
Numer ica l Simulat ion of a Weakly Nonl inear Model

for Water Waves wi th Viscosi ty

BY

MARIA KAKLEAS
B.S. (University of Illinois at Urbana-Champaign) 1999

M.S. (Loyola University of Chicago) 2002

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the draduate College of the
University of Illinois at Chicago. 2009

Chicago. Illinois

UMI Number: 3364609

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3364609

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by

Maria Kakleas

2009

ACKNOWLEDGMENTS

I would like to thank my parents and my advisor for all of their help and support. I could

not complete this thesis without them.

m

T A B L E OF C O N T E N T S

CHAPTER PAGE

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Derivation of Linear Equations 3
1.2.1 Navier-Stokes 3
1.2.2 Potential Flow Theory 5
1.2.3 New Water Wave Equations 6
1.3 Nonlinear Equations with Dissipation 8

2 GOVERNING EQUATIONS 9
2.1 Surface Variables 10
2.2 Analytic Dependence of Surface Integral Operators 13
2.3 Weakly Nonlinear Model Equations 16
2.3.1 Dimensional Model Equations 16
2.3.2 Dimensionless Equations 19
2.4 Two Cases with an Exact Solution 20
2.4.1 Exact Solution: Linear Viscous Waves 20
2.4.2 Exact Solution: Inviscid Travelling Waves 22
2.4.2.1 Solution for re = 1 25
2.4.2.2 Solution for n > 1 27

3 NUMERICAL METHOD A N D RESULTS 31
3.1 Numerical Method 31
3.2 Spatial Convergence 34
3.2.1 Graphical Comparisons Between the Numerical Approxima

tions and Exact Solutions 36
3.3 Temporal Convergence 38
3.3.1 Temporal Order of Accuracy of Solution 38
3.4 Numerical Results 42
3.4.1 Travelling Waves 42
3.4.2 Decay Rate 44
3.4.3 Evolving Inviscid Surface Water Waves Using a Slightly Vis

cous Model 48

4 CONCLUSION 53

APPENDICES 57
Appendix A 58

IV

TABLE OF CONTENTS (Continued)

C H A P T E R PAGE

Appendix B 60
Appendix C 69
Appendix D 85
Appendix E 87
Appendix F 90

C I T E D L I T E R A T U R E 98

VITA 101

v

LIST OF TABLES

TABLE PAGE

I SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL
TO EXACT SOLUTION WITH FIXED TIME-STEP OF 2.45 x 10"3

AND T = 2 36

II SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL
TO EXACT SOLUTION WITH FIXED TIME-STEP OF 2.45 x 10"3

AND T = 10 37

III SPATIAL CONVERGENCE OF WWV2 MODEL WITH v = 0 TO
EXACT SOLUTION OF INVISCID TRAVELLING WAVES WITH
FIXED TIME-STEP OF 2.45 x 1CT3 37

IV TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL
TO EXACT SOLUTION WITH Nx = 64 AND T = 2 40

V TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL
TO EXACT SOLUTION WITH Nx = 64 AND T = 10 40

VI TEMPORAL CONVERGENCE OF WWV2 MODEL WITH v =
0 TO EXACT SOLUTION OF INVISCID TRAVELLING WAVES
WITH Ar

x = 64 41

VII ORDER OF ACCURACY OF SOLUTION. Nx = 64 44

VIII RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SO
LUTIONS OF LINEARIZED WWV2. THESE AMPLITUDES ARE
MEASURED AT TIMES T = 2 AND T = 10 46

IX RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SO
LUTIONS OF WWV2. THESE AMPLITUDES ARE MEASURED
AT TIMES T = 2 AND T = 10 48

VI

LIST OF F I G U R E S

FIGURE PAGE

1 Graphical comparison of numerical approximation using RK-4 scheme
of a) linearized water waves with viscosity to exact linear solution, b)
WWV2 with v = 0 to exact solution of inviscid travelling wave solution,
and c) WWV2 with v = 0.1 to inviscid travelling wave solution 39

2 a) Plot of log(error) vs. log(At) between linearized water wave equations
with viscosity and exact linear solution, b) Plot of log(error) vs. log(At)
between water wave equations with viscosity (WWV2) with v = 0 and
exact inviscid travelling wave solution 43

3 The top two graphs are waterfall plots of travelling waves with different
values of S. The bottom two graphs show the amplitude of rj and £ vs.
the wave speed c 45

4 Rate of decay of the amplitude of simulated solutions of a) linearized
water wave equations with viscosity and b) nonlinear water wave equa
tions with viscosity. These amplitudes were measured with Ar

x = 64. v =
0.1. T = 10, At = 0.0024544 47

Evolution of WWV2 with modulated cosine initial condition (Equation 3.9). A =
Ax
10 0.01, v = 0, T = 10. At = ^ f • In part a) Nx = 64 and in part b) Nx = 128. 49

Evolution of WWV2 with modulated cosine initial condition (Equation 3.9), A =
0.045, T = 10. At = ^ . In part a)Nx = M.v = 2.4 x 10"5 and part b)
Nx = 128. v = 1.095 x 10"4 51

Evolution of WWV2 with modulated cosine initial condition (Equation 3.9), A —
0.05. T = 10. At = £§. In part a)Nx = 64, y = 5.5 x 10~5 and part b)
Nx = 128, v = 1.9365 x 10"4 52

vn

L I S T O F A B B R E V I A T I O N S

a typical amplitude

ap numerical approximation to Fourier coefficient £p

\D\ Fourier multiplier

dp numerical approximation to Fourier coefficient f]p

e,H relative change in energy of full Euler equations

H energy of full Euler equations

N length of interval

Nt number of grid points in time t

Nx number of grid points in space x

p wavenumber

r order of accuracy

5,; fluid domain

T total time of simulation

u vector consisting of r\ and £

X(a)£ 1st partial derivative with respect to x at surface

Y(a)C, Ist partial derivative with respect to y at surface

Z(a)(2nd partial derivative with respect to y at surface

viii

LIST OF ABBREVIATIONS (Continued)

Q

.Nt

,Nt

a amplitude rate of decay

0
V^3

r set of wavenumbers

7 velocity potential in travelling frame

7] shape of free surface

*ex

exact solution of rj

numerical approximation of r;

typical wavelength

constant viscosity

velocity potential at surface

exact solution of £

numerical approximation of £

constant fluid density &p fundamental matrix

if velocity potential

if) shape of free surface in travelling frame

uP \fg\p\

ix

file:///fg/p/

S U M M A R Y

In this thesis we examined Dias. Dyachenko and Zakharov*s equations (DDZ08) in two

spatial dimensions and restated them using differential operators that we derived valid at the

fluid surface. The model derived is both viscous and weakly nonlinear and we refer to it as Water

Waves with Viscosity of order approximation two (WWV2). Next, we found exact solutions

for two cases of WWV2: i) linear viscous waves and it) inviscid travelling waves. We then

sought a numerical solution to WWV2 by applying a Fourier spectral collocation method along

with the RK-4 time-stepping scheme. Upon comparing our numerical scheme to both of the

exact solutions that we found, we extended the RK4 scheme to the full WWV2 model. We

then investigated the following numerically: spatial convergence, temporal convergence, order

of accuracy of the solution, decay rate and relative error in energy. Interestingly, we notice that

inviscid water wave equations can be numerically estimated fairly accurately by our slightly

viscous model without the use of filtering.

x

CHAPTER 1

INTRODUCTION

1.1 Introduction

The free-surface evolution of surface ocean waves is important in a wide array of engineering

applications from wave-structure interactions in deep-sea oil rig design, to the shoaling and

breaking of waves in near-shore regions, to the transport and dispersion of pollutants in lakes,

seas, and oceans. The Euler equations which model this water wave problem (Lam93) are

notoriously difficult for numerical schemes to simulate and the most successful approaches

involve sophisticated integral simulations, subtle quadrature rules, and preconditioned iterative

solution methods accelerated by. e.g. Fast Multiple methods (see (GGD01) and (FD06)). In

this thesis we propose a new model which is not only simple to implement numerically, but also

incorporates a physically motivated dissipation mechanism to overcome some of the difficulties

mentioned above.

The computation of these surface water waves is challenging for several reasons, but the

most important are that the domain of definition of the problem is one of the unknowns,

and that there is no natural dissipation mechanism to damp the growth of spurious, high-

frequency modes. One method for addressing the first difficulty, and reducing the size of

the computational domain by a dimension, is to resort to a surface formulation. One way

to accomplish this is to utilize surface integrals (for a sampling of the vast literature on this

1

2

subject see the survey articles of (Mei78), (Yeu82), (SF82), (TY96), (SZ99) from the Annual

Review of Fluid Mechanics). Another approach, is to use the Hamiltonian surface formulation

of Zakharov (Zak68) which was augmented and simplified by Craig and Sulem (CS93) (see

also closely related work of Watson and West (WW75), West et al (WBJ+87), and Milder

(Mil90)). The contribution of Craig and Sulem to the formulation was the introduction of the

Dirichlet-Neumann operator (DNO)- in this context a surface operator which inputs surface

Dirichlet data for Laplace's equation inside the fluid domain and produces surface Neumann

data- together with a perturbative method for its calculation. In this thesis, we will use this

perturbative approach on the surface operators to derive a weakly nonlinear model for the water

wave problem.

Recently, Dias, Dyachenko, and Zakharov (DDZ08) have generalized the water wave problem

to incorporate weak surface viscosity effects. While their derivation is not completely rigorous

(e.g., they consider irrotational flows though viscosity will certainly destroy this property), it

is correct in the linear wave limit, and they argue that it is a viable model in the case of small

viscosity. The reason for putting forward a viscous water wave model is that it is significantly

simpler to numerically simulate and mathematically analyze than the full Navier-Stokes equa

tions posed on a moving domain. In this work we take a slightly different point of view to Dias,

Dyachenko and Zakharov's (DDZ's) (DDZ08) model: It provides a physically-motivated mech

anism for adding dissipation to the water wave equations. This is important since Craig and

Sulem's (CS93) implementation of Zakharov's equations for inviscid flows required significant

filtering in order to stabilize their computations. Our new contribution is to argue that it is

3

more natural to consider the DDZ model with very small viscosity for stabilized, inviscid water

wave simulations. However, we further simplify the DDZ equations to include only linear and

quadratic contributions thereby constituting a weakly nonlinear model for viscous water waves.

This approach has the advantage of capturing nearly all of the essential linear nonlinear effects

seen in mildly nonlinear water waves, while being considerably simpler to implement that the

full DDZ equations.

In the remainder of this introductory chapter, we give a brief overview of the method that

Dias. Dyachenko and Zakharov (DDZ08) used to derive equations into which we would like to

introduce damping.

1.2 Derivation of Linear Equations

1.2.1 Navier-Stokes

In this thesis, we seek a numerical approximation of weakly damped, free-surface flows in

two spacial dimensions. Specifically, we are interested in finding a model of the equations

that Dias. Dyachenko and Zakharov (DDZ08) proposed for free-surface flows that are weakly

damped. Their goal was to find a new system of dissipative equations stated only in terms of

the velocity potential. Using their notation, the Navier-Stokes equations are

dt~v + {~v • V)~v = — V p + z/A"v +~g (1.1a)
P

V - ~ v = 0 (1.1b)

4

where ~v(x, z. t) := (u. w) is the velocity field, p :— p(x, z, t) is the pressure, p is the fluid density

and assumed to be constant, ~g := (0, —g) is the gravitational vector and v is the kinematic

viscosity which is also assumed constant.

The first boundary condition is the kinematic condition which states that fluid particles at

the surface remain at the surface

dtr\ + u(x,rj,t)dxrj = w(x,rj,t), :i.2)

where rj(x, t) is the shape of the free surface. The second boundary condition is the dynamic

condition. Here, forces on both sides of the fluid's surface z = r](x, t) must be equal so that

— (j> — Po)~n + r • it = 0, (1.3)

where the viscous part of the stress tensor is

Z = pv
' 2dxu dzu + dxw

dzu + dxw 2dzw

and the normal to the free surface is

V7! + (dxV)'

-dxrj

I »)

5

Since they considered deep water flows, there is no need for a kinematic condition at infinite

depth: instead they enforced

\lt\ —> 0 as z —> —oo. (1.4)

1.2.2 Potential Flow Theory

In studying water waves in potential flow theory (Ach90) and (Lam93), fluid flow is consid

ered irrotational and viscous terms are ignored. The velocity potential ip is defined as V = V<f

so that the condition for incompressibility in terms of the velocity potential is

A^ = 0. (1.5)

Expressing the kinematic boundary condition (Equation 1.2) in terms of the velocity potential

Dias. Dyachenko and Zakharov found that

dti] + dxipdxr) = dzLp at z = i](x, t). (1.6)

The dynamic condition (Equation 1.3) on the free surface simplifies top(a;. rj. t) = po- They then

replaced the velocity field V by the velocity potential V<p in the Navier-Stokes conservation of

momentum equation, integrated it and used p(x, r], t) = po at the surface to get

dtp + -\Vp\2 + gz = Q> at z = rj(x,t). (1.7)

6

Expressing the boundary condition (Equation 1.4) of an infinitely deep layer in terms of the

velocity potential, they found

|V^| -> 0 as z -> -oo . (1.8)

1.2.3 New Water Wave Equations

Dias, Dyachenko and Zakharov (DDZ08) wanted to express the Navier-Stokes equations

using only the potential part of the velocity. To do this, they first expressed the velocity field

~v̂ as the sum of a scalar potential and a vector potential using Helmholtz's decomposition:

~v = Vip + V x A, where A is a vector stream function.

