f^xf • Vxti„_2 72— |VX/| dyUn-2, (4.3.5, 

and 

Fh,n = J^xf " ^xUn-l + J^f^xf • V' xUn-2 T^~ l^xff dyUn-2- (4.3.5h) 
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In these formulas any function with a negative index is defined as zero. Under the same 

hypotheses (NR01; HN05) the expansion (2.3.2) can be shown to converge strongly, and the Gn 

can be computed via: 

GnUM = dyun(x,0)+Hn(x), (4.3.6a) 

where 

Hn = - ^ / G „ - l ( / ) [ £ ] - V x / • Vatin-ifoO) - i / V x / • VxUn_2(x,0) 

+ \Vxf\
2dyun-2(x,0). (4.3.6b) 

4.4 Analyticity of DNQ 

The recursions above can be used directly to establish the strong convergence of (4.3.4) and 

(2.3.2). The details are given in (NR01; NR03; HN05) but the results are summarized here for 

use in future sections. 

Theorem 4.4.1. Given an integer s > 0, if f e Cs+2 and £ G fp+3/2 ^ e n ^ e series (4.3.4) 

converges strongly. In other words there exist constants CQ and KQ such that 

\\un\\HS+2 < KQBQ 

for any B0 > C0 | / | C , + 2 . 
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Theorem 4.4.2. Given an integer s>0, if f G Cs+2 and £ G i P + 3 / 2 tfierc i/ie series (2.3.2) 

converges strongly as an operator from Hs+3'2 to Hs+1<2. In other words there exist constants 

Co and KQ such that 

\\Gn(f)[£,]\\H'+i/2 ^ K0BQ 

for any B0> C0\f\Cs+2. 

The function spaces in the theorems above are Sobolev spaces over our domain Sh,o-

Hs(Shfi) = Hs([-h,0]xP(T)), 

where P(V) is the fundamental period cell of the lattice T. 



CHAPTER 5 

VARIATION OF THE DNO 

From (4.3.2) and the definition (3.1.3), the first variation of the field, u^l\ satisfies the 

following elliptic problem: 

Au^ =F^{x,y) 

w(1)(x,0) = 0 

dyu^\x,-h) = 0 

u^1' (x + 7, y) = vS1' (x, y) 

in. S-t hfi 

v 7 er , 

(5.0.1a) 

(5.0.1b) 

(5.0.1c) 

(5.0.1d) 

where 

F ^ d i v J i ^ l + ^ + F ,̂ (5.0.1e) 

FP = --wVxu - -gVxuW - -^gwVxu - j^g2Vxu^ 

h 
h + y 

• X^VyL 
h 

h + y h + y 
, ( i ) + —^-wVxgdyu + —rj-gVxwdyu + —-^-gVxgdyu

(L), (5.0.1f) 

26 
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i f > = ^ V x W • Vxu + ^ V x g • VxuM 

h + y h + y h + y _, *-, a\ 
+ —r^-wVxg • Vxu + —r^-gvxw • Vxu + -j^-gvxg • vxv> > 

_ yh+vtvxW. VxgdyU _ ( ^ 1 ! I V ^ I 2 ^ 1 ) , (5-o.ij 

and 

Fhl) = T^xW • Vxu + - V x g • VxuW 
h 

+ -j^wVxg • Vxu + j^g^xw • Vxu + j^9^xg • Vx« ( 1 ) 

^ J ^ V ^ • Vxgdyu - * ± * \Vxg\2 dyu^. (5.0.1h) 

Next, the variation of the DNO satisfies the formula: 

G{1)(g)[£]{w} = dyu^(x,0) + H^(x), (5.0.2a) 

where 

ff(D = ~wG(9m - lgGW(g)[t;}{w} - Vxw • Vxu(x,0) - Vxg • Vxu^\x,0) 

1 1 1 
- j-w^xg • Vxu(x,0) - -gVxw • Vxu(x,0) - -gVxg • Vxu^\x,0) 

+ 2Vxw • Vxgdyu(x, 0) + \Vxg\2 dyu
(1\x, 0). (5.0.2b) 
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5.1 Analyticity of the First variation of the DNO 

As with the case of the field and DNO, we set g(x) = ef(x) and the TFE methodology can 

be utilized to show that the expansions: 

u^(x,y,e){w} = J T t t f W H t o } eB, &%)[£]{*,} = £ C # > ( / ) K ] M e", (5.1.1) 
n=0 n=0 

converge strongly; see Theorems 5.1.2 and 5.1.3. Given these expansions it is not difficult to 

see that the un must satisfy: 

u£\x,0) = 0 

dyu£\x,-h) = 0 

u{n\x + -f,y) = u£\x,y) 

in Sh0 

v 7 er , 

(5.1.2a) 

(5.1.2b) 

(5.1.2c) 

(5.1.2d) 

where 

F® = div. \FW] + a F^ + R(1) 

rn iu\x rxn T uyryn T rh , 
(5.1.2e) 
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and 

H T—^xwdyUn H j—VxfdyU^l-L 

h + y h + y ft+y m 
+ -^2~wVxfdyun-i + — j - /VxwdyUn-! + -j*-fV x f dyv>nL2, (5.1.2f) 

*S = 4 ^ • vxUn + ^vxf • vj^ 
ft ft. 

h + y h + y h + y (i) 
+ —fi2~w^xf • VxUn-i + —Tp-f^xW • Vxura_i + —r^-fVxf • Vxv>n!_2 

~ ^ ^ V , W • V . / f l t ^ - i - ^ 2 |V ; c / |2 fi^, (5.1.2g 

and 

Fhi = lv*w • v*un+^v^ • v - n i - i 
+ ~h2WS7xf ' ̂ xUn-l + Tpf^xW • VxUn-i + T^f^xf • V'xK-2 

~ ^t^VxW • VxfdyU*-! - ^ \Vxf\
2 dyu£i2. (5.1.2h) 

The G{n] can be computed via: 

G^(m}{w} = dyu^(x,0) + H^(x), (5.1.3a) 
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where 

- V s / • V ^ - i M ) - lw^xf • Vxu„_i(x,0) 

- \fVxw • Vxtin-ifi, 0) - i / V s / • VsuJ22(x, 0) 

+ 2v^-v I/a^n_i(x,o) + |v:c/|
2a^i122(x,o). (5.1.3b) 

The primary result of this section is the parametric analyticity of the first variation of the 

DNO, G^l\ with respect to the boundary variation g = ef. This can be shown directly from 

the next result on parametric analyticity of the first variation of the field, vS1'. To make this 

precise we define the quantities D\ and D\ which help characterize the disk of convergence of 

the Taylor series of GW anduW. 