The velocity using the Helmholtz decomposition is

u(x. z. t) = dxip - dzAy

w(x, z, t) = dz^p + dxAy.

They assumed a time-factor of e~1^1 and a space-factor of elkx for wavelength of ^ so that the

solutions for tp and Ay are of the form

p(x.zJ) = p0e
t{kx^t)e^z

Ay(x.z,t) = A0e
i{kx-wt)e

7

where

2 7 2 • w

v

Laplace's equation Aip = 0 and the boundary condition for infinite depth, | W | —> 0 as z —> —oc.

remain unaffected. Their main analysis comes from the kinematic and dynamic boundary

conditions. For very small viscosity, they found that the vortical component of velocity is much

less than the potential component of velocity. More precisely, they showed that

T- i T< 1
I Pol

and that

dx.Ay\z=o = 2vd%rj at 2 = 0.

The linearized kinematic condition (Equation 1.6) at z = 0 is

dtrj = w{x,0J).

Separating it into its potential and vortical components, they arrived at

dtr) = dz<p + dxAy

at z = 0. Additionally, they found that

dxAy\z=0 = 2vdlr)

8

at the surface so that the kinematic boundary condition can be written as

dtr] = dz<p + 2vd2
xr) at z = 0 (1.10)

and the dynamic condition (Equation 1.7) as

dtif + gi] = ~2vd2
zip at 2 = 0. (1.11)

1.3 Nonlinear Equations with Dissipation

By combining these linear dissipitative equations (Equation 1.10). (Equation 1.11) with the

nonlinear inviscid equations (Equation 1.6),(Equation 1.7). Dias. Dyachenko and Zakharov pro

pose that a good model is:

Av? = 0 (1.12a)

|Vp| - • 0 z -> -oo (1.12b)

dtf] = dzLp + 2z/Ar/ - Vr/ • V^ z = rj(x, y, t) (1.12c)

dt(p = -gv-2u8^(p--\Vip\2 z = r](x.y,t). (1.12d)

CHAPTER 2

GOVERNING EQUATIONS

Consider the Euler equations which model the free-surface evolution of a deep, two-dimensional

ideal fluid that is irrotational, incompressible and inviscid (Lam93). We define the fluid domain

Sv:={(x,y)£R.xR\y<r)(x,t)},

where x and y respectively denote space in the horizontal and vertical directions, t is time

and r](x, t) measures the deviation of the fluid surface from y = 0. The well-known governing

equations of an ideal fluid under the influence of gravity (Lam93) are

in Sv (2.1a)

y - -oc (2.1b)

y = r](x,t) (2.1c)

y = j](x.t), (2.Id)

where g is the gravitational constant, and y? is the velocity potential. This must supplemented

with initial conditions:

i](x, 0) = T]O(X), <p(x, y. 0) = ipo{x, y), (2.2)

dyif —> 0

dtrj = dytp - {dxr))(dxy)

1 1

9

10

though, from the theory of elliptic partial differential equations (Eva98), the boundary data

tp(x, i](x, 0). 0) suffices. Additionally, lateral boundary conditions must be specified and for this

we make the classical choice of periodicity:

7](x + 2ir,t) = 7](x.t), ip(x + 2n,y,t) = <p(x.y,t). (2.3)

As we saw in Chapter 1, Dias, Dyachenko and Zakharov (DDZ08) proposed a modification

of (Equation 2.1) to take into account some weak effects of surface viscosity:

A<p = 0 in Sv (2.4a)

dyLp -> 0 y -> -oo (2.4b)

dtrj = dy^> + 2vdlr) - {dxrj)(dxip) y = rj{x. t) (2.4c)

dt<p = -gV - 2vc$<p - ^(dx^)2 - \{dyrf y = V(x, t), (2.4d)

together with initial and boundary conditions. We point out that in this modification, only

(Equation 2.1c) and (Equation 2.Id) are changed, each with the addition of a linear term scaled

by the viscosity v.

2.1 Surface Variables

Zakharov (Zak68) showed that the Euler equations are a Hamiltonian system in the variables

r\ and i^l,,; if the velocity potential 93 is known at the surface, then ip can be reconstructed

11

everywhere. To make this more explicit we use the approach of Craig and Sulem (CS93) and

let

S(x,t):=ip(x,ri(x,t),t), (2.5)

so that £ is the velocity potential at the free surface. From (Equation 2.4), we can see that it

is necessary to produce first and second order derivatives in order to find solutions for ij(x, t)

and £(a\ t) at the surface. With this in mind we define the following maps: Given a solution to

the prototype elliptic equation

Acp = 0 y < a(x) (2.6a)

dy(p ^ 0 y -> - o o (2.6b)

<? = (V = <T(X), (2.6C)

we can compute

X(*)[{] :=dx0(x,a), Y(a)[C]:=dy0(x,a). Z{a)[C] := d2
y0(x,a), (2.7a)

where W'X0")!̂] denotes a surface operator that is similar to the Dirichlet-Neumann operator

(CS93) and (NR01). The brackets indicate that W depends on (linearly whereas the parenthe

ses indicate nonlinear dependence on a. In other words. X(CT)[C] is another way of expressing

the first partial derivative with respect to x, Y(a)[Q as the first partial derivative with respect

to y and Z{a){Q as the second partial derivative with respect to y.

12

Restating the kinematic condition and the dynamic condition in terms of these operators

we have that (Equation 2.4c) is

dtV = YivM + 2"d$ri - (d^X^M

and (Equation 2.4d) becomes

dti = (dyip)(dtri) + dtip

= Y(V)lt}(dtr]) + dtV

= Y(r,)[£\{Y(r,M + 2v&xr] - dxr,X(r,)[S}} - gr, - 2vZ(r,M] - \(X(rM})2 - ±(Y(r,Mf

= -gr, - 2uZ(r,m + \{Y(r,M)2 ~ \{X{r,M? + 2v(%r,)Y(r,)[Z] - (dxv)X(r,)[£\Y(r,)[£\

for a = r, and £ = £. The surface formulation of the water wave equations with viscosity now

reads:

dtV = Y(V)[€\ + 21/9*77 - (dxr,)X(r,)[£] (2.9a)

dtt = -gr, - 2vZ(r,M + ^(Y(r,)[£])2 - \(X(r,M)'2

+ 2v(%r,)Y(r,)[Z] - {dxr,)X(r,)[Z]Y{r,)[£\. (2.9b)

13

2.2 Analytic Dependence of Surface Integral Operators

From Nicholls and Reitich (NR01) it can be shown that the surface operators X,Y and Z

depend analytically on the surface deformation a(x) provided that a has 2 classical derivatives.

Setting a(x) = ef(x), we have

X(<r) = X(ef) = Y,Xn(f)en, (2.10a)
n=0

oo

Y(a) = Y(,f) = ^2Yn(f)e'\ (2.10b)
n=0
oc

Z(a) = Z(ef) = J2Zn(fy\ (2.10c)

We are interested in investigating a set of weakly nonlinear model equations that are accurate to

quadratic order. Our goal is to turn (Equation 2.9) into a weakly nonlinear model by expressing

it only in terms of surface operators XQ.XI.YQ, Y\,ZQ and Z\.

We seek expressions for the surface operators Xo, X\,Yo, Yy, ZQ and Z\ by implementing the

Method of Operator Expansions proposed by Milder (Mil91) and Craig and Sulem (CS93). We

use

Vp(x,y) = evpx+lply. peZ (2.11)

as the basis for our solution since we know that it satisfies the prototype elliptic problem

(Equation 2.6) and is 2TT periodic in x. WTe also define £p = {pv at the surface.

14

We derive YQ and Y\ from Y. and the other operators Xo,-X\, Z0 and Z\ can be found from

X and Z similarly. To find Yj and Yi we first apply the definition of Y to ipp at the surface

where y = a and obtain

Y(a)[eipx+]p]a} = |p|e ipE+|p | ff. (2.12)

Implementing a perturbative approach to find our solution, we set a(x) = ef(x) and use the

Taylor series for the exponential to find

X>(/y
VM=0

U\P\)\n eipx J2 -^r-e-
n=0

TV.

(f\p\y\n \p\eipx J2 —-r-e-
i i = 0

TV
(2.13)

Expanding the sum, we obtain

(y0 + Yi(/)e + y 2 (/) e 2 + ...)

Equating at O(l) we find

eipx{l + f\p\e + (/ ' P l) -2

2!
6̂ + ...} \p\e,px{l+f\p\ e+(-^e2+...}.

(2.14)

y0(/)[e ,px] = \p\eip:' ipx

and, using Fourier multiplier notation D := \dx. this is

Yo(f)[evpx] = | i ? | e ^ .

Recalling that an I? function can be expressed by its Fourier series:

, J C 1 /*27T

C(x) = £ CPeipr, 4 = 2 - / t(x)e-ipxdx
p=-oc ^°

we conclude that

YOVMX)] = \D\ax).

Comparing O(e) terms in (Equation 2.14). we find that

Yl(f)[e^]+Y0(f)[f\p\e'n = f\p\2eipx.

Using Fourier multiplier notation this is the same as

Yi{f)[elpx] + Y0{f)[f\D\eipx) = f\D\2eipx.

Again, representing a generic function (by its Fourier series we see that

Yi(f)iax)} = f\D\2C(x) - Y0(f)[f\D\ax)}.

Applying the definition of Yb (Equation 2.15) we obtain

Y1(f)iax)} = f\D\2ax)-\D\[f\D\((x)].

file:///D/ax

16

In a similar way. we can find expressions for the remaining operators XQ.XI.ZQ and Z\.

The 0(1) and 0(e) surface operators are summarized as follows:

X0(f)[C] = iDC = dx((2.16a)

y0(/)[C] = I^IC (2.16b)

Zo(f)[Q = \D\2<; (2.16c)

*i(/)[C] = f(iD)\D\(- (iD)[f\D\C] (2.16d)

¥,(/)[(] = f\D\2C-\D\[f\D\C] (2.16e)

Zi(f)[Q = f\D\\-\D\2[f\D\C,}. (2.16f)

Noticing that the operators X0.Yb and Z0 do not depend on / , we suppress the notation

for / for these operators from this point forward.

2.3 Weakly Nonlinear Model Equations

In this section we derive our wreakly nonlinear model and put it in dimensionless form.

2.3.1 Dimensional Model Equations

We are now ready to form the weakly nonlinear model using the D.D.Z. equations (Equation 2.9)

and the surface operators just derived. We describe our model as weakly nonlinear because we

consider small amplitude waves (rj, £ small) and thus truncate (Equation 2.9) after quadratic

17

order. Assuming that r\ and £ are small and of the same order, we set r\ = (fj and £ = e£ in

(Equation 2.9) and obtain

at»7 e = y(e^)[e|] + 2 ^ r] e - dxfjX(efj)[e£] e

d*f e = -gf)e- 2i/Z(e»j)[e|] + i(y(e»))[e|])2 - i(X(e7J)[ef])2

+ 2i /9^y(e^)[e |] c _ ^X(e^) [e |] r (e^) [e |] 6.

This becomes

dtfj e = Y, Ynm£\ e"+1 + 2^2f; e - dxfj £ Xri(f/)[|] e"+2

n=0 n=0
OO OO OC'

$ | 6 = -gf; £ - 21/ 2 Z(r))[|] e"+1 + i £(y(>?)[|] e"+1)2 - \ £ (X(*/) [|] f " + 1) 2

n = 0 77=0 77=0

+ 2vdtf1YjY{m (
n+2 - dxj,Ctx{fi)[l] e n + 1) (f > (r j) [|] fn+1) e.

77=0 « = 0 77=0

Expanding the series to include differential operators of 0(1) and 0(e) only, we can see that

dtf] e = {Y0[€\ e + YxirM] ^} + 2ud2f, e - dxfj{X0[S] e2 + X^fj)^} e"} + 0(e'5)

dti € = -gfje- 2u{Z0[£] e + Z^fjM e2} + ±(Y0[£] e + YMlt] e2)2 - \(X0[£] e + X1(fj)[i] ^f

+ 2vdxfj{Y0[£] e + Y^f,)^} e2} e - dxfj(X0[£] e + X,(77) [|] e2)(Y0[£] e + Y1m£] e2) e + 0(e3).

18

Upon simplifying and dividing by e we get that

dtV = YQ{£] + YyifjM e + 2v%fj - (dxfj)X0[£] e + 0(e2)

dti = -gfj - 2vZ0[i] - 2vZ1{fj)[£] e

+ \(Y0[i])2 e - i (X 0 [|]) 2 e + 2vd2
xfjY0[i] < + 0(e2).

Dropping terms of 0(e2), setting e = 1 and renaming fj = r; and £ = £, our model becomes

% , = Y0[£] + n(r;)K] + 2 ^ 7 7 - (dxTi)X0[£\

dti = -<W - 21/ZoK] - 2«/Zi(»7)[e] + ^(loK])2 - ^ o K]) 2 + 2^7/yoK]-

Inserting the expressions derived for the O(l) and O(e) surface operators, we arrive at the

model

dtr] = \D\£ + 2v&xr\ + rj\D\'2i - \D\[r)\D\S] - {dxrj){dxZ) (2.22a)

dti = ~m - 2v\D\\ - 2v71\D\ii + 2u\D\2[i1\D\i\ + ^i\D\02 ~ \{dxt)
2 + 2v(d2

x71)\D\i

(2.22b)

which we refer to as WWV2 for Water Waves with Viscosity of order approximation 2.

2.3.2 Dimensionless Equations

Changing WWV2 into dimensionless form we apply the following scalings

x = Xx', y = Xy'', t=J—t', rj = arf, £ = ayfgXZ,.' (2.23)

where A is a typical wavelength which we set to 2TT and a is a typical amplitude. We also scale

the differential operators in the following manner

1 ~ ^2 _ 1 »2 a . 1
 a Q 19

A - * - , - s A 2 - x ' , - y - A - B ' , v ^ - V A w ' ,

A5 D\ = {\D\>, \D\2 = ^(\D\2)', \Df = ±(\D\3)'.
A1

1
A2'

In dimensionless form we have that

\fgX6 A L J

and

2v $,£' = - , / - " (| £> |2)?+
gW

20

Letting a := f. [3 := Y— and renaming r(= 77, £' = £ the model in dimensionless form can

be expressed as

dtri = \D\£ + 2/3c^ + a {rj\D\2^ - \D\[r,\D\i) - (dxrj)(dxO} (2.25a)

dti = -TJ- 2/3\D\2S + <* {-2HD*Z + 2l3\D\2[i1\D\£] + \{\D\i? ~ \{dxtf + 20d2
xi1\D\^ .

(2.25b)

In our numerical experiments we set X = a (i.e., o = 1) so that the lengths and amplitude are

on the same scale, while varying the nondimensional viscosity (3.

2.4 Two Cases with an Exact Solution

In this section we present two cases of exact solutions: i) linear water waves with viscosity

and ii) nonlinear travelling waves without viscosity.

2.4.1 Exact Solution: Linear Viscous Waves

The linearized water wave equations with viscosity from WWV2 (Equation 2.22) are

dtri=\D\Z+2i/d%ri (2.26a)

di£ = -gn-2v\D\2i. (2.26b)

21

Using 27r-periodic boundary conditions, generic initial conditions i]o(x) and £o(x). and the

Fourier series

»/(*,*)= J2 f,pe
ip\ i{X.t)= J2 ip^x-

p=—oo p=—oo

we find that the Fourier transform of (Equation 2.26) is

dt
M

VP

2v{ip)2 \p\ \ L \ VP

\ -g -2v\p\2) \iPJ
--: Ar.

M
VP

W
(2.27)

For p ^ O , the corresponding eigenvalues and eigenvectors for (Equation 2.27) are

A+ = -2vp + iy/g\p\, v+ = c+

A_ = —2up2 - i\/g\p\, ?'- = c.

\p\

\ W9\P\ J

\P\

-iV9\P\

The fundamental matrix of the homogeneous system number (Equation 2.27) is

/
q>p(t) := e 'V = e~2vvH

cos(Upt) jj£- mi(iOpt)

\ - f i ^ H ^ cos(cjpt) y

(2.28)

22

where u)p
2 = g\p\. The solution for p ^ 0 is

-2up2t
coa(ujpt)

Up s'm(ujpt)

IPI

lplsinH*) \ / fjp(0)

cos(ujpt) J { 4(0) J

and for p = 0

W I
\ &(*) j

\
HO)

\ -gm(o) + to(o) J

(2.29)

(2.30)

Please refer to § A for the general solution to the inhomogeneous linear problem.

2.4.2 Exact Solution: Inviscid Travelling Waves

In this section, we seek an exact solution to WWV2 (Equation 2.22) in the case of travelling-

waves without viscosity. Beginning with the inviscid WWV2 equations,

dtr, = |D|e + V\D\2Z - \D\[ri\D\{\ - (dxri)(dxO

dtt = -gii + \(\D\02-\(dxO'2

(2.31a)

(2.31b)

we convert to a travelling frame moving with speed c by letting

r](x.t) = Hz:t)

ax.t) = 7(zJ),

where z = x + ct.

23

The inviscid equations become

dtw + cdzyj = |D|7 + ip\D\'2f - |D|[^|D|7] - (dzip){dz'y)

dtl + ca27 = -<?</> + ^(|^|7)2 - i (a2 7)2 .

Renaming the variables r/ = ii'- £ = 7, a* = z and seeking steady state solutions we would like to

solve

cdxJi=\D\£,+r}\D\2£,-\D\[T)\D\Z]-(dxrj)(dx£) (2.34a)

cdx£ = -gr, + \{\D\i? - \{d£?- (2.34b)

We express these governing equations in matrix form

Bu = R (2.35)

24

where.

cdx \D\
B =

V g cdx

u =

R =

(\
7]

W

V

<l\D\H-\D\l<i\D\t]-(&<))(&()

urn)2 - hm>2
)

Since we are considering the case of steady state, we are interested in investigating a system

with low amplitude waves and fluid flow with small velocity potential. We also note that the

wave speed varies horizontally but not vertically. Seeking solutions to Bu = R, we expand 77. £

and c as a function of wave height 5 in the Taylor series

n = l

u = u{x\ 8) = Y^ un(x)Sn = \~]

n=l

C(<J)= CO + $ > „ * " •

30 ' r/n(.x-)

\ Ux) j
8",

C = C(

n = l

(2.37a)

(2.37b)

25

2.4.2.1 Solution for n = 1

Using the expansion for c(5) we can express (Equation 2.35) Bu = R as

BQu = R (2.38)

where,

Bn

c0dx -\D\

y g c0dx J

(\

t
R

V\D\2!, - \DMD\Z] - (dxri)(dxO - (c - co)dxri

k\D\02-kdx£)2-(c-co)dxt

\

Comparing 0(5) terms we And that

B0ui = 0. (2.40)

Taking the Fourier transform we obtain

Bo.pUi.p = 0. (2.41)

file:///DMD/Z

26

where Bo,,
i icop -\p\

. Note that the first subscript in u\,p refers to the perturbation

y g icop J
order of 8 while the second subscript refers to the wavenumber p.

Case 1: n = l,p = ±po,p ^ 0

Non-trivial solutions to (Equation 2.41) can be found by taking the determinant of B0,p (or the

opposite of it):

A(co,p) = (cop)2 -g\p\.

Now, given a specific wavenumber po 6 T — {0}, where T is a set of wavenumbers, then one can

find a CQ such that A(CQ,PO) = 0; that is,

Co
\/g\po\

Po
(2.42)

Using this CQ, one can find that

Uhpo = K

i icopo ,

Wl,-po — —U po — " l ,po- (2.43)

Case 2: n = l ,p = 0

We notice that p = 0 enforces the condition that the velocity potential at the surface satisfies

£(x)dx = 0 (2.44)

which we now assume. Since 7)1.0 = 0, £1.0 is free, we choose £1.0 = 0 and

(o\
Ul,0

Case 3: n = l,p / ±po

Since BQ,P is not singular, then f)i.p = £iiP = 0,

Ul.p =

2.4.2.2 Solution for n > 1

(2

vv

M
i°;

In this section we seek a solution for n > 1. To do this we insert the expansions for u

c in i?ou = -R. We can then expand R = R(S) = XmLi -R«^" where

/

-Rn =
\

so that

-BoUn = Rn = Cn-1
dxVi

where

28

Rl = ̂ 2{Vn-,\D\% - IDI^-zlDIO] - (dxr]n.,)(d^,)} - J ^ c , . ,) ^ ,) , (2.48a)
1=1 1=2

Ri = £{^(|£>Kn-/)(l W) " \(dxU-l)mi)} - Y,{Cn-l)mi)- (2.48b)

1=1 1=2

Taking the Fourier transform of (Equation 2.48a), we can see that

(» . . \
Bo.pUn ,p un .p

R n.p
Cn-lS-

y Rn.p j

:p,±po

(w)m,p

^ {iP)il.p y

(2.49)

where 8p.q is the Kronecker delta function. Notice that the terms involving cn^\ appear only

at wavenumber p = ±po- There are three cases to consider:

Case 1: n > l , p ^ ±Po,P 7̂ 0

In this case BQ.P is non-singular, so we can multiply both sides of

Bo.pUn, ,p un ,p

1 vn .p

y Rn.p J

by B0p to find

1
^n.p —

g\p\ - {COP)'

icopRH.p + \p\Ri,p

y -gRl.p + icopRi.p j

(2.50)

Case 2: n > l.p = 0

29

When p = 0 we find that (Equation 2.49) simplifies to B% 0 = 0 for all n and

gf)n,0 = R$n.O-

We can see that Rv = 0 from the following computation:

RO^TtiDft-lDMDltl-idxTiHdxa

= -V%S-\D\[ri\D\S]-(dxr))(dxZ)

= -dx(ridxO-\D\[ri\D\$]

where we have used \Dr = D2 = (—id. d£. Since the operators dx and \D\ map generic

functions to functions with zeroth Fourier coefficient equal to zero, we have HPn 0 as claimed.

Regarding £n.o we simply set it to zero which enforces (Equation 2.44). Thus,

(3Lo \
Un.O a

0

(2.51)

V °)
Case 3: n > l,p = ±po

In this case, Bo.p0 is singular but we can choose c„_i to ensure a solution. We find that

Cn-l
gRnlPo - icopoRJyo

•po

(2.52)

30

However, we are left with the issue of uniqueness and follow the approach of Stokes (see(NR05))

for the full water problem, that r\n is L2—orthogonal to r/i. As r/i is only supported by wavenum-

bers p = ±po, this is easily enforced by setting fjn,po = 0 which results in £n,Po = _ ' Ln .p(i £0_
ICoPt)

so that

Un.po —
-ipocn-iZi,p

JCopo /

(2.53)

We remark that the case p = —po is addressed by setting un^ -Po ln,p0 •

C H A P T E R 3

N U M E R I C A L M E T H O D A N D RESULTS

In this chapter we discuss the methods that were used to find numerical approximations for

the shape of the free-surface and velocity potential. We show that our numerical approximations

of 7] and £ appear to converge both in space and in time to the exact solutions that we found

in Chapter 2 for the cases of i) linear viscous waves and ii) inviscid travelling waves. We then

extend our numerical scheme to the full WWV2 model for small viscosities. We discuss the

order of accuracy of our solution and decay rate of our model. Lastly, we compare our model

to that of Craig and Sulem (CS93) and calculate the relative error in energy for trials with

different values of wave amplitude, low viscosity and number of grid points. All of the code was

programmed in MATLAB and is included in Appendices B — F for reference.

3.1 Numerical Method

Our numerical scheme approximates solutions of (Equation 2.22) by using the Discrete

Fourier Transform (DFT) accelerated by the Fast Fourier Transform (FFT) algorithm in the

spatial variable and the Runge-Kutta scheme of Order Four (RK4) for time-stepping (G077)

(CHQZ88). According to Trefethen (TreOO), the formula for the DFT is

Nx

i = i

31

32

and for the inverse DFT is

Nx

Vj = -^ E <?**>% (3.2)

where,

v = DFT,

p = wavenumbers =—4f + 1. •••• 4p.

iVj; = number of gridpoints,

h = ^r1 = spacing of grid points in x.

j = index for spatial points = 1, 2. ...Nx, and

i' = inverse DFT.

Our problem unknowns {r](x,t),£(x,t)} are approximated by {/q^x(x,t).(,fl':r(x,t)} so that

r ^ (a U) : = £ d p (t) e^ . £**(*,*):=] T ap(t)e**, (3.3)

where iVy represents the number of grid points in the spatial variable x and {dp(t), ap(t)} are

approximations to the Fourier coefficients {f)p{t). £P(t)}. We enforce WWV2 (Equation 2.22) at

equally spaced gridpoints Xj = ^ p for j = 0,1,2,.... Nx — 1.

33

Derivatives are computed by utilizing (Equation 3.3), the DFT and the FFT algorithm. The

Fourier multiplier \D\ is computed in a similar manner except that multiplication on the Fourier

is replaced by |p|. Note that products on the physical side are computed using the inverse DFT

and pointwise multiplication. All of this specifies a system of 2 x Nx ordinary differential

equations whose approximate solution we denote as {d^*(t), a^*(t)} using the Runge-Kutta of

Order Four (RK4) scheme for time-stepping.

It is well-known that the RK4 scheme can be stated as follows:

At
Wi+\ = Wi + —-(si + 2s2 + 2s-s + S4). (3.4a)

b

Si=f(ti,Wi). (3.4b)

At At
S2 = f(U + — , Wi + — s i) , (3.4c)

At At
S'i = f(U + ~.wi + —s2). (3.4d)

s4 = f(U + At. Wi + At • s3), (3.4e)

where.

w = the function we would like to solve for,

At = step size in time,

si = slope at left end of interval.

.§2 = slope at midpoint that uses si.

53 = another slope at the midpoint that uses s2.

54 = approximate slope at right end of interval that implements .S3, and

34

i = 0.1,2,3.. . . .

3.2 Spatial Convergence

Before presenting our numerical results, we verify our codes by displaying convergence of

our numerically generated solutions to the exact solutions discussed earlier: linear viscous waves

from § 2.4.1 and nonlinear inviscid travelling water waves from § 2.4.2. Note that in all of the

following simulations we have set g = 1 and have chosen waves with 2-7T periodicity so that u

can be viewed as the non-dimensional quantity (5 from § 2.3.2. In this section we focus on the

spatial convergence (with a fixed temporal discretization) while in the next section we examine

the temporal discretization (with a fixed spatial resolution). To accomplish this, consider the

following quantities:

en(Nx., Nt. T) := \V
N*-N'(; T) - Vex(-, T)\L~ (3.5a)

e^N^.Nt.T) := \f*-Nt (•, T) - &*(-, T)\L~. (3.5b)

where

T = total time of simulation.