Definition 5.1.1. For any positive real number BQ (see Theorems 4.4.1 k, 4.4.2), and functions 

f,weCs+2, let 

Di := |/ |c*+2 + B0 \w\Cs+2 

D\ := I/ICH-2 + -BQ \f\Cs+2 \w\cs+2 • 
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Theorem 5.1.2. Given an integer s > 0, if f E Cs+2, £ E Hs+3/2, and w E Cs+2 then the 

series for u^ in (5.1.1) converges strongly. In other words there exist constants C\ and K\ 

such that 

,.« 
/P+ 2 < KxB? (5.1.4) 

for any B\ > max Ce is given in Lemma 5.1.5 and BQ is given 

by Theorem 4-4-1 which holds with the hypotheses given above. 

The parametric analyticity of G^ now follows. 

Theorem 5.1.3. Given an integer s > 0, if f <E Cs+2, £ E Hs+3/2, and w E Cs+2, then the 

series for G^l> in (5.1.1) converges strongly as an operator from Hs+3'2 to Hs+1'2. In other 

words there exist constants C\ and K\ such that 

GPVMM Hs+1/2 
<K^ (5.1.5) 

for any B\ > max.{Bo,CiD\,Ciy D\\. 

A key element in the proof of these results is an "Algebra Property" of the function spaces 

Hs and Cs (Ada75; NR01). 
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Lemma 5.1.4. For any integer s > 0 and any a > 0, iff E CS(P(T)), u e HS(P(T) x [-h,0]), 

g e Cs+1/2+a{P(T)), and fi e # s + 1 / 2 ( P ( r ) ) , then 

ll/ulli^(p(r)x[-/i,o]) - -^l/lc*(P(r)) llulli^(p(r)x[-/i,o]) 

lls,AAll.£p+i/2(p(r)) ^ M |silcs+i/2+<7-(p(r)) IHI.fp+i/2(p(r)) 

where M is a constant depending only on s and the dimension d. 

Another invaluable tool in our analysis is the following well-known "Elliptic Estimate" 

(LU68; Eva98). 

Lemma 5.1.5. For any integer s > 0 there exists a constant Ce such that for any F G Hs, 

£ G Hs+3/2t the soiution w e Hs+2 0j 

AW(x, y) = F(x, y) in Shfi 

W(x,0) = £(x) 

dyW(x, -h) = 0 

W{x + 1,y) = W{x,y) V 7 e r 

satisfies 

\\W\\Hs+2<Ce{\\F\\HS + U\\HS+3/2}. 

Our proof of Theorem 5.1.2 is inductive in nature relying upon the relation (5.1.2) for un ; 

therefore a recursive estimate on the right-hand side Fn is essential. 
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Lemma 5.1.6. Let s > 0 be an integer and let f,wE Cs+2. Assume 

\un\\Hs+2 < KQBQ 

u, 
(1) 

Hs+2 
<KXB\ 

Vn 

n<N, 

(5.1.6a) 

(5.1.6b) 

and that the constants KQ,K\,BQ,BI > 0. Then if B\ > BQ, K\ > KQ, there exists a constant 

C\ such that 

N Hs 
<C1K1{D1B^-1 + D1B^-2}. 

Proof. We recall that Fir' = div; 
(i) - r ( i ) ' 

x,N + dyFy N + ^h N an<^ f ° c u s o u r attention upon F^, N 

as the other terms can be handled in a similar fashion. Using Lemma 5.1.4, 

div-r Fr 
(i) 

x,N < 
Hs 

7 (1) 
x,N Hs 

2M 1M 
^ ~T~ \w\c°+i \\UN\\HS+2 + ~r l-̂ l h h lc*+i u 

(i) 
7V-1 

Hs+2 

2M2 

+ ~k2~ \w\Cs+l I/I0+1 lluJV-l||.ffs+2 

u 
(1) 
JV-2 

Hs+2 

YM YM 
+ —^- \w\c*+* \\UN\\H»+* + —£- l/lc*+3 

YM2 

x ( 1 ) 

H s + 2 

+ W Qs+i |/lcs+2
 II'UJV-I|IHS+2 

h2 

^ Y M 2 l f \ I I II II 

+ . 2 l/ICs+1 M C + 2 ll^iV-lllif 
y M ' l f l I/i II W 

U I O + 1 l / l C s + 2 \\uN-2 + h2 
H*+2 
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where we have used 

\\(h + y)v\\H.<Y\\v\\H. 

for some constant Y = Y(s, d). By using | / | ^ + i < \f\Cs+2, \w\Cs+i < |Hc s+2 ' and the inductive 

hypotheses (5.1.6), it is easy to show that 

div, Fr 
(i) 

x,N 

(2 + Y)M - N 

Hs < ^ Mo+2 K0B0 

2M2(1 + Y) 
h2 

(2 + Y)M 
h 

— \w\cs+2 l/lcs+2 KoB0 

\f\Cs+2 K1B1 ~ 

N-l 

<K 

+ 

+ 

, M 2 ( i + y ) 2 - N_2 

H j£ I/I0+2 KlBl 

(2 + Y)M 

h 

2M2(1 + Y) 

w\Cs+2 Bo-Bf-1 

h2 

(2 + y ) M 
ft 

M 0 + 2 l/lcs+2 -̂ o-Bi 
jV-2 

fl piV-1 , M (1 + y ) 2 oiV-2^ 

>JV-1 
< C-l^l ((I/I So)Sf 

+(l/lc*+2 + l / b + 2 H c + * Bo)B?~2) , 

provided that Bo < B\, KQ < K\, and C\ is chosen appropriately; the proof is now complete. • 

We are now in a position to prove the parametric analyticity of the first variation of the 

field, UW. 
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Proof. (Theorem 5.1.2) We utilize an inductive method, therefore at order n = 0 we recall that 

we must solve (5.1.2) with 

•x,o h 
W\7XUQ H —\/xwdyU0, 

(i) h + y 

Fyfi = — T ~ V x W • Vxlio, 

Fh,0 = T^xW • VXUQ. 

Using Lemma 5.1.5 we find that 

,(i) 
H-

„ ( 2M YM . 
+ 2 < Ce < — \w\C3+i \\Uo\\Hs+2 + —r— \w\cs+2 \\U0\\H°+2 

M 
-\ — \W\Cs+2 \\UQ\\HS+2 + — \W\Cs+l | P 0 | | H s + 1 

< 

YM 

CeM 
h 

(3 + 2Y) |w | C s + 2 K0B0. 

We set 

Kx = max \ K0, ^ ^ ( 3 + 2Y) \w\Cs+2 K0B0 } , 

and the case n = 0 is established. We now assume (5.1.4) for all n < iV and use (5.1.2) and 

Lemma 5.1.5 to realize that : 

u 
(1)1 
N \H*+2 

<Ce 
? ( i ) | 
N \H» 
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Since the un satisfy the estimate of Theorem 4.4.1, we can use Lemma 5.1.6 to imply tha t 

x(1) < CeCiKi ID^-1 + DiB?-2} < K\B-AT 
1 ) 

if we choose 

Bi > max <̂  2CeCiDi, \^2CeC1D1 

D 

Finally, we show the parametric analyticity of G^. 

Proof. (Theorem 5.1.3) Again we work by induction and begin with G0 . An important real­

ization to make is that our hypotheses guarantee that Theorem 4.4.2 holds together with its 

estimates on Gn. From (5.1.3a), we see at order zero that 

:W[ . « / 1 
Go [ 3 M = W M ) - j^Gom - Vxw • Vxu0(x,0). 

We now estimate 

G^mw] 
f P + l / 2 

< 4\x,0) M 
Hs+3/2 + ~h McM-l/2+.r ||G0[£]||Hs+l/2 

+ M \w\Cs+3/2+„ \\u0(x, 0)11^+3/2 

M . , 
W\Q3+2 
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M ~ 
KQ, 

then the case n = 0 is resolved. We now suppose that (5.1.5) holds for n < N and examine 

r ( i ) . 

G # ( / ) K ] M H s +! /2 
< .(!) «^M) fp+3/2 

M 
+ "77 klc^+i/2+CT l|Giv(/)[£]||ffs+i/2 

M , ( i ) + yi/ics+1/2+.||G^_i(/)[e]M| 

+ M \w\cs+3/2+<, ||«jv(a;, 0)11^+3/2 

j p + 1 / 2 

+ M|/|c.+3/2+*||u5J)_1(x,0) 
JJ 5+3/2 

M2 

+ : ^ — | w | C 5 + l / 2 + a | / | C s + 3 / 2 + a ! | l l j V - l ( x , 0 ) || j y s + 3 / 2 

M 2 

+ - T - | / l c s + V 2 + ^ | H c s + 3 / 2 + < * | | u j V - l ( a ; , 0 ) | | H S + 3 / 2 

M 2 

+ ~Y | / l c « + l / 2 + * | / | c « + 3 / 2 + « r | r - J V - z v ' - / | | H , + 3 / 2 ujJU^'0) 

+ 2 M 2 |iy|Cs+3/2+CT |/|Cs+3/2+a \\UN-1{X, 0)11^+3/2 

+ M2|/|^+3/2+.|«SJ)_2(a:,0)| 
#s+3/2 



38 

Using the fact that B\ > Bo, 

G , s + 1 / 2 ^ ^ + M ( x + ^ ) i ^ - ^ 1 

+ M ^ 1 ( - 2 + l ) | / | ^ + 2 J B f - 2 

h2 

+ M [ ^ + K0 ) \w\Cs+2 Bg 

h 
+ 2M2K0 - + 1 | / | c . + 3 \w\c.+2 BS N-l 

N < KiB? + M 

Kn 

Ki 
+ K1)\f\Cs+2 

+ [-^ + Ko)(Bo\w\c,+2) B N-l 

+ M2 
* i ( / ^ + 1) \f\c«> 

1 
/ i 

+2tf0 T + 1 \f\c.+2 (Bo H cs+2) B JV-2 

By the bound 2CeC\D\ < B\ we are done provided that K\ is chosen sufficiently large. • 

5.2 Higher Variations 

Though the impact of higher variations of the DNO on a spectral stability analysis is not 

immediately apparent, we establish in this section parametric analyticity results for these higher 

derivatives. However, we do restrict ourselves to the case of periodic perturbations as products 

of these functions appear in the relevant formulas, but the space of Bloch periodic functions 

is not closed under multiplication. At this point the key role that the transformation (4.3.1) 

plays is particularly evident as the proof of the relevant analyticity theorem is no more difficult 

than that of the first variation case. 
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To begin, we record a helpful Proposition regarding variations of products which is easily 

established using induction. 

Proposition 5.2.1. Suppose that A and B are linear operators and U is a nonlinear function 

of g, then if 

R(g) = A\g]U(g), S(g) = A{g]B[g]U(g), 

and U(k>, R>k>, and S^> denote the k-th variations ofU, R, and S, respectively, then 

m 

RW{w} = A[g\U^{w) + J2A[wJp(m~1){wj} (5.2.1a) 

m 

S™[w] = A[g}B[g]U^{w} + A[g] ̂ B H ^ ' 1 ) ^ } 

m 

+ B[g]YJA[wj]U^-l){wj} 
3=1 

m m 

+ E E A[w3]B[wk]U^-2){whk}, (5.2.1b) 
3=1 k=l,k^j 

where 

w = (wi,...,wm) 

Wj = (wi, ..., Wj-i, Wj+i, ..., Wm) 

Wj,k = (WI,..., Wj-\,Wj + l, ..., Wk-l,Wk+i, ..., Wm). 
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Gateaux's definition (LL01) of the m-th variation of a functional F with respect to a 

function ip at ipo in the direction ip = (V>i,..., ipm) is 

SZFfroM} := lim — [S^^Ffo + r m ^ m ) { ^ , . . . Vw-i} 

- ^ - ^ ( ^ o ) ^ ! , •,VVn-l}] 

As the DNO and its underlying elliptic BVP (in transformed coordinates) are given in (4.3.3) 

and (4.3.2), it is easy to derive equations for their m-th variations, 

uW{x,y;g){w} := S?u(x,y;g){w}, G*m>(ff)[£]M •= 5™G(gm{w}. 

First, for the m-th variation of the field, u^> satisfies the following elliptic problem: 

Au<TO> = F{-m\x,y) 

U(m\x,0) = 0 

dyu^m\x,-h) = 0 

u^(x + j,y) = u^m\x,y) 

in Sho 

v 7 er , 

(5.2.2a) 

(5.2.2b) 

(5.2.2c) 

(5.2.2d) 

where 

F^ = diVa; \F^] + dyF^ + i^m). (5.2.2e) 
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To derive the forms of Fx , Fy, and F^ we use Proposition 5.2.1 repeatedly. For instance, 

the first term in the expression for Fx is 

R{u) = --gVxu = --A[g]U(g), 

where A = I is the identity and U(g) = Vxu(g). By Proposition 5.2.1, 

R(m)[w] = - \ I A[g)U^[w} + J2^[wjP{m-1)[wj 
h . 