Nx = number of grid point in space x,

Nt = number of grid points in time t,

{riNx-Nt{x,t).^Nj-Nt(x.t)} = numerical approximations of r\ and £„

{Vex(x,t),$,ex(x,t)} = exact solutions of r\ and £,

35

{eri(Nx^Nt, T), e^(Nx,,Nt. T)} = error between numerical approximation and exact solution of

r\ and £ estimated by the L^-norm.

The initial conditions used for the exact solution of linear water waves (Equation 2.30) are

Vo{x) = — cos(a,-), £0(2:) = ^ sin(a;). (3.6)

From Table I we can see that in the case of linear viscous waves with a fixed time-step of

At = 2.45 x 10~3 and simulation time of T = 2, ev and ê are of the order of 10~14 as Nx —> 64

for viscosities v = 0,0.01 and 0.1. Similarly, in Table II we can see that for T = 10, ev and ê

approach the order of 10 - 1 3 as Nx —> 64 for v = 0 and 0.01 and these errors approach the order

of 10_L4 when v = 0.1. In both Table I and Table II, the linearized water wave equations with

viscosity (Equation 2.26) with initial conditions (Equation 3.6) are compared against the exact

solution (Equation 2.29). (Equation 2.30).

We further test the spatial convergence of our time-stepping algorithm by comparing it to

the approximations of the travelling wave solutions in the inviscid case and in our simulations

we set M = 20 and let S = 0.01. We approximate the solutions by

M

u" := £
n = i

Vn\X) M

<f\ cM :=co + X > 5 n . (3.7)
n = l

In Table III we can see that in the case of nonlinear inviscid travelling waves. ev and ê

(Equation 3.5) approach the order of 10 - 1 5 as Nx —> 64 for T = 2 and the order of 10~14

36

V

0

0.01

0.1

Nx

16
32
64
16
32
64
16
32
64

e„
1.66601 x 10"
1.03899 x 10"
5.89095 x 10"
1.59005 x 10"
9.98009 x 10"
5.68504 x 10"
1.21801 x 10-
7.69267 x 10"
4.36456 x 10"

- i : i

-12

-14

-11

-13

-14

- l i

-13

-14

ei
1.66601 x 10 - 1 1

1.03898 x 10~12

5.90188 x 10"14

1.59005 x 10 - 1 1

9.97957 x 10~13

5.68027 x 10"14

1.21800 x 1 0 _ u

7.69260 x 10"-13

4.36456 x 10~14

TABLE I

SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT SOLUTION
WITH FIXED TIME-STEP OF 2.45 x 10"3 AND T = 2.

as Nx —> 64. Here, the WWV2 model (Equation 2.22) with v = 0 is compared to the exact so

lution and initial conditions of travelling wave solutions derived in § 2.4.2 with a fixed time-step

of At = 2.45 x 10^3.

3.2.1 Graphical Comparisons Between the Numerical Approximations and Exact

Solutions.

As can be seen in Figure 1 parts a) and b), our numerical approximations of r\ and £ are very

close to the exact solutions for both the cases of i) viscous linear waves and ii) inviscid nonlinear

waves. Part a) graphically portrays the numerical scheme and the exact solution for the case of

linear waves with viscosity of 0.1 whereas the graph for part b) depicts our numerical scheme

against the exact solution for inviscid travelling waves. In part c) the plots differ because the

travelling wave is not an exact solution. In all three cases Nx = 64. T — 10. At = 0.0024544.

37

V

0

0.01

0.1

Nx

16
32
64
16
32
64
16
32
64

e^

8.20554 x 10-
5.22295 x 10"
1.86613 x 10"
6.78144 x 10"
4.26790 x 10"
1.53369 x 10"
1.24571 x 10"
7.79649 x 10"
3.51351 x 10"

- l i

-12

-13

-11

-12

-13

-11

-13

-14

ee
8.20558 x 10 - 1 1

5.22374 x 10"12

1.86566 x 10"13

6.78143 x 10"11

4.26798 x 10~12

1.53350 x 10 - 1 3

1.24572 x 10 - 1 1

7.79680 x 10 - 1 3

3.51837 x 10"14

TABLE II

SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT SOLUTION
WITH FIXED TIME-STEP OF 2.45 x 10"3 AND T = 10.

T

2

10

Nx

16
32
64
16
32
64

6jy

1.72501 x 10"
1.09069 x 10"
6.21920 x 10"
8.22048 x 10"
5.24426 x 10"
1.87376 x 10"

-12

-13

-15

-12

-13

-14

e<
1.75794 x 10"
1.09654 x 10"
6.24397 x 10"
8.26373 x 10"
5.26383 x 10"
1.88053 x 10"

-12

-13

-15

-12

-13

-14

TABLE III

SPATIAL CONVERGENCE OF WWV2 MODEL WITH v = 0 TO EXACT SOLUTION OF
INVISCID TRAVELLING WAVES WITH FIXED TIME-STEP OF 2.45 x 10"3.

38

Please refer to § B for the code used to calculate the graph in part a) and § C for parts b) and

c).

3.3 Temporal Convergence

We now investigate the temporal rate of convergence of our scheme by fixing the number of

spatial collocation points at Nx = 64 and examining the quantities {e?/.e^}. Carrying this out

with the exact solution of linear water waves (Equation 2.29) and (Equation 2.30) with initial

conditions (Equation 3.6) for final times of T = 2 and T = 10 we have the data presented in

Tables IV and V respectively. The results are presented for v = 0.0.01.0.1.

From Table IV we can see that as At —> 2.45 x 10_3,e^ and e^ are of order 10 - 1 4 for

v = 0,0.01 and 0.1 with T = 2. In Table V, as At -> 2.45 x 10"3 with T = 10, ev and e5 are of

order 10~13 for v = 0,0.01 and of order 10~14 for v = 0.1. Table VI indicates that in the case of

nonlinear inviscid travelling waves. et] and ê are of order 10~15 and 10~14 as At —+ 2.45 x 10 - 3

for simulation times of T = 2 and T = 10 respectively.

3.3.1 Temporal Order of Accuracy of Solution

We define the order of accuracy of a solution as the number r such that

erroritn) = 0({At)r). (3.8)

39

N=64 , n u = 0 . 1 , T=10 , d t=0 .0024544 N=64. n u = 0 . 1 . T=10 , d t=0.0024544

- •-"-'• -- xi rk4
xi exact

Nx = 64, v = 0.1, T = 10, dt = 0.0024544

N=64 , nu=0 , T = 10, d t=0 .0024544
O.015 i

—© eta rk4
eta tw exact

(b) Nx = 64, v = 0. T = 10, dt = 0.0024544

(c) Nx = 64. v = 0.1. T = 10. dt = 0.0024544

Figure 1. Graphical comparison of numerical approximation using RK-4 scheme of a)
linearized water waves with viscosity to exact linear solution, b) WWV2 with v = 0 to exact
solution of inviscid travelling wave solution, and c) WWV2 with v = 0.1 to inviscid travelling

wave solution.

40

V

0

0.01

0.1

At
9.82 x 10"3

4.91 x 10"3

2.45 x 10"3

9.82 x 10"3

4.91 x 10"3

2.45 x 10"3

9.82 x 10"3

4.91 x 10"3

2.45 x 10"3

e„
1.67 x 10""
1.04 x 10"12

5.89 x 10"14

1.60 x 1 0 " n

9.99 x 10"13

5.69 x 10"14

1.23 x 1 0 " n

7.69 x 10"13

4.36 x 10"14

e«
1.67 x 10"11

1.04 x 10"12

5.90 x 10"14

1.60 x 10~ n

9.99 x 10"13

5.68 x 10"14

1.23 x 10"1]

7.69 x 10 - 1 3

4.36 x 10^14

TABLE IV

TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT
SOLUTION WITH Nx = 64 AND T = 2.

V

0

0.01

0.1

At
9.82 x 10"3

4.91 x 10"3

2.45 x 10-3

9.82 x 10"3

4.91 x 10"3

2.45 x 10~3

9.82 x 10^3

4.91 x 10"3

2.45 x 10 - 3

ev

8.33 x 10"11

5.22 x 10"12

1.87 x 10"13

6.83 x 10"11

4.28 x 10"12

1.53 x 10"13

1.25 x 10"11

7.80 x 10"13

3.51 x 10"14

ei
8.33 x 10"11

5.22 x 10"12

1.87 x 10"14

6.83 x 10"11

4.28 x 10"12

1.53 x 10"13

1.25 x 1 0 " u

7.80 x 10"13

3.51 x 10"14

TABLE V

TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT
SOLUTION WITH Nx = 64 AND T = 10.

41

T

2

10

At
9.82 x 10 - 3

4.91 x 1(T3

2.45 x 1(T3

9.82 x 10"3

4.91 x 10~3

2.45 x 1(T3

e„
1.75 x 1(T12

1.09 x 10"13

6.22 x 10~15

8.36 x 10~12

5.24 x 10 - 1 3

1.87 x 10-14

e?
1.76 x 10~12

1.10 x 10"13

6.24 x 1(T15

8.39 x HT12

5.26 x 10"13

1.88 x 10~14

TABLE VI

TEMPORAL CONVERGENCE OF WWV2 MODEL WITH v = 0 TO EXACT SOLUTION
OF INVISCID TRAVELLING WAVES WITH Nx = 64.

In this case, the error in (Equation 3.8) is the supremum between the numerical approximation

and one of the exact solutions that we found for r; and £. The order of accuracy r was found

by setting

error « C(At)r,

taking the logs of both sides

log (error) ~ log(C) + rlog(At)

and completing a least-squares fit of log(error) vs. log(At) to find the slope. Well-known

theory tells us that r should be 4.

As seen in Table VII. the order of accuracy rn and rj is about 4.07 for both the linearized

and the inviscid WWV2 models when compared to their corresponding exact solutions with

42

T = 2. For a simulation time of T = 10 we notice that rn and r^ is about 4.4 for ^ = 0 and 0.01

in the linear case and for v = 0 in WWV2. Interestingly, we notice that the order of accuracy

improved to 4.23 from about 4.40 when the viscosity was increased from v = 0.01 to v = 0.1

in the linear model with T = 10. All of the simulations described in Table VII were taken with

Nx = 64. In the case of inviscid travelling waves, M = 20 and 5 = 0.01 in (Equation 3.7).

We can also see the order of accuracy r graphically in Figure 2 as it is the slope of log(error)

vs. log(At). In part a) the log(error) vs. the log(At) was plotted comparing the linearized

water wave model to the exact solution with v = 0.1. Similarly, in part b) the log(error) vs.

the log(At) was plotted comparing the water waves model (WWV2) with v = 0 and the exact

solution of inviscid travelling waves. Both of these plots were executed for a simulation time of

T = 10 and Nx = 64. Again, a good order of accuracy for the RK4 scheme is 4 or close to it.

In part a) rv and r$ was about 4.23 and in part b) rv and r% was about 4.4.

3.4 Numerical Results

We now present numerical results which illustrate the properties of the solutions to our

model equations (Equation 2.22) and the capabilities of our numerical simulation strategy. In

particular, we display the decay rates of our solutions to the nonlinear WWV2 equations and

then show how our numerical scheme can be used to stably compute inviscid surface water

waves.

3.4.1 Travelling Waves

We created some plots to investigate the behavior of our inviscid travelling waves model.

Referring to the top two plots in Figure 3, we graphed both r\ and £ vs. x and 6. With M = 20

43

log(dt) log(dt)

(a) Log(error) vs. Log(dt) for Linear Wate r Waves with Viscosity.

N=64, nu=0, T=10, r =4.4009

log(dt) log(dt)

(b) Log(error) vs. Log(dt) for Inviscid Wate r Waves.

Figure 2. a) Plot of log(error) vs. log(Ai) between linearized water wave equations with
viscosity and exact linear solution, b) Plot of log(error) vs. log(At) between water wave
equations with viscosity (WWV2) with v = 0 and exact inviscid travelling wave solution.

44

Linearized WWV2 Compared to Exact Linear Solution or
WWV2 Compared to Exact Inviscid Travelling Waves Solution v T rn r^

Linear 0 2 4.07184 4.07051
Linear 0 10 4.40103 4.40121
Linear 0.01 2 4.06946 4.07006
Linear 0.01 10 4.39915 4.39924
Linear 0.1 2 4.07145 4.07145
Linear 0.1 10 4.23492 4.23392
WWV2 0 2 4.06728 4.06862
WWV2 0 10 4.40097 4.40093

TABLE VII

ORDER OF ACCURACY OF SOLUTION. Nx = 64.

and perturbation parameter 8 in (Equation 3.7) ranging from 0 to 0.05 in increments of 0.001,

we can see that the waveform starts out flat for 8 = 0 but gains amplitude and becomes more

nonlinear as 8 increases to a value of 0.05 as expected. The bottom two graphs in Figure 3

show the amplitude of rj and £ against the wave speed c. These graphs indicate that the wave

amplitude increases as the wave speed increases. Please refer to § D for the code used to create

these graphs.

3.4.2 Decay Rate

We note that from the exact solution, linear solutions (Equation 2.29) should decay like

e-2vtp a^ wavenumber p. We have numerically simulated such solutions using initial conditions

(Equation 3.6) so that p = 1 and report experimental decays in Table VIII for both T = 2 and

T = 10. We see that within a very small tolerance (e.g. 10~5) the theoretical decay is realized.

45

-0.1
0.05

0.05,

0

-0.05
0.05

10

delta 0 0 delta 0 0

0.06

0.04

•Q3

0.02

1.001 1.001

Figure 3. The top two graphs are waterfall plots of travelling waves with different values of 5.
The bottom two graphs show the amplitude of 77 and £ vs. the wave speed c.

46

T

2

10

V

0
0.01

0.1
0
0.01

0.1

an

-3.33 x 10~4

-2.03 x 10"2

-2.00 x 10"1

-1.78 x 10~5

-2.00 x 10"2

-2.00 x 10_1

dj

-3.33 x 10~4

-2.03 x 10"2

-2.00 x 10_1

-1.78 x 10~5

-2.00 x 10"2

-2.00 x 10_1

TABLE VIII

RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SOLUTIONS OF
LINEARIZED WWV2. THESE AMPLITUDES ARE MEASURED AT TIMES T = 2 AND

T = 10.

Additionally, we have evolved the travelling waveforms. (Equation 3.7). in the nonlinear WWV2

equations with initial conditions provided by the travelling wave solutions derived in § 2.4.2

and report in Table IX our results for T = 2 and T = 10. We see how strong the effects of

viscosity can be as these nonlinear solutions also decay at roughly the rate expected for linear

solutions.

In Figure 4 the rate of decay can be seen graphically as the slope of the log(amplitude) vs.

time. These plots were created with Nx = 64, i> = 0.1.T = 10, At = 0.0024544. The plot in

part a) was created using simulated solutions to the linearized wave equations with viscosity

(Equation 2.26) whereas the plot in part b) was created using the nonlinear WWV2 equations

(Equation 2.22). In part a) the rate of decay is —0.20002 for both r\ and £ and in part b) the

rate of decay is -0.20036 for r\ and -0.20002 for £. Please refer to § B for the code used to

create Figure 4 part a) and § C for part b).

47

-2.5

£
-3.5

-4.5

(a) log(amplitude) vs. t, linearized model

-4.5

(b) log(amplitude) vs. t. nonlinear model

Figure 4. Rate of decay of the amplitude of simulated solutions of a) linearized water wave
equations with viscosity and b) nonlinear water wave equations with viscosity. These

amplitudes were measured with Nx = 64, v = 0.1. T = 10. At = 0.0024544.

48

T

2

10

V

0
0.01
0.1
0
0.01
0.1

an

-3.39 x 10"4

-2.05 x 10^2

-2.01 x 10"1

-1.78 x 10"5

-2.01 x 10~2

-2.00 x 10"1

d j

-1.51 x 10"4

-2.01 x 10~2

-2.00 x 10"1

-8.80 x 10"6

-2.00 x 10~2

-2.00 x 10_ 1

TABLE IX

RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SOLUTIONS OF WWV2.
THESE AMPLITUDES ARE MEASURED AT TIMES T = 2 AND T = 10.

3.4.3 Evolving Inviscid Surface Water Waves Using a Slightly Viscous Model

The results shown in § 3.4.2 also suggest a new strategy for evolving inviscid surface water

waves in a stable way. As noted in the publication (CS93). the computation of these waves

is quite delicate and filtering is typically required to ensure that the solutions do not blow

up. The reason for this is the energy conserving nature of the equations implying no natural

energy dissipation mechanism coupled to very strong nonlinearities. Of course our new set

of equations circumvent this first challenge with the introduction of viscous dissipation terms.

Thus, it seems natural to consider the possibility of approximating inviscid water waves by

solving slightly viscous equations.

We have carried out this program for the modulated cosine profile

r]o(x) = Acos(10x)e~l{x-^)2, £Q(x) = 0. (3.9)

49

proposed by Craig and Sulem (CS93). To study the evolution of this profile we have chosen

the same physical parameter values as those given in (CS93), namely L = 2TT,A = 0.01 and

final time T = 10. In all of these simulations. Aa; = ^-. For this configuration we were able

to satisfactorily evolve the initial conditions (Equation 3.9) without the need of any filtering or

viscosity v — 0, for Nx = 64.128 and At = -^. Please refer to Figure 5.

(a) Nx = 64. v = 0 (b) Nx = 128. v = 0

Figure 5. Evolution of WWV2 with modulated cosine initial condition
(Equation 3.9), A = 0.01,u = 0,T = 10,At = ^ . In part a) Nx = 64 and in part b) Nx = 128.

However, if A is increased to a value of A = 0.045 we found that with a moderate number

of Fourier collocation points, Nx = 64. and a reasonable time-step, Af = ^# , we were unable

50

to resolve a believable solution. To make these ideas more precise we note that from (CS93),

the energy of the full Euler equations (Equation 2.1) is

H = \J(ZG(r]m+gr1
2)dx, (3.10)

where G{-q)[£\ = Vip • N,V<p = (X{ri)[&Y{ri)[£\),N = (- 9 ^ , 1) and G(r])[^} is the DNO

(CS93).

The inviscid version of our model equations is essentially (Equation 2.1) truncated after

quadratic contributions. Thus it has energy given by (Equation 3.10) truncated after quadratic

order, i.e.,

H'2 = lj SWS+^m-idrtfXoW+gtfdx. (3.11)

To measure the integrity of our solutions we measure the relative change of this energy from

the initial to the final time:

. H2(t = T)-H2(t = 0)
6H = HM=0) ' (3 ' 1 2)

In the case mentioned above (A = 0.045, Nx = 64) this relative error is approximately 0.39.

while this quantity is unchanged if the time step is reduced by a factor of 10. If the number of

collocation points is increased to Nx = 128. then for both At = - ^ and At = -^, the solution

blows up after t = 2. By contrast, if we select v = 2Ax 10~5 with Nx = 64 and At = ^ , then

we can produce a solution which not only looks quite reasonable, but also produces a relative

51

energy error of e# « 7 x 10 - 3 , under 1%. If we select ^ = 1.095 x 10~4 with Nx = 128 and

At = - j ^ , then we can compute the solution depicted in Figure 6 b) with e n ~ 8 x 10~2.

(a) Nx = 64. v = 2.4 x 1CT5 (b) A^ = 128. v = 1.095 x 10"4

Figure 6. Evolution of WWV2 with modulated cosine initial condition
(Equation 3.9), A = 0.045, T = 10. At = ~ . In part a) ^ = 64. v = 2.4 x 10~5 and part b)

Nx = 128,i/ = 1.095 x 10"4.

In a similar fashion we also investigated the slightly more nonlinear case A = 0.05. Here,

regardless of our choice of Nx = 64 or 128 or our time-step At = ^ or ~ . we were unable to

obtain a finite solution at T = 10 using our code with v = 0. In this case, filtering of some sort

is required. However, if we set v = 5.5 x 10~5 then, again, we found a physically reasonable

solution with a relative energy error of en ~ 6 x 10~2, just over 6%. If we refine to Nx = 128

with At = ^ then with v = 1.9356 x 10~4 we find a solution with e# « 0.38. While not really

a very satisfactory solution, it at least provides a profile without finite-time blow-up.

(a) N.x = 64. v = 5.5 x 1CTB (b) Nx = 128. v = 1.9365 x 1CT4

Figure 7. Evolution of WWV2 with modulated cosine initial condition
(Equation 3.9), A = 0.05, T = 10. At = ^ . In part a)Nx = 64, v = 5.5 x 10 - 5 and part b)

Nx = 128.i/ = 1.9365 x 10~4.

While these wave simulations with small viscous effects were quite successful, the values

of v chosen were quite specific. In general we found that values much larger than the ones

chosen resulted in solutions which were overly damped and had energies tending to zero quite

rapidly. On the other hand, if v were chosen much smaller than those reported above, oftentimes

solutions would blow up significantly before T = 10. However, we do view this as an interesting

alternative to other filtering techniques which, themselves, can be quite delicate and subtle.

CHAPTER 4

CONCLUSION

We took Dias. Dyachenko and Zakharov's equations [DDZ08] with small viscosity effects

and restated them in terms of the boundary quantities advocated by Zakharov [Zak68] for a

Hamiltonian formulation of the water wave problem, namely the surface shape r; and surface

velocity potential ip.

Upon analyzing the relevant surface integral operators (related to the Dirichlet-Neumann

Operator), we used their analyticity properties to derive a new, second order weakly nonlinear

model with small viscosity:

dtr, = |D|£ + 2ud2
xV + V\D\2S - \D\[V\D\£\ - (dxV)(dxO (4.1a)

dtt = -gr, - 2v\D\2t, - 2^|£>|3£ + 2^|JD|2[??|r>|£] + ~(\D\0'2 - \(dxt,)
2 + 2u(d2r])\D\^

(4.1b)

which we refer to as Water Waves with Viscosity of order approximation two (WWV2).

We found exact solutions for two cases of WWV2: i) viscous linear waves and ii) inviscid

travelling waves. The exact solution for viscous linear waves is

vP(t) -2up2t
cos(a;pt) |p| sin(u)pt) t] ^ (fb(0) X

" ? y ' cos(a;pt)
(4.2)

^ 4(0) J

53

54

where LOP
2 — g\p\. In the case that p — 0. we have that

HO)

-gHO)+io(o) J
(4.3)

In the case of inviscid travelling waves we have that the solution for perturbation order n = 1

is

Ul.pQ — K

' IPol ^
Ul.-po = -Ul. Po-

for p = ±p0 with

(4.4)

Co
y/a\Po\

Po
(4.5)

and we obtain the trivial solution for all other p. For perturbation orders n > 1 the solution

falls into one of following these 3 cases:

Case 1: n > l.p / ±Po,p ^ 0

" n , i
1

g\p\ - (COP)'-

icopRl.p + \p\Ri,p

i -gR'n.p + icopki.p J

(4.6)

55

Case 2: n > l.p = 0

Un.O =

I *Lo \

v ° ;
(4.7)

Case 3: n > l,p = ±po

ln,po

I

V
Rri.p0-ipOCn-l£l.p0

icopo J

(4.8)

We then outlined a Fourier spectral collocation method for their numerical simulation com

bined with the RK-4 time-stepping scheme. Furthermore, we investigated our schemes by

performing various numerical tests.

In studying spatial convergence we observed errors ev and ê of the order of 10_13,10~14

with v = 0,0.01,0.1 as Nx —> 64 in the linear model for T = 2,10. In the case of inviscid

nonlinear waves we saw that the error approached the order of 10~15 and 10~ u for T = 2 and

T = 10 respectively as N.x —> 64.

Next, we investigated temporal convergence or our numerical approximation. We saw that

as At -> 2.45 x 10 - 3 the error was of the order of 10^14 for T = 2 and 10"1 3 .10 - 1 4 for T = 10

with v = 0,0.01,0.1 in the linearized water wave equations. The error measured between

approximations of WWV2 with v = 0 to the exact solution of inviscid travelling solution was

of the order of 10~15 and 10"14 as Af -> 2.45 x 10"3 for T = 2 and T = 10 respectively.

56

Our results also show that the order of accuracy was close to the expected value of 4 and

that the rate of decay was near the expected value of 2v for both r\ and £.

We then examined the numerical scheme with a modulated cosine initial condition while

varying the amplitude and small values of viscosity. These results were then compared to that

of Craig and Sulem (CS93). To validate our findings we also calculated the relative error in

energy. Our results show that our scheme is quite stable and we propose that inviscid equations

can sometimes be approximated numerically without filtering using our nonlinear schemes for

small viscosities.

APPENDICES

57

Appendix A

GENERAL SOLUTION TO I N H O M O G E N E O U S LINEAR P R O B L E M

The inhomogeneous linear problem relative to (Equation 2.26) is

dtr} = \D\S + 2ud%ri + J(x,t)

dt£ = -grj - 2is\D\2£ + K(x. t).

(A.la)

(A.lb)

Upon taking its Fourier transform, we get

dt
M
\ip)

(2v(ip)2 \p\

y -g -2u\p\2)

VP

+
\kp)

J±n
VP

W
+

\kPj
(A.2)

Using the method of variation of parameters we are able to find the general solution for

(Equation A.2). That is, for

dtXp(t) = ApXp{t)+Fp{t), (A.3)

where

Xp(t)
' %{t) ^

K ipit) j
, Fp(t) =

f JP(t) ^

K KP(t) j
(A.4)

59

A p p e n d i x A (Continued)

and Ap is part of the fundamental matrix in (Equation 2.28), the general solution is

Xp(t) = %{t)C + %{t) j%-1{s)Fp{s)ds1 (A.5)

where,

$ p = the fundamental matrix stated in (Equation 2.11)

' * (0) *
c

\ 4(0) j
(

$p-] = e
2vp *

cos(u>pt) - W ^ M

ujpsin(ujpt) , ,x
y [p] COS{ulpt)

which leads to the general solution of

= e
-2up2t

!'
JO

cos(u>pt)fjp(0) + g sm(LOpt)ip(0)

V ~ R sin(u)pt)?)p(0) + cos{u)pt)£p(0)J

(
-2vp2(t-s)

JEL cos(cV(t - s))Jp{s) + g sin(u;p(i - s))Kp(s)

V " b [s i u H (* ~ S))MS) + cos(wp(t - s))A'p(s)^

ds. (A.6)

60

A p p e n d i x B

C O D E C O M P A R I N G R K - 4 S C H E M E TO E X A C T S O L U T I O N OF

V I S C O U S L I N E A R W A T E R WAVES

All of the programming was done on in MATLAB R2007a. The computer processor speed

was 2.2 GHz. the speed for the memory was 667 MHz, the memory for the system was 3.0 G and

the operating system used was Windows Vista. Five programs were used for the linear water

waves. The main algorithm is lin.m which is supplemented by functions exactsoln.m. feta.m,

fksi.m and plotapprox.m. Function exactsoln.m calculates the exact linear solution found in

§ 2.4.1. The function plotapprox.m plots the numerical approximation for ?/ and £ against the

exact solution. Functions feta.m and fksi.m calculate the right hand side of (Equation 2.29)

and (Equation 2.30).