2 ' 
gVxu^{w} + YJ^xU{-m-l){wj} 

3=1 

Proceeding in this way we can derive the following expressions: 

1 / m 

- -2 g2Vxu^{w} + 2gJ2^^(m~1){^j} 

m m 

j=l k=l,kjtj 

+ ^ I Vxgdyu^{w} + J2 VxWjd^-Viwj} 

h -A- I m 

+ -j*r gVxgdyUW{w} + gJ2^xwjdyU(m-^{wj} 

m m m 

+Vxg^wjdyu
(~m-^{wj} + J2 E WjVxWkdyU^-^iw^} ] , (5.2.2f) 

3=1 j=lk=l,k^j 
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F(m) = h+JL I Vxg . v^M{u;} + £ v^- • V^" 1 ^} 

m m 
+ V s 5 - ^ u ; i V x n ( m - 1 ) { % } + ^ J ] WjVxwk-Vxu^m 2){wj,k} 

3=1 5=1 k=l,k^j 

- ^ ^ ( \Vxg\2dyu^{w} + 2Vxg -f^V^dyU^^iw,} 

m m 

+ Z Z) Vx^-V^fc^" 1 - 2^^-*}] , (5.2.2g) 

and 

/ m 
4 m ) = - V ^ • V x t / m > M + ^ V x ^ • Vxu^m-^{w3} 

1 / m 

+ j - 9^x9 • Vxu^{w} + <? ]TVxWj • V ^ ™ " 1 ^ } 

m m 

+Vxg -J2wr VxU^-^iwj} + Yl Z w3VxWk • Vxu{m-2){wjtk] 
3=1 3=1 k=l,k^j 

h + y 
h2 \Vxg\2 dyu^{w} + 2Vxg • J^ V ^ ^ ™ - 1 ) ^ } 

3=1 

m m 

+ Y J2 VxwrVxwkdyu(m-V{v>jjk}]. (5.2.2h) 
j=l k=l,k^j 

Now, the variation of the DNO satisfies: 

G ( m )fo)[£]M = dyu^m\x,0){w} + H^(x){w}, (5.2.3a) 
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where 

H(m) = _1 [gCWbmW + f^WjG^-^miwj) 

3=1 

' m 

Vxg • Vxu(m\x,0){w} + Y, VXWJ • V ^ - ^ O M ^ } 

I m 
- - gVxg • Vxu^m\x, 0){w} + g £ VxWj • V^™"1)(x, 0){WJ} 

m 

+ Vxg-^wjVxu(m-1Xx,0){™j} 

m m 

+ J2 Yl ^Vs«;fc-Vx«(m-2)(x,0){ti3iifc} 

( m 

\Vxg\2dyu^(x,0){w} + 2Vxg •Y,^xWjdyu
{-m-l\x,Q){wj} 

m m \ 

+ J2 £ V^j -V^ j f ca^ -^Cs .Oj^ - f c} . (5.2.3b) 
3=1 k=l,k?j J 

5.3 Analyticity of Higher Variations 

Following the development of § 5.1 we can now establish the analyticity of the m-th varia­

tions of the field and the DNO. Again, if g — ef is sufficiently smooth then both 

oo 

u(-m\x,y,e){w} = ^ut\x,y){w}en, (5.3.1a) 
n = 0 

oo 

G(m)fo)[tfM = E ^ [ C l M en, (5.3.1b) 
n = 0 
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will converge strongly; see Theorems 5.3.2 and 5.3.3. Given these expansions it is not difficult 

to see that the Un must satisfy 

4m)(x,0)=0 

dyut\x,-h) = 0 

u<F\x + >y,y) = uW(x,y) 

in St h,0 

v 7 er , 

(5.3.2a) 

(5.3.2b) 

(5.3.2c) 

(5.3.2d) 

where 

p H - riiv \F^] 4- 8 F1^1 4- F^ (5.3.2e) 



and 
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FS = -r /VzfiW + E ^ u i M W 
j = l 

1 / m 

TO m 

+ 

+ 

fr + y 
h 

h + y 
h2 

3=1 k=l,k£j 

m 

3=1 

fVxfdyU{™J2{w) + f ^ VxWjOyU^ ^ {Wj} 
( T O - 1 ) 

3=1 

m TO 

+V I/E»;rf-i1){»i} + E E ^ V ^ a ^ - 2 ) ! ^ } ] , (5.3.2f) 

F& = *±2\vtf. v ^ M + X) Vx̂ i • VxtiJr1^} J / , " Jl 

+ ^ I /V,/ • Vxu£>2M + / J2 V ^ i • V^i-T1}{^} 
/ i 2 

3=1 

j = l j=l k=l,k^j 

m TO 

+ E E V ^ - V ^ ^ ^ - 2 ) ^ ^ } ] , (5.3.2g) 
3=1 k=l,k^j 
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and 

1 / m 

+ V2 fvxf • V ^ K M + / E v - w i • V^i-T1}{^} 
ro m m 

j = l .7=1 fc=l,fc#j 

- - ^ iv,/l2 v K w + 2V*/ • E v ^ t f c 1 ^ } 

m TO 

+ E E V a t o j - V x t i ; ^ ^ - 2 ) ^ - * } ] . (5.3.2h) 

The Glm) can be computed via 

4 m ) ( / ) [ £ ] M = dyu^(x,0) + HJTHx), (5.3.3a) 
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where 

1 / m 

i = i 

- ( V x / • V , ^ ^ , 0 ) M + J ^ V ^ - • V ^ f " 1 ^ , 0){WJ} 

m 

^ ( fVxf • Vxu
{^\(x,0){™} + fY^VxWj • VxU^HxMtij} 

m 

m m 

+ Y1 5Z wjVB«;/fe-Vxt4
m-2)(x,0){«;jifc} 

m 

m m 

+ E E Vxwj-Vxwkdyu<Zn-2)(x,0){wj,k})- (5.3.3b) 
i=i fc=Wj 

We are now in a position to prove our final results, the parametric analyticity of the m-th 

variation of the field and DNO with respect to e. Again, for precision, we define the quantities 

Dm and Dm which quantify the radius of convergence of the Taylor series, (5.3.1). 



Definition 5.3.1. For any integer m > 2, positive real numbers Bm-\ and -BTO-2> and functions 

f,W!,...,wme Cs+2, let 

Dm '•— I f\cs+2 + Bm-l / _ u> i lcs+2 

i = i 
m rre 

An : = l/lcs+2 + 2-0m-l l/lcs+2 2 J lWilcs+2 + Bm-2z2 2_^ \wj\Cs+2 \wk\c+2 

3=1 3=1 k=l,kjtj 

Theorem 5.3.2. Given an integer s > 0, if 

feCs+2, £e# s + 3 / 2 , Wl,...,wmeCs+\ 

and the series for u^ (0 < p < m — 1) in (5.3.1) are strongly convergent, then the series for 

u^> in (5.3.1) converges strongly. In other words there exist constants Cm and Km such that 

u. 
(m) 

H*+2 
< KmBm (5.3.4) 

for any 

Bm > max < BQ, ..., Bm-\, 2CeCmDm, y 2CeCmDm >, 

where BQ,BI,. .., Bm^i are obtained by the analyticity estimates of u, u^\ ..., u^m ^. 

The parametric analyticity of G^m\ now follows. 
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Theorem 5.3.3. Given an integer s > 0, if 

feCs+2, £e# s + 3 / 2 , wl,...,wmeC°+2, 

and the series for G(P) (0 < p < m — I) in (5.3.1) are strongly convergent, then the series for 

G^ in (5.3.1) converges strongly as an operator from Hs+3/2 to Hs+ll2. In other words there 

exist constants Cm and Km such that 

G^XfMiw] Hs+i/2<KmBn
m (5.3.5) 

for any 

Bm > max | S o , . . . , -Bm_i, CmDm, Cm\JDm | . 

R e m a r k 5.3.4. These results would easily lead to an inductive proof for the parametric ana-

lyticity of all variations of the field and DNO provided one has control over the growth of the 

Bm as m —> oo. At present it is not clear whether such a bound can be found so we make no 

such claim. 

Our inductive proof again requires a recursive estimate. 



Lemma 5.3.5. Let s > 0 be an integer and let f,wi,...wm € C s + 2 . Assume 

50 

|«n||/fH-2 < KQBQ 

U, (P) 

u. 
(m) 

H*+2 

Hs+2 

< KpBp 

< KmB^ 

Vn 

0 < p < m, Vn 

n< N, 

and constants KQ, ... Km, BQ, ..., Bm > 0. Then if 

Bm > max{B0, • • •, Bm-\}, Km > max.{K0,..., Km-\}, 

there exists a constant Cm such that 

N < CmKm \ DmBm + DmBm \ 
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Proof. Again, we focus our attention on one term in F^ a s t n e others can be handled in 

a similar fashion; consider F^j and recall that since it is dyF^j which appears in FJ^1' we 

measure in the Hs+1 norm. 

n(m) 
y,N H,+,<f(Mi/ic.« |»«|„, +2 

u 
(m-1) 
N 

m 

+ Y^M\WJ\CS+2 

+ ^ ( M 2 | / | C S + 1 | / | C S + 2 

JJS+2 

u 
(m) 
JV-2 H s + 2 

+ M | / | C S + 1 ^ M 10 j lc s+2 

m 

( m - 1 ) 
^ iV- l #s+2 

+ M | / | C s + 2 ^ i W > i | C s + 1 u 
( m - 1 ) 
iV-1 

i = i 
Hs+2 

m m 

+y^ ŷ  M2 i 
WJICS+1 1^1(7^+2 

U 
(m-2) 
AT 

#*+2 

y2 

h2 + T 2 - ( M 2 I / I C ^ 4JV-2 /fs+2 
+ 2M\f\c.+2J2M\w. J\Ca+2 

J '=l 

M 
(m-1) 
N - l //s+2 

i = i k=i,k^j 

(m-2) 

Hs+2 



Using the inductive bounds we now conclude the following: 
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•y,N 

MY 
< 

HS+1 ~ h 

M2Y 

\f\Cs+2KmB^ l + 22\wj\Cs+2Km-iBrn_1 

i = i 

+ —£T I l/lc*+2 KmB% 2 + 2 \f\Cs+2 ^2 \wi\c*+2 ^ - i B m - i 
i = i 

m m 
j i V 

j=\ k=l,kjtj 

M Y I I *|2 
H p - l / lc+2 KmBm 2 + 2 l/lcs+2 z2 \Wi\c°+2 Km-lB%_l 

3=1 

m m 
7N 

j '=l k-l,k^j 

By rearranging and using 

£ m > max{B0,..., Bm-i}, Km > max.{K0,..., Km-i}, 



we obtain: 
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y,N 

MY 
B, J V - l 

i=i 

M2Y lvl 1 •-" I o ^—\ 

H ~j~2~-Km I l/lc^+2 + ^ l/lc*+2 Z-/ l ^ i ' c ^ 2 Bm-1 
3=1 

+ Z2 /I \Wi\c°+2 \wk\c*+2Bm-2 ) B\ 
3=1 k=l,kft 

N-2 
m 

2v1 MZY 
+ 2 |/| 

Cs+2 y , \wj\cs+2 B™—1 
3=1 

m m 

+ 5Z 5Z K'lc*+2 lwfcb«+2-Bm-2 J B, 
3=1 k=l,k^3 

N-2 
m > 

and we are done if Cm is chosen appropriately. • 

We are now in a position to prove the parametric analyticity of the m-th variation of the 

field, u^m\ 

Proof. (Theorem 5.3.2) We utilize an induction in n; at order n — 0 we recall that we must 

solve (5.3.2) with 

m m C\ "" - . I l l y IIV 

3=1 3=1 k=l,k=£j 

7 , m 

+ — — ^ ^xWjdyU^'^iuij} 
3=1 
m m 

+ ~T2~1^ 1^ WjVxWkdyV^ J{Wj,k}, 
j=l k=l,k^j 



h + y 
— Y^ Vxwj • Vxv>™ 1){WJ} 

m m , h + y v^ v ^ w VT (m-2) r - i 
j=l k=l,k^j 
\2 m m 

{h + V) \T" V^ 7̂ w « (m~2) r - i 
- , 2 2 ^ Z_y ^xWj-Vxwkdyu

y
Q '{wjtk}, 

j=l k=l,k^j 

1 m 

- J2 v*w3 • vx4m-1){*i} 
i = i 

m rre 

i = i fe=i,fe^j 
. m m 

h + y v - ^ „ _ „ ..._« (m-2). 
/ l 2 2~Z X] ^xWj -S/xWkdyU^1 '{wj,k}-

j—1 k=l,k^tj 



Using Lemmas 5.1.4&5.1.5we find that 

u. 
(i) 

jsr=+2 

i 2 M A 
U 

( m - 1 ) 

tfs+2 

+ T 2 " Z ^ 2 ^ \wj\c+i\wk\c>+i 
j=l k=l,k^j 

MY + 2 — E 
M 2 y "» ™ 

W ; ^ / , i ~J 1 0 + 2 
( m - 1 ) 
0 

( m - 2 ) 

tf*+2 

#"s 

+ 2 _ ^ 2 J2 K'l̂ +i !WfelCs+2 

j = l k=l,kft 

U, 
( m - 2 ) 
0 

j=l k=l,k^j 

( m - 2 ) 
0 

Hs+2 

Hs+2 

1V1 v - ^ 

M 2 m — 

M 

3=1 

( m - 1 ) 

+ ^ 2 " E E KV+i kfclc+2 
j = l k=l,k^j 

tfs+2 

(m-2) 

^ + 2 

M 2 Y ™ ™ , , , , 

j = l k=l,k^j 

We set 

M 
Km = (3 + 2y)— £ > j | c . + a 

( m - 1 ) 

i/s+2 

m m 

l ^ j lCs+2 1 /̂0 1(73+2 
J = l fc = l,fc^j 
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and the case n — 0 is established. We now assume (5.3.4) for all n < N and use (5.3.2) and 