B. l Algorithm for Viscous Linear Water Waves: lin.m

tti 0/ 0/ o / o / <y 0/ <y <y o / oy oy a>/ 0/ oy oy oy 0 / oy 0/ oy oy oy oy oy oy oy oy oy oy 0/ oy oy 0 / <y 0 / <y <y
/o /© A A A A /o A

°/0 lin.m °/0

% RK4 scheme applied to linear model °/0

0 / 0 / 0 / 0 / 0 y 0 / 0 / 0 / 07 0 / 0 / 0 / 0/ 0/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0/ 0 / oy oy oy oy oy oy oy oy oy oy oy oy
/o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /0 /o /o /o /o /o /o /o /o /o /o 10 In In In /o /o /o /o /o

clear all; elf; N = 6 4 ; g = l ; n u = 0 . 1 ; L = 2*pi; h = L/N; x =

h*(l:N); p = (2*pi/L)* [0:N/2-1,-N/2:-1]; pmax = (2*pi/L)*N/2;

'/, Use different values of dt to produce figure(2) in this program.

61

A p p e n d i x B (Continued)

% dt = [h/10, h /20 , h / 4 0] ;

°/0 Use a small value for dt to output f i g u r e (l) and f igure(3) in t h i s program.

dt = h/40; dtmax = 2*nu*pmax~2/(nu~2*pmax~4 + g*pmax)

for m = l : l e n g t h (d t)

t = 0;

dtm = dt(m);

A = 0.1; D = 0.1; etaO = A*cos(x); ksiO = D*sin(x); v_eta = etaO;

v_ksi = ksiO; tmax = 10.0; tplot =0.1; plotgap =

round(tplot/dtm); dtm = tplot/plotgap; nplots = round(tmax/tplot);

data_eta = [v_eta; zeros(nplots,N)]; data_ksi = [v_ksi;

zeros(nplots.N)]; amp_eta = norm(v_eta,inf); amp_ksi =

norm(v_ksi,inf); tdata = t;

for j = l:nplots

for n = 1:plotgap

t = t + dtm;

kl_e ta = f e t a (v_e t a , v_ks i , g , nu ,L ,p) ;

k l_ksi = fk s i (v_e t a ,v_ks i , g , nu ,L ,p) ;

k2_eta = fe ta (v_e ta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi ,g,nu,L,p);

62

A p p e n d i x B (C o n t i n u e d)

k2_ks i = f k s i (v _ e t a + 0 . 5 * d t m * k l _ e t a , v _ k s i + 0 . 5 * d t m * k l _ k s i , g , n u , L , p) ;

k 3 _ e t a = f e t a (v _ e t a + 0 .5*d tm*k2_e t a ,v_ks i + 0 . 5 * d t m * k 2 _ k s i , g , n u , L , p) ;

k3_ks i = f k s i (v _ e t a + 0 .5*d tm*k2_e t a , v_ks i + 0 . 5 * d t m * k 2 _ k s i , g , n u , L , p) ;

k 4 _ e t a = f e t a (v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p) ;

k4_ks i = f k s i (v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p) ;

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6;

slope.ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6;

v_eta_new = v_eta + slope_eta;

v_ksi_new = v_ksi + slope_ksi;

v _ e t a = v_eta_new;

v_ks i = v_ksi_new;

end

d a t a _ e t a (j , :) = v _ e t a ;

d a t a _ k s i (j , :) = v _ k s i ;

amp_eta = [amp_eta; n o r m (v _ e t a , i n f)] ;

amp_ksi = [amp_ksi; n o r m (v _ k s i , i n f)] ;

t d a t a = [t d a t a ; t] ;

Appendix B (Continued)

[ex_eta,ex_ksi] = exactsoln(etaO,ksiO,t,g,nu,p);

exact_eta(j , :) = ex_eta;

exact_ksi(j , :) = ex_ksi;

end

error_eta(m) = norm(v_eta - ex_eta, inf); error_ksi(m) =

norm(v_ksi - ex_ksi, inf);

% Plotting figure(l): comparison between numerical and exact solution

figure(l); for j=l:nplots

plotapprox(x,data_eta(j,:),data_ksi(j,:),exact_eta(j,:),

exact_ksi(j,:),N,nu,tmax,dt);

fprintf ('[j=°/,d] t=°/„g |err_eta|=%g | err_ksi|=°/„g\n' , j ,tdata(j) , . . .

norm(data_eta(j,:)-exact_eta(j,:),inf),...

norm(data_ksi(j,:)-exact_ksi(j,:),inf),N);

end

end

% Calculating and plotting figure(2): log(error) vs. log(dt)

Appendix B (Continued)

cc_eta = polyfit(log(dt), log(error_eta), 1); cc_ksi =

polyfit(log(dt), log(error_ksi), 1);

fprintf(>cc_eta(l) = 7,g cc_eta(2) = °/.g cc_ksi(l) = °/,g cc_ksi(2) = °/.g\n',

cc_eta(l),cc_eta(2),cc_ksi(l),cc_ksi(2));

figure(2); subplot(l,2,l); loglog(dt, error_eta, '*')

xlabeK'log(dt) ') ylabel('log(eta_e_r_r)')

title(['N=',num2str(N),', nu=',num2str(nu),', T=',num2str(tmax),',

r_e_t_a=',num2str(cc_eta(l))]) subplot(1,2,2); loglog(dt,

error_ksi, '*') xlabel('log(dt)') ylabel('log(xi_e_r_r)')

title(['N=',num2str(N),', nu=',num2str(nu),', T=',num2str(tmax),',

r_x_i=',num2str(cc_ksi(l))]) hold on;

°L Calculating decay rate alpha and plotting figure (3): log (amplitude) vs.

cc2_eta = polyfit(tdata, log(amp_eta), 1); cc2_ksi =

polyfit(tdata, log(amp_ksi), 1);

fprintf('alpha_eta = °/0g\n', cc2_eta(l));

fprintf('alpha_ksi = %g\n', cc2_ksi(l));

figure(3); subplot(1,2,1) plot(tdata, log(amp_eta),'*')

xlabel('t') ylabel('log(eta_a_m_p)') title([,N=',num2str(N),',

nu=',num2str(nu),', T=',num2str(tmax), ',

alpha_e_t_a=',num2str(cc2_eta(l))]) subplot(1,2,2) plot(tdata,

65

A p p e n d i x B (Continued)

log(amp_ks i) , ' * ') x l a b e l (' t ') y label (' log(xi_a_m_p) ')

t i t l e ([' N = ' , n u m 2 s t r (N) , ' , n u =) , m i m 2 s t r (n u) , ' , T= ' ,num2str (tmax) , ' ,

a lpha_k_s_i= ' ,num2st r (cc2_ksi (l))])

B.2 Function exactsoln.m

0 / 0 / 0 / 01 0/ 0 / 0 / 0 10 / 91 0 / 0 / 0 j 0/ 0/

/o /o /o /o /o /o /o /o /o A /o /o /o /o /o

% exactsoln.m %

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ HI 0/ 0/ 0/ 0/
ID h /o /o /o /o /o /o /o /o /o /o /o /o /e

function [eta.ksi] = exactsoln(etaO,ksiO,t,g,nu,p);

nx = length(p); etahat = 0*etaO; ksihat = 0*ksiO; etaOhat =

fft(etaO); ksiOhat = fft(ksiO);

for j=l:nx

pp = p(j);

omega = sqrt(g*abs(pp));

if(abs(pp)<le-14)

all = 1.0;

al2 = 0.0;

a21 = -g*t;

66

Appendix B (Continued)

a22 = 1.0;

ee = 1.0;

else

all = cos(omega*t);

al2 = (abs(pp)/omega)*sin(omega*t);

a21 = -(omega/abs(pp))*sin(omega*t);

a22 = cos(omega*t);

ee = exp(-2*nu*abs(pp)~2*t);

end

e t a h a t (j) = ee*(a l l*e taOha t (j)+a l2*ks i0ha t (j)) ;

k s i h a t (j) = ee*(a21*eta0hat(j)+a22*ksi0hat(j)) ;

end

e t a = r e a l (i f f t (e t a h a t)) ; ks i = r e a l (i f f t (k s i h a t)) ;

B.3 Funct ion feta.m

HI HI HI 0 / HI HI HI HI HI HI

/H IH ID /O IH /O /O /O U /O

°/„ f e t a . m "L

HI HI HI HI HI HI HI HI HI HI

IH IH IH IH IH IH IH /O /o /O

67

A p p e n d i x B (C o n t i n u e d)

f u n c t i o n [fe] = f e t a (v _ e t a , v _ k s i , g , n u , L , p)

f e l = r e a l (i f f t (a b s (p) . * f f t (v _ k s i))) ; fe2 = 2*nu* rea l (i f f t (

(- p . ~ 2) . * f f t (v _ e t a))) ; f e = f e l + f e 2 ;

B . 4 Funct ion fksi .m

oy o / oy oy oy oy oy oy oy oy
/o /o /o /o /o /o /o /o to /o

% f k s i . m %

0/ 0/ 0 / 0/ 0/ 0 / 0/ 0 / 0/ 0/
/o /o /o /o /o /o /o /o /o /o

f u n c t i o n [fk] = f k s i (v _ e t a , v _ k s i , g , n u , L , p)

f k l = - g * v _ e t a ; fk2 = - 2 * n u * r e a l (i f f t ((a b s (p) . ~ 2) . * f f t (v _ k s i))

) ; fk = f k l + fk2 ;

B . 5 Func t ion p l o t a p p r o x . m

0 / 0/ 0/ 01 01 0/ 0/ 01 Oj 01 0/ 0/ 0/ 01 0/ 01
to /o /o /o /o /o /o /o /o A /o to to to to to

% plotapprox.m %

o/ oy o / o/ o / o / o / o/ o/ o / o / oy oy oy oy oy
/o to to to to to lo to to to to to to to to to

f u n c t i o n [] = p l o t a p p r o x (x , e t a 5 k s i , e t a _ e x , k s i _ e x , N , n u , t m a x , d t)

Appendix B (Continued)

subplot(1,2,1); p l o t (x , e t a , ' b - o ' , x , e t a _ e x , ' r ') ; x l abe l (' x ') ;

y l a b e l (' e t a ') ; t i t le(['N=' ,num2str(N), ' , nu=',num2str(nu),',

T=',num2str(tmax),', dt=' num2str(dt)]) legend('eta r k 4 ' , ' e t a

exac t ') ;

subplot (1,2,2) ; plot (x.ksi , ' g -o ' , x ,k s i_ex , ' c ') ; x l abe l (' x ') ;

y l a b e l (' x i ') ; t i t le(['N=' ,num2str(N), ' , nu=',num2str(nu), ' ,

T=',num2str(tmax),', dt=' num2str(dt)]) legend('xi r k 4 ' , ' x i

exac t ') ; pause(O.l);

69

A p p e n d i x C

C O D E C O M P A R I N G R K - 4 S C H E M E F O R W W V 2 TO E X A C T

S O L U T I O N OF IN V I S C I D T R A V E L L I N G WAVES

Seven programs were used to compare the numerical approximation of WWV2 through

the RK-4 scheme to the exact solution of inviscid travelling waves found in § 2.4.2. The main

program is nonlin.m that is supported by functions exactsoln_nltw.m, feta_nl.m, fksLnl.m, new-

conv.m, plotapprox.m and tw_ww2.m. Program nonlin.m calculates r; and £ using the RK-4

scheme. Functions feta_nl.ni and fksLnl.m calculate the right hand side of dtr\ and dt£ in

WWV2. Function newconv.m is used by feta_nl.m, fksi_nl.m and tw_ww2.m to execute mul

tiplication. Function plotapprox.m plots the numerical estimate of rj and £ against the exact

solution of the inviscid travelling waves calculated by tw_ww2.m

C.l Algorithm for W W V 2 : nonlin.m

oI y y o/ y y y y y y y o/ y y y y y y y y y y y y y oy y y y y o / y y y y y y y y y y
A

% nonlin.m 1

7, RK4 scheme applied to nonlinear model %

o I y o/ o/ oy o / o / o / ttj <ti <y o / ty o / ty oy
/o /o /o /o A /o

clear all; elf;

N = 64; nx = 64; g = 1; nu = 0; L = 2*pi; h = L/N; x = h*[0:N-l];

http://feta_nl.ni

70

Appendix C (Continued)

p = (2 * p i / L) * [0 : N / 2 - l , - N / 2 : - l] ; pmax = (2*pi/L)*N/2;

°/0 Use different values of dt to produce figure(2) in this program.