Lemma 5.1.5 to realize 

u 
(m) 
N 

Hs+2 
<CP 

7(m) 
N Hs 

By our hypotheses on the analyticity of u, u^\ ... u^m x\ Lemma 5.3.5 holds which we now 

use to imply that 

u 
(m) 
N < CeCmKm < DmBm + DmBm > 

Hs+2 I. J 

< KmBm, 

provided we choose 

Bm > max i 2CeCmDm, \2CeCmD. e^m-^mi v "KJzK-Jm*-"m 

• 

Finally, we show the parametric analyticity of G^m\ 
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Proof. (Theorem 5.3.3) By our hypotheses of the analyticity of G, G^, ..., G(m_1) we have 

estimates on the terms Gn, Gn\ ..., Gn~ , which are used later in this proof. We proceed 

inductively in n and from (5.3.3a), we see at order zero that 

1 m 

h • i 

- ] P VxWj • V ^ ™ (a;, 0){WJ} 

. . T O m 

m TO 
( m - 2 ) , 

+ ^ ^ VxWj-S7xwkdyU{™ >(x,0){wj,k}-



We now estimate 

<#%]w Hs+1/2 
< t4m)M)| ffs+3/2 

M 

7=1 
H'+V2 

+ M^2\Wj\Cs+3/2+<, 
J = l 

M 2 m m 

. ( m - 1 ) 

#s+3/2 

+ ~ I ~ S £ l̂ lc»+V2+"lU;fe|c'+3/2+<T 
j = l fe= W j 

X U 
(m-2) I 
0 lifs+3/2 

m m 

+ ^ 2 E E Kic*+3/2+. 4
m"2) 

M '" 

tfs+3/2 

< Km + — ̂ 2 \wj\c.+2 Km-\ + -WE K'lc»+2 Km-i 
n j=l 3=1 

A/f2 m m 

+ - 7 ~ E E Klc*+2Klc*+2#m-2 

m m 
+ M 2 E E kjlCa+2|Wfe|c-+2-^m-2-

j = l k=l,kft 

If we set 

#m = #m + -^ 2_̂  K lcs+2 ^tn-1 + M E K' lc*+2 ^ - 1 

, ,2 m m 

+ ~ r ~ E E l w j l c s + 2 l u ; f e l c s + 2 - ^ m - 2 

j = l k=l,kft 

m m 

l w j l c * + 2 l w f c l c s + 2 - ^ m - 2 , 
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then the case n = 0 is resolved. We now suppose that (5.3.5) holds for n < N and examine 

G(™] in Ha+V2: 

G 
(m) 
N # * + i / 2 

< u(^(x,0) 

M 

# s + 3 / 2 

(m) 
UN-1 HS+1/2 + 2 ^ lwJ'IC"+V2+. 

+ M(|/|Ci+3/2+.|uSS1(x,0) 

G' 
( m - l ) 
W # s + l / 2 

+ 7 ,, |^'IC^+3/2+<T tiir^^o) 

#3+3 /2 

#3+3 /2 

M2 

+ " T - ^ l / l c s + 1 / 2+<r |/'|cs+3/2+<x 

m 

+ I/ICS+J/2+CT 2 ^ \Wj\Cs+3/2+v 

«S^2(x,0) 

+ \f\Cs+3/2+* ] P \wj\c^n+^ u-N-i (x, 0) 

# s + 3 / 2 

# s + 3 / 2 

# s + 3 / 2 

TO TO 

lw i lcs+1/2+<T |wfclcs+3/2+CT 

j = l k=l,ky£j 

U 
(m-2) 

x,0) 
# 3 + 3 / 2 

+ M 2 | / | ^ + 3 / 2 + . < % ( X , 0 ) 
# s + 3 / 2 

u^L^Cx.o) + 2 | / | £5+3/2+0- ^ ^ I tt>j | QS+z/2+a 

i= i 

TO TO 

s+3/2+<7 I W f c l ^ s + 3 / 2 + c r 

#3+3 /2 

^sr2)(x,o) 
# 3 + 3 / 2 



Now, 
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M 
Hs+i/2 - KmBm + -£ {\f\c°+2 KmBv 

m 

J = l 

+ M [ \f\ca+a KmBit1 + E K ! c + ' Km-lBm-1 

M2 

+ -T \f\c-+' KmB%~2 + 2 |/ |CJ+2 E \Wj\c.+a Km-^zl 
j = i 

\wj\c'+2 \wk\cs+2 Km-2Bm_2 
3=1 k=l,kft 

m 

+ M2 ( \f\%.+3 KmB%-2 + 2 | / | c .+ 2 E N c ^ ^m-iB^Z} 

+ E I ! \Wj\Cs+2\Wk\cs+2Km-2B^2 | , 

which can be bounded above by KmB^ provided that 

Bm > max{B0,..., B m - i} , 

and Km is chosen sufficiently large (see the proof of Theorem 5.1.3). • 



C H A P T E R 6 

N U M E R I C A L S I M U L A T I O N OF T H E V A R I A T I O N OF T H E D N O 

In this section, we outline our numerical implementation of the OE and TFE methods for 

simulating the first variation of the DNO. For simplicity, we implement our schemes in the 

d = 2 case. Only a comparison of the first variation is made, as this is the operator directly 

connected with questions about stability. 

6.1 Spectral Collocation Method 

When computing an approximation to the field u(x,y) or its variation u^(x,y), we begin 

by choosing a set of collocation points in our domain. We are required to compute u and its 

variation for the TFE method, since these quantities appear in the expansions of the DNO and 

its variation. Since the problem is x-periodic, we will expand using a Fourier spectral method 

in that direction, and we choose an evenly spaced grid of A^-many x-values. Since the problem 

is not y-periodic, we will expand using a Chebyshev spectral method in that direction, and we 

61 
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h (rnr\ h 
choose an unevenly spaced grid of Chebyshev node y-values, yn = — cos I — 1 — — 0 < n < 

Ny, where Ny is the number of collocation points in the y-direction. The approximations are: 

Nx/2-l Nv 

un(x,y)^un>Nx,Ny(x,y)^ J ] ^ ^ ( f c ) / ) T z ( ^ - ) e t o (6.1.1) 
k=-Nx/2 1=0 

iVx/2-1 Ny 9 4 . / , 

u£\x,y)KUyNx!Ny(x,y):= J ] 5 3 ^ i ) ( A ; J O r J ( - ^ - ) e * t a B (6.1.2) 
k=-Nx/2 1=0 

Nx/2-l 

Gn(x) * Gn>Nx(x) := J ] Gn(A;)efa (6.1.3) 
k=-Nx/2 

Nx/2-l 

G£\X)KG%X(X):= ^ GW(fc)e to, (6.1.4) 
k=-Nx/2 

where 1) is the Z-th Chebyshev polynomial. Our choice for these two different, yet related, 

spectral methods is motivated by Boyd's "Moral Principle 1": When in doubt, use Chebyshev 

polynomials unless the solution is spatially periodic, in which case an ordinary Fourier series 

is better (BoyOl). 