7. dt = [h/10, h/20, h/40] ;

% Use a small value for dt to output figure(l) and figure(3) in this program.

dt =h/40; dtmax = 2*nu*pmax~2/(nu~2*pmax"4 + g*pmax); M = 20; j =

1; delta = 0.01; nt = 1000; [tw_eta, tw_ksi, c] =

tw_ww2(L,g,nx,M,j.delta); num_dt = length(dt);

for m = l:length(dt)

t = 0;

dtm = dt(m);

eta0_nltw = tw_eta';

ksi0_nltw = tw_ksi';

A = .1; D = .1; v_eta = tw_eta'; v_ksi = tw_ksi';

tmax = 10.0; tplot = 0.1; plotgap = round(tplot/dtm); dtm =

tplot/plotgap; nplots = round(tmax/tplot); data_eta = [v_eta;

zeros(nplots,N)]; data_ksi = [v_ksi; zeros(nplots,N)]; amp_eta =

norm(v_eta,inf); amp_ksi = norm(v_ksi,inf); tdata = t;

Appendix C (Continued)

for j = l:nplots

for n = l:plotgap

t = t + dtm;

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p);

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p);

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p)

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p)

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p)

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p)

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p);

k4_ksi = fksi_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p);

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6;

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6;

v_eta_new = v_eta + slope_eta;

v_ksi_new = v_ksi + slope_ksi;

v_eta = v_eta_new;

v_ksi = v_ksi_new;

end

72

A p p e n d i x C (C o n t i n u e d)

d a t a _ e t a (j , :) = v _ e t a ;

d a t a _ k s i (j , :) = v _ k s i ;

amp_eta = [amp_eta; n o r m (v _ e t a , i n f)] ;

amp_ksi = [amp_ksi; n o r m (v _ k s i , i n f)] ;

t d a t a = [t d a t a ; t] ;

[e x _ e t a , e x _ k s i] = e x a c t s o l n _ n l t w (e t a O _ n l t w , k s i O _ n l t w , - c , L , x , t) ;

e x a c t _ e t a (j , :) = e x _ e t a ;

e x a c t _ k s i (j , :) = e x _ k s i ;

end e t a _ f i n a l (m , :) = v _ e t a ; k s i _ f i n a l (m , :) = v _ k s i ;

e r r o r _ e t a (m) = norm(v_e ta - e x _ e t a , i n f) ; e r r o r _ k s i (m) =

norm(v_ksi - e x _ k s i , i n f) ;

% P l o t t i n g f i g u r e (l) : comparison between numer i ca l and exac t s o l u t i o n v s . x

f i g u r e (l) ; f o r j = l : n p l o t s

p l o t a p p r o x (x , d a t a _ e t a (j , :) , d a t a _ k s i (j , :) , e x a c t _ e t a (j , :) , e x a c t _ k s i (j , :) ,

N , n u , t m a x , d t) ;

f p r i n t f ('[j=°/,d] t='/,g I err_eta|=°/„g | e r r _ k s i |=°/0g\n', j , t d a t a (j) , . . .

n o r m (d a t a _ e t a (j , :) - e x a c t _ e t a (j , :) , i n f) , . . .

n o r m (d a t a _ k s i (j , :) - e x a c t _ k s i (j , :) , i n f)) ;

end

73

A p p e n d i x C (C o n t i n u e d)

end

% C a l c u l a t i n g and p l o t t i n g f i g u r e (2) : l o g (e r r o r) v s . l o g (d t)

c c _ e t a = p o l y f i t (l o g (d t) , l o g (e r r o r _ e t a) , 1) ; c c_ks i =

p o l y f i t (l o g (d t) , l o g (e r r o r _ k s i) , 1) ;

f p r i n t f C c c _ e t a (l) = '/.g c c _ e t a (2) = °/.g c c _ k s i (l) = °/,g c c _ k s i (2) = 7 .g \n ' ,

c c _ e t a (l) , c c _ e t a (2) , c c _ k s i (l) , c c _ k s i (2)) ;

f i g u r e (2) ; s u b p l o t (1 , 2 , 1) ; l o g l o g (d t , e r r o r _ e t a , ' * ')

x l a b e K ' l o g (d t) ') y l a b e K ' l o g (e t a _ e _ r _ r) ')

t i t l e ([' N = ' , n u m 2 s t r (N) , ' , n u = ' , n u m 2 s t r (n u) , ' , T = ' , n u m 2 s t r (t m a x) , ' ,

r _ e _ t _ a = ' , n u m 2 s t r (c c _ e t a (l))]) s u b p l o t d , 2 , 2) ; l o g l o g (d t ,

e r r o r _ k s i , ' * ') x l a b e l (' l o g (d t) ') y l a b e K ' l o g (x i _ e _ r _ r) ')

t i t l e (t , N = ' , n u m 2 s t r (N) , ' , n u = J , n u m 2 s t r (n u) , ' , T = ' , n u m 2 s t r (t m a x) , ' ,

r _ x _ i = ' , n u m 2 s t r (c c _ k s i (l))]) ho ld on;

% Calculating decay rate alpha and plotting figure(3): log(amplitude) vs. t

cc2_eta = polyfit(tdata, log(amp_eta), 1); cc2_ksi =

polyfit(tdata, log(amp_ksi), 1);

fprintf('alpha_eta = yog\n', cc2_eta(l));

fprintf('alpha_ksi = %g\n', cc2_ksi(l));

74

A p p e n d i x C (C o n t i n u e d)

figure(3); subplot(1,2,1) plot(tdata, log(amp_eta),'*')

xlabel('t') ylabel('log(eta_a_m_p)') title(['N=',num2str(N),',

nu=',num2str(nu),', T=',num2str(tmax), ',

alpha_e_t_a= ' ,num2st r (cc2_eta(l))]) subplo t (1 ,2 ,2) p l o t (t d a t a ,

log(amp_ks i) , ' * ') x l a b e l (' t ') y label (' log(xi_a_m_p) ')

t i t l e ([' N = ' , n u m 2 s t r (N) , ' , nu= ' ,num2s t r (nu) , ' , T=' ,num2str(tmax) , ' ,

a lpha_k_s_i= ' ,num2str (cc2_ksi (l))])

C.2 Funct ion exactsoln_nltw.m

oy oy oy oy o/ o10/ oy o/ o / oy 0/ 0 / 0 / 0/ 0/ 0 / 0 / 0/ 0/
/o

% exactsoln_nltw.m %

0 / 0y oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy
/o A /o /o /o /o /o /0 /o /o /o /o /o /o /o /o /o /o /o /o

function [eta_nltw,ksi_nltw] =

exactsoln_nltw(etaO_nltw,ksiO_nltw,c,L,x,t);

nx = length(etaO_nltw);

y, Exact solution is eta(x,t) = etaO_nltw(x-ct) , ksi(x.t) = ksiO_nltw(x-ct)

y = x-c*t;

75

A p p e n d i x C (C o n t i n u e d)

e t aOha t_n l tw = f f t (e t a O _ n l t w) ; k s i O h a t _ n l t w = f f t (k s i O _ n l t w) ;

e t a _ n l t w = 0 .0*e taO_n l tw; k s i _ n l t w = 0 .0*ks iO_nl tw;

f o r j = l : n x

e t a _ n l t w (j) = e t a O h a t _ n l t w (0 + l) / n x ;

f o r k = l : n x / 2 - l

e t a _ n l t w (j) = e t a _ n l t w (j) . . .

+ 2 * r e a l (e t a 0 h a t _ n l t w (k + l) / n x) * c o s (2 * p i * k * y (j) / L) . . .

- 2*imag(eta0hat_nltw(k+l)/nx)*sin(2*pi*k*y(j) /L);

end

end

for j= l :nx

ks i_nl tw(j) = ksiOhat_nltw(0+l)/nx;

for k=l :nx /2- l

ks i_nl tw(j) = ks i_nl tw(j) . . .

+ 2*real(ksi0hat_nl tw(k+l) /nx)*cos(2*pi*k*y(j) /L) . . .

- 2*imag(ksi0hat_nltw(k+l)/nx)*sin(2*pi*k*y(j) /L);

end

end

76

A p p e n d i x C (C o n t i n u e d)

C.3 Function feta_nl.m

0/ 0/ 0/ o / <y o / 0/ o / o / o / 0/ 0/ o i
In In In In In In In In In In In In In

1 feta.nl.m '/,

In In In In In In In In In In In In In

function [fe] = feta_nl(v_eta,v_ksi,g,nu,L,p)

pp = p'; absp = abs(pp); absp2 = abs(pp).~2; etahat =

fft(v_eta.'); xihat = fft(v_ksi.');

fel = absp.*xihat; fe2 = 2*nu*(((i*pp)."2).*etahat); temp =

absp2.*xihat; fe3 = newconv(etahat,temp); temp = absp.*xihat;

temp2 = newconv(etahat,temp); fe4 = -absp.*temp2; temp =

(i*pp).*xihat; temp2 = (i*pp).*etahat; fe5 = -newconv(temp,temp2);

fe = real(ifft(fel+fe2+fe3+fe4+fe5)) . ' ;

C.4 Function fksi_nl.m

o / 0 / 0 / 010/ o / 0 / 0 / 0/ 0/ 0/ o / 0 /
/o /o /o /o /o /o /o /o ft h h /o A

% f k s i _ n l . m °/0

V °/ V V V V °/ V V V V V V /o /o A A A A A A A A A A A

77

Appendix C (Continued)

function [fk] = fksi_nl(v_eta,v_ksi,g,nu,L,p)

pp = p'; absp = abs(pp); absp2 = abs(pp).~2; absp3 = abs(pp)."3;

etahat = fft(v_eta.'); xihat = fft(v_ksi.');

fxl = -g*etahat; fx2 = -2*nu*(absp2.*xihat); temp = absp3.*xihat;

fx3 = -2*nu*newconv(etahat,temp); temp = absp.*xihat; temp2 =

newconv(etahat,temp); fx4 = 2*nu*absp2.*temp2; temp = absp.*xihat;

temp2 = absp.*xihat; fx5 = 0.5*newconv(temp,temp2); temp =

(i*pp).*xihat; temp2 = (i*pp).*xihat; fx6 =

-0.5*newconv(temp,temp2); temp = absp.*xihat; temp2 =

((i*pp).~2).*etahat; fx7 = 2*nu*newconv(temp,temp2);

fk = real(ifft(fxl+fx2+fx3+fx4+fx5+fx6+fx7)).';

C.5 Function newconv.m

oy o / <y o / oy o/ o/ of o / oy oy oy o/
/o /o /o ID ID ID ID ID ID ID ID ID ID

"ID newconv.m "L

o / o / o/ oy o / o / o / o / ot DI at <y oy
ID ID ID ID ID ID ID ID ID ID ID ID ID

function [c] = newconv(a,b)

78

Appendix C (Continued)

n = l e n g t h (a) ; a t i l d e = [a (n / 2 + l : n) ; a (l : n / 2)] ; b t i l d e =

[b (n / 2 + l : n) ; b (l : n / 2)] ; c t i l d e = c o n v (a t i l d e , b t i l d e) ; c = f f t (

i f f t (a) . * i f f t (b)) ;

C.6 Funct ion p lo tapprox.m

/o /o /o A /o /o /o /o A A A A A A A A

°/0 p l o t a p p r o x . m %

0/ 0/ 0/ 0/ HI til 0/ 0 /0 / 0/ 0/ 0/ 0/ 0/ 0/ 0/
A A A A A A A A A A A A A A A A

function [] = p lo tapprox(x ,e ta ,ks i , e ta_ex ,ks i_ex ,N,nu , tmax,d t)

subp lo t (1 ,2 ,1) ; p l o t (x , e t a , ' b - o ' , x , e t a _ e x , ' r ') ; x l a b e l (' x ') ;

y l a b e l (' e t a ') ; t i t l e ([' N = ' , n u m 2 s t r (N) , ' , nu= ' ,num2s t r (nu) , ' ,

T= ' ,num2st r (tmax) , ' , d t= ' num2st r (d t)]) ; l egend(' e t a r k 4 ' , ' e t a tw

e x a c t ') ;

% For travelling wave approximation use: °/„ legend('eta rk4',,eta tw approx');

subplot(1,2,2); plot(x,ksi,'g-o',x,ksi_ex,'c'); xlabel('x');

ylabel('xi'); title(['N=',num2str(N),', nu=',num2str(nu),',

T=),num2str(tmax),', dt=' num2str(dt)]); % For travelling wave approximation use:

79

A p p e n d i x C (C o n t i n u e d)

" / . legend('x i r k 4 ' , ' x i tw a p p r o x ') ;

p a u s e (0 . 1) ;

C.7 Funct ion t w _ w w 2 . m

HI at y y y y y y y y y y
la la la la In /o /o la /o la A /o

% tw_ww2.m 7,

y y y y y y y y o / y y y
la /o la la la la la la la la la la

f u n c t i o n [e t a , x i , c] = t w _ w w 2 (L , g , n x , N , j . d e l t a)

°/a Data s t r u c t u r e s

7a E t a -> d_{p,n}

% Xi -> a_{p ,n}

dpn = zeros(nx,N+l); apn = zeros(nx,N+l); en = zeros(N+l); dx =

L/nx; x = dx*[0:nx-l]'; p = (2*pi/L)* [0:nx/2-l,-nx/2:-l]'; absp =

abs(p); absp2 = absp."2;