The first two Chebyshev polynomials are given by 

To{y) = i 

Ti(y)=y, 

and further polynomials are defined by the recursion 

Tn(y) = 2yTn.1(y) - Tn_2(y) Vn > 2. 
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Note that each Chebyshev polynomial is of degree n. These functions form a basis for the space 

of continuous functions on the interval y € [—1,1], which can be easily mapped to any finite 

interval (i.e. y 6 [—/i,0]). 

From a practical standpoint we must be able to transform function values to Fourier and 

Chebyshev coefficients. The Discrete Fourier Transform (DFT) accomplishes this for the Fourier 

coefficients, while for the Chebyshev coefficients, we create an Ny x Ny square matrix 7", whose 

columns consist of the first Ny Chebyshev polynomials evaluated on the Chebyshev grid yn = 

cos (mr/(Ny — 1)). Thus, given a vector of Chebyshev coefficients a = {an}, the values of their 

linear combination ^2 anTn are given by: 

f = Ta. 

Similarly, given a set of function values / at the Chebyshev grid points, the coefficients a of the 

Tn that represent / are given by: 

a = T~lf. 

Interestingly, these operations do not require any change of variables to account for the differing 

working intervals [—h, 0] vs. [—1,1]. Moving between those intervals involves only a translation 

and dialation, and the transformation matrix is unaffected. Since the DFT (accelerated by the 

FFT algorithm) algorithm is commonly used and is available in any major scientific computing 

platform, we do not discuss the details here. 
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Derivatives are computed on the Fourier and Chebyshev spectral sides, respectively, while 

multiplcations of functions are computed on the physical side. We move between the spectral 

and physical sides using the FFT algorithm in the ^-direction, and the Chebyshev transform 

algorithm listed above, in the y-direction. Function multiplications are pointwise for the vector 

containing the function values. Differentiation on the Fourier side is performed by simply 

multiplying by ik pointwise. The Chebyshev differentiation routine is somewhat more involved. 

One creates an (Ny — 1) x (Ny — 1) matrix V, derived from recursions between the Chebyshev 

polynomials and their derivatives. This matrix is smaller in dimension than the transformation 

matrix because some information is lost when differentiating a finite linear combination of 

Chebyshev polynomials, as the derivative TQ = 0 and there is no Ny + Is* polynomial to 

contribute a data point. Furthermore, the matrix V is created specifically to operate on the 

interval [—1,1], and so a scale factor of 2/h is introduced to account for the dilation. 

As an example of how these techniques are applied when computing a particular expansion 

order, consider the following term occurring on the right-hand-side of (5.1.2), for n — 1: 

div. ^.faA* 

To compute this quantity, we transform / to the Fourier side, multiply by ik at each wave 

number to differentiate, and invert the transform to obtain S7xf (which is merely dxf when 

d = 1). Similarly, we transform irQ to the Chebyshev side and differentiate algebraically using 

recurrence for the Tn(y), then invert to obtain dyUQ . These two quantities are multiplied 
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together componentwise for d = 2 and then by - ^ in turn. At this point, we transform 

this quantity to the Fourier side for another differentiation in x. The process is repeated in 

calculations of terms of the DNO and its variation using the OE and TFE methods. 

To find un and u i ' in the TFE method, we must solve the PDE governing each expansion 

order. After first Fourier transforming the PDE in the x-direction, we are left with a 2-point 

nonhomogeneous boundary value problem in the j/-direction for each wave number. In order 

to use Chebyshev methods, we consider a generic 2-point BVP motivated by that obtained 

through the TFE method, having the form: 

d2
yuk{y) - k2uk{y) = f{y) for y e [-1,1] 

uk(-l) = A 

flfc(l) = 5 , 
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with constants A, B typically equal to zero except at the zeroth order. The Chebyshev coeffi­

cients {an} are found by solving a nearly tridiagonal system (G077) defined by the following 

equations: 

£ (-l)-an = A 
n=0 

^2 an = B 
n=0 

fc2Cn-2 ;.. , k2en+2 . k2en+4 

-an_2 - (1 + TTT^—rr) an + i—7——rran+2 4 n ( n - l ) n ^ v 2 ( n 2 - l ) ; n 4n(n+l) 

Cn-2fn-2 en+2fn 6n+4/n+2 f 0 . . , . -, 
; r H 7—R r ; r tor 2 < n < iv,, — 1, 

An(n - 1) 2(n2 - 1) 4n(n + 1) • - - y , 

where {fn} are the Chebyshev coefficients of the nonhomogeneous term, CQ — 2, cn = 1 for 

^ > 1) en = 1 for n < Ny, and en = 0 for n > Ny. 

6.2 Exact Solution 

We proceed with our analysis by considering certain conditions under which an exact solu­

tion is 'easy' to find. We evaluate this exact solution on our collocation grid, and compare it 

against the values of the perturbation expansions. As described in previous work, for a given 

g(x), the system (4.3.2) has exact solution given by 

uk(x, y) = cosh (\k\ (h+fx)y + g{x) + h) \ eikx k e r', 
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for the particular choice of Dirichlet data 

ikx £k{x) = cosh(\k\(g(x) + h)e 

From this Dirichlet data, we can contruct exact Neumann data, i.e. the DNO: 

ikx vk{x) = [\k\ sinh(|fc[(<7(x) + h) — ik • Vxg(x) cosh(\k\(g(x) + h)] e 

What is left is to take the variation of each of these objects, in the direction w(x): 

4 1 ) ( x , y ) M = | f c | ( ^ ) ^ x ) s i n h ^ | ( ^ | ^ y + 5(x) + / l ) ) e t o , 

fl ( z ) M = \k\w{x)smh(\k\(g(x) + h)eikx, 

and 

v£\x){w} = [(\k\2w(x) - ik • S7xw(x)) cosh(\k\(g(x) + h) 

-ik • Vxg(x)\k\w(x) sinh(\k\(g(x) + h)} eikx. (6.2.1) 
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These are the exact variation of field, variation of Dirichlet data, and variation of DNO. For our 

numerical investigations, we perform all computations with k = 3. It is important to obtain 

the variation of the Dirichlet data Q because of the following fact: 

*,{GG7)&]} = G(1)(0)[&]M + G(g)[^{w}]. 

Since the Dirichlet data for our exact solution is explicitly ^-dependent we account for it using 

the above "product rule", and obtain: 

G(1)(gm]{w} = v£)-G(g)l&){w}}. 