*/.y. n=i

pO = p(j+l); cO = sqrt(g*abs(pO))/pO; cn(0+l) = cO; dpn(j+l,l+l) =

80

A p p e n d i x C (C o n t i n u e d)

a b s (p 0) * (n x / 2 . 0) ; d p n (n x - j + l , 1 + 1) = c o n j (d p n (j + l , 1 + 1)) ;

a p n (j + l , l + l) = i * c 0 * p 0 * (n x / 2 . 0) ; a p n (n x - j + l , 1 + 1) =

c o n j (a p n (j + l , 1 + 1)) ; den = g * (i * p O) * d p n (j + l , l + l) +

c 0 * p 0 ~ 2 * a p n (j + l , l + l) ;

n n>l

f o r n=2:N

% Se t up REta

REta = z e r o s (n x , l) ;

f o r l = l : n - l

temp = a b s p 2 . * a p n (: , 1 + 1) ;

REta = REta + n e w c o n v (d p n (: , n - l + l) , t e m p) ;

temp = a b s p . * a p n (: , 1 + 1) ;

temp2 = newconv(dpn(:,n-l+l),temp);

REta = REta - absp.*temp2;

81

A p p e n d i x C (Continued)

temp = (i*p) .*apn(: ,1+1) ;

temp2 = (i * p) . * d p n (: , n - l + l) ;

REta = REta - newconv(temp,temp2);

end

for l=2 :n - l

REta = REta - cn (n - l+ l)* ((i*p) .*dpn(: , 1+1)) ;

end

*/. Set up RXi

RXi = z e r o s (n x , l) ;

for l = l : n - l

temp = absp.*apn(: ,1+1);

temp2 = a b s p . * a p n (: , n - l + l) ;

RXi = RXi + (1.0/2.0)*newconv(temp,temp2);

temp = (i*p) .*apn(: ,1+1) ;

temp2 = (i * p) . * a p n (: , n - l + l) ;

RXi = RXi - (1.0/2.0)*newconv(temp,temp2);

82

Appendix C (Continued)

end

for l=2:n-l

RXi = RXi - cn(n-l+l)*((i*p).*apn(:,1+1));

end

% Solve for c_{n-l}

num = g*REta(j+l) - i*cO*pO*RXi(j+l);

cn(n-l+l) = real(num/den);

% Correct REta, RXi

REta = REta - cn(n-l+l)*(i*p).*dpn(:,1+1);

RXi = RXi - cn(n-l+l)*(i*p).*apn(:,1+1);

°/, Solve for d_{p,n}, a_{p,n}

dpn(0+l,n+l) = RXi(0+1)/g;

apn(0+l,n+l) = 0;

Appendix C (Continued)

for q=l :nx /2- l

PP = p (q+D;

if(q~=j)

deter = g*abs(pp) - (c0*pp)~2;

dpn(q+l,n+l) = (i*pp*cO*REta(q+l) + abs(pp)*RXi(q+l))/deter;

apn(q+l,n+l) = (-g*REta(q+l) + i*pp*cO*RXi(q+l))/deter;

e l se

dpn(q+l,n+l) = 0 . 0 ;

apn(q+l,n+l) = RXi(q+l)/(i*cO*pO);

end

dpn(nx-q+l,n+l) = conj(dpn(q+l ,n+l)) ;

apn(nx-q+l,n+l) = conj (apn(q+l ,n+l)) ;

end

end

% Find Eta(x), Xi(x) by summing series for d_{p,n}, a_{p,n}

dp = zeros(nx,l); ap = zeros(nx,1); c = cO;

Appendix C (Continued)

84

for 1=1:N

dp = dp + d p n (: , l + l) * d e l t a ~ l ;

ap = ap + a p n (: , l + l) * d e l t a ~ l ;

c = c + cn (l+ l)*de l t a~ l ;

end

e t a = r e a l (i f f t (dp)) ; x i = r e a l (i f f t (ap)) ;

85

A p p e n d i x D

C O D E F O R T R A V E L L I N G W A V E WATERFALL P L O T S

Three programs were used to create the waterfall plots for travelling waves along with the

plots of \JJ\ vs. c and |£| vs. c. They are plotetaxi.m, tw_ww2.m and newconv.m. Please refer

to § C for the codes to functions tw_ww2.m and newconv.m.

D . l Algorithm for Plotting Travelling Wave Waterfall Plots: plotetaxi.m

0/ 0/ ty o/ o/ <y o/ o/<ti oi HI o/ o/ y o/
/o /o /o /o A /o /o /o /o /o /o /o /o /o /o

% plotetaxi.m 7,

0/ 0/ 0/ 0/ 01 til 01 HI 01 01 01 01 01 01 01

lo lo to to to /o lo to to to to to to to to

°L Plotting travelling solutions of WWV2 (with nu=0)

°/o for different values of delta.

clear all; elf; L = 2.0*pi; g = 1.0; nx = 128; N = 20; j = 1; dx =

L/nx; x = dx* [0:nx-l]'; delta = [0:0.001:0.05]; nd =

length(delta); etaplot = zeros(nd.nx); xiplot = zeros(nd.nx); h =

waitbar(0,'please wait...');

for m=l:nd

86

Appendix D (Continued)

waitbar(m/nd);

[e t a , x i , c] = tw_ww2(L,g,nx,N,j ,delta(m));

cc(m) = c;

etamax(m) = norm(eta,inf);

ximax(m) = norm(xi,inf);

etaplot(m,:) = eta;

xiplot(m,:) = xi;

end

close(h);

subplot(2,2,1); waterfall(x,delta,etaplot);

xlabel('x');ylabel('delta');zlabel('eta'); subplot(2,2,2);

waterfall(x,delta,xiplot); xlabel('x'); ylabel('delta');

zlabeK'xi'); subplot(2,2,3); plot(cc,etamax,'b-o'); xlabel('c');

ylabel('|eta|'); subplot(2,2,4); plot(cc.ximax,'b-o');

xlabel('c'); ylabel('|xi|');

87

Appendix E

CODE FOR WATERFALL PLOTS WITH MODULATED COSINE

INITIAL CONDITION

Four programs were used in creating the waterfall plots. The algorithm waterfall.m requires

subroutines feta_nl.m, fksi_nl.m and newconv.m. Functions feta_nl.m and fksLnl.m calculate

the right hand side of dtf] and dt£, in WWV2. Function newconv.m is used by feta_ul.m and

fksi_nl.m to execute multiplication. Please refer to § C for feta_nl.m, fksi_nl.m and newconv.m.

E.l Algorithm for Waterfall Plots with Modulated Cosine IC: waterfall.m

oy oy oy oy oy o / oy oy oy oy oy oy oy oy ot oy
A /o /o It /o /o /o /o It /o /o /o /o It /o /o /o /o It It /o /o /o /o lo It

°/t waterfall.m °/«

°/0 Full model with modulated cosine IC simulating */,

°/t Craig and Sulem waterfall plots °/0

oy
It

clear all; elf;

N = 64; nx = 64; g = 1; nu = 0; L = 2*pi; h = L/N; x = h*[0:N-l];

p = (2*pi/L)* [0:N/2-1,-N/2:-1]; pmax = (2*pi/L)*N/2; dt = 0.1;

dtmax = 2*nu*pmax~2/(nu~2*pmax~4 + g*pmax); M = 20; j = 1; delta =

0.01; nt = 1000; num_dt = length(dt);

88

A p p e n d i x E (C o n t i n u e d)

for m = 1: length(dt)

t = 0;

dtm = dt(m);

eta0_nltw = 0.01*exp(-(4/3)*(x - pi).*(x - pi)).*cos(10*x);

ksi0_nltw = 0*x; v_eta = eta0_nltw; v_ksi = ksi0_nltw; tmax = 5;

tplot = 0.1; plotgap = round(tplot/dtm); dtm = tplot/plotgap;

nplots = round(tmax/tplot); data_eta = [v_eta; zeros(nplots,N)];

data_ksi = [v_ksi; zeros(nplots.N)]; amp_eta = norm(v_eta,inf);

amp_ksi = norm(v_ksi,inf); tdata = t;

for j = 1:nplots

for n = 1:plotgap

t = t + dtm;

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p);

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p);

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p);

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p);

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p);

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p);

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p);

A p p e n d i x E (Continued)

k4_ksi = fksi_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p);

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6;

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6;

v_eta_new = v_eta + slope_eta;

v_ksi_new = v_ksi + slope_ksi;

v_eta = v_eta_new;

v_ksi = v_ksi_new;

end

d a t a _ e t a (j , :) = v_eta;

d a t a _ k s i (j , :) = v_ksi;

amp_eta = [amp_eta; norm(v_eta , in f)] ;

amp_ksi = [amp_ksi; norm(v_ks i , in f)] ;

t d a t a = [tda ta ; t] ;

end e ta_f ina l (m, :) = v_eta; k s i_ f ina l (m, :) = v_ksi;

f i g u r e (l) ; t imestep = tmax/nplots; time = [0: t imestep:tmax];

w a t e r f a l l (x , t i m e , d a t a _ e t a) ; x l a b e l (' x ') ; y l a b e l (' t ') ; z l a b e l (' e t a ') ;

f i gu re (2) ; w a t e r f a l l (x , t i m e , d a t a _ k s i) ;

x l a b e l (' x ') ; y label O f) ; z l a b e l Ox i ') ;

end

90

A p p e n d i x F

C O D E F O R C A L C U L A T I N G R E L A T I V E E N E R G Y

The following programs were used to calculate the relative energy in § 3.4.3: rk4_energy.ni,

energy.m. feta_nl.m, fksLnl.m and newconv.m.

F. l Algorithm for Calculating Numerical Approximation and Energy: rk4_energy.ni

y 01 HI o/ o / o/ o / o/ o/ o/ o/ y 0/ <y o / o /
/O A /0 /O /O ID 10 10 A A /O A /O 10 fO A

% rk4_energy.m °/0

/o /o /o /o /o /o /o /o /o /o /o /o /o 101010

clear all; elf; g = 1; runnum = 1; if(runnum==l)

% relerr = 0.000205323

nx = 64;

A = 0.01;

nu = 0.0;

elseif(runnum==2)

% relerr = 1.19193e-009

nx = 128;

A = 0.01;

nu = 0.0;

http://rk4_energy.ni
http://rk4_energy.ni

91

Appendix F (Continued)

elseif(runnum==3)

% relerr = -0.00758532

nx = 64;

A = 0.045;

nu = 2.4e-5;

elseif(runnum==4)

7. relerr = -0.0882224

nx = 128;

A = 0.045;

nu = 1.095e-4;

elseif(runnum==5)

1 relerr = -0.0664213

nx = 64;

A = 0.05;

nu = 5.5e-5;

elseif(runnum==6)

1 relerr = 0.38409

nx = 128;

A = 0.05;

nu = 1.9365e-4;

elseif(runnum==7)

Appendix F (Continued)

'/. relerr = 0.771103

nx = 64;

A = 0.1;

nu = 1.277e-3;

end L = 2*pi; h = L/nx; x = h*[0:nx-l]; p =

(2*pi/L)*[0:nx/2-l,-nx/2:-l]; dt = h/10; inflate = 0;

f printf (' rk4_nl_waterf all: \n'); f printf (' \n');

fprintf('nx = °/„d\n',nx);

fprintfCg = °/,g nu = %g L = °/.g\n' ,g,nu,L) ;

fprintfCh = %g dt = °/,g\n\h,dt);

f printf ('A = °/.g\n\A);

fprintf('\n');

for m = 1:length(dt)

t = 0;

dtm = dt(m);

v_eta = A*exp(-(4/3)*(x - L/2.0).*(x - L/2.0)).*cos(10*x);

v_ksi = 0*x;

tmax = 10.0;

tplot =0.1;

plotgap = round(tplot/dtm);

93

Appendix F (Continued)

dtm = tplot/plotgap;

nplots = round(tmax/tplot);

data_eta = [v_eta; zeros(nplots,nx)];

data_ksi = [v_ksi; zeros(nplots.nx)];

amp_eta = norm(v_eta,inf);

amp_ksi = norm(v_ksi,inf);

en = energy(v_eta,v_ksi,g,nu,L,p);

tdata = t;

f printf (' t='/.g: I eta I =%g | xi I =%g E=°/„g\n

tdata(l),amp_eta(l),amp_ksi(l),en(l));

for j = 1:nplots

for n = 1rplotgap

t = t + dtm;

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p);

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p);

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p);

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p);

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p);

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p);

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p);

94

A p p e n d i x F (C o n t i n u e d)

k4_ks i = f k s i _ n l (v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p) ;

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6;

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6;

v_eta_new = v_eta + slope_eta;

v_ksi_new = v_ksi + slope_ksi;

v_eta = v_eta_new;

v_ks i = v_ksi_new;

end

d a t a _ e t a (j + l , :) = v _ e t a ;

d a t a _ k s i (j + l , :) = v _ k s i ;

amp_eta = [amp_eta; n o r m (v _ e t a , i n f)] ;

amp_ksi = [amp_ksi; n o r m (v _ k s i , i n f)] ;

en = [en; e n e r g y (v _ e t a , v _ k s i , g , n u , L , p)] ;

t d a t a = [t d a t a ; t] ;

f p r i n t f (> t='/.g: I e t a I =*/.g I x i I =°/„g E=°/„g\n' , . . .

t d a t a (j + l) , a m p _ e t a (j + l) , a m p _ k s i (j + l) , e n (j + l)) ;

95

A p p e n d i x F (Continued)

end

e ta_f ina l (m, :) = v_eta;

k s i_ f ina l (m, :) = v_ksi;

timestep = tmax/nplots;

time = [0:timestep