6.3 Sample Profiles 

We investigate numerical results under a variety of conditions regarding the smoothness 

of the surface shape g(x) = ef(x) and the direction of variation, w{x). For each, we choose 

generic functions from the classes 'smooth', 'rough' (C4, C3), and Lipschitz. The sample surface 

deformations are 

fs(x) = sin(x) 

fr(x) = AxA(2ir - xf + B 

t -H)x + l X 6 [ 0 , T T ) 

h(x) = ; 
( £ ) x - 3 xe[n,2n) 
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and the directions of variation are 

ws(x) — — sin(2a;) 

wr(x) = A'X3(2TT-X)3 + B' 

-il)x + \ xe[0,ir/2) 

( £ ) * - § xe[7r/2,7r) 
, ^ 3 i 

-(f)x + § xefate/2) 

il)x-l X6[37r/2,27r) 

The constants A, A', B, B' are chosen so that the functions are zero-mean and have maximum 

aplitude and slope 0(1). In order to demonstrate effectiveness of the TFE method under the 

broadest circumstances, all nine possible combinations of surface deformation and variation 

directions smoothness are tested. 

6.4 Numerical Results 

Here we show error results of the various computations. Both OE and TFE schemes show 

improvement in accuracy as the number of Taylor orders is increased, until about the 7th order. 

At this point, the OE scheme experiences exponentially growing errors, while the TFE scheme 

errors steadily approach machine-zero, 10~16. This tendency is found in all combinations 

of smoothness of surface deformation and variation direction. However, we do notice that the 

results are moderately worse for OE with the Lipschitz and "rough" profiles - namely, divergence 

occurs for smaller n. The results are from computations with a collocation grid composed of 

Nx = 256 points in the ^-direction, Ny = 64 points in the y-direction, a deformation paramter 
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Plot of Relative L Error versus N : Smoolh Boundary, Smooth Variation 

10 15 20 25 30 35 

Figure 1. Smooth Surface Deformation, Smooth Variation Direction 

value e — 0.3, and a maximum Taylor order of N = 40. In order to minimize the effects of 

aliasing, the infinite Fourier series representation of the functions fs(x), JL(X) , ws(x), WL(X) are 

truncated to include only 40 wave numbers: k £ {-20, - 1 9 , . . . , 18,19}. 
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Plot of Relative L2 Error versus N : Smooth Boundary, Rough Variation 

0 5 (0 15 20 25 30 35 40 

Figure 2. Smooth Surface Deformation, Rough Variation Direction 
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Plot of Relative L.2 Error versus N : Smooth Boundary, Lipschitz Variation 

0 5 10 15 20 25 30 35 40 
N 

Figure 3. Smooth Surface Deformation, Lipschitz Variation Direction 
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Plot of Relative L2 Error versus N : Rough Boundary, Smooth Variation 

Figure 4. Rough Surface Deformation. Smooth Variation Direction 
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Plot of Relative L Error versus N : Rough Boundary, Rough Variation 

Figure 5. Rough Surface Deformation, Rough Variation Direction 
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Plot of Relative L2 Error versus N : Rough Boundary, Lipschitz Variation 

Figure 6. Rough Surface Deformation. Lipschitz Variation Direction 
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Plot of Relative L Error versus N : Lipschitz Boundary, Smooth Variation 
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Figure 7. Lipschitz Surface Deformation, Smooth Variation Direction 
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Plot of Relative L Error versus N : Lipschitz Boundary, Rough Variation 

0 5 10 1S 20 25 30 35 40 

Figure 8. Lipschitz Surface Deformation, Rough Variation Direction 
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Plot of Relative L Error versus N : Lipschitz Boundary, Lipschitz Variation 

0 5 10 15 20 25 30 35 40 
N 

Figure 9. Lipschitz Surface Deformation, Lipschitz Variation Direction 



C H A P T E R 7 

C O N C L U S I O N 

We conclude by providing additional context for this work, as well as mentioning advantages 

and disadvantages of the methods presented here. The use of the TFE methodology in this 

paper follows directly from similar usage by Nicholls k, Reitich (NR01) regarding analyticity of 

the DNO itself. 

7.1 Advantages 

There are several noteworthy advantages to the TFE method. Prior to the change of 

variables, the FBP is faced with the problem of an evolving domain. As t progresses, the fluid 

moves, changing the shape of the free surface. This in turn changes the domain on which the 

problem is posed. Resolving this issue is a practical and theoretical difficulty that is avoided by 

the TFE method. Not only does the change of variables flatten the domain to one of separable 

geometry, but it makes this shape static. 

Furthermore, when creating the series expansion in the OE method, successive terms are 

evaluated at the mean surface level y = 0. However, this is not the true boundary, as g(x) 

is small but nonzero. While characteristic of many perturbation methods, this difficulty is 

overcome with TFE since the boundary of the domain is exactly y = 0. 

Most striking is the nature of the recursions that result from the TFE method. They are of 

a form such that at the n-th order, the only terms present in the defining equations for un are 
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of order n — 1 and n —2. These terms typically contain derivatives of order 1 and 2, respectively, 

and therefore offer considerable advantage over the OE method. This method has derivatives of 

arbitrarily large order as n increases, which poses problems for both theoretical and numerical 

analyses. While the high order derivatives cancel in the OE method and allow some amount 

of convergence, instability in the numerical method will eventually cause exponential growth of 

error. 

7.2 Disadvantages 

The benefit of replacing a time-dependent domain with a flattened seperable geometry is not 

without cost. The surface deformation manifests itself, after the change of variables, through 

the nonhomogeneous terms on the right hand side of the PDE defining the velocity potential. 

Thus, the equations that must be solved at each order are of greatly increased complexity. 

As a general note, while the interest in the DNO is the result of the surface formulation, the 

entire volumetric problem cannot itself be ignored. For example, when using the TFE method 

to compute the DNO and its variation, calls must be made to terms in the expansion of the 

field and its variation. These terms are indeed evaluated at the surface, but they must be 

calculated to some finite (nonzero) depth in order to accurately compute derivates. Methods 

exist (NR05; NR06) that attempt to reduce the computational complexity of this problem by 

imposing a so-called Transparent Boundary condition near the surface which, although it does 

not reduce the problem dimension by one, can greatly reduce the number of collocation points 

required to obtain a desired level of precision. 
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7.3 Future Directions 

The framework which motivates this analysis is that of spectral stability of traveling waves. 

Since the variation of the DNO is present in the evolution equations governing perturbations 

of traveling waves, it is important to understand the spectrum of this operator. This spectrum 

can be approximated numerically by considering the eigenvalues of a finite (yet large) matrix 

representation of the variation of the DNO. Linear operator theory tells us that we can obtain a 

matrix representation of an operator by considering its action on the basis vectors of its domain. 

A future step for research along these directions involves obtaining such an approximation of 

the variation of the DNO, with a corresponding approximation of its spectrum. 
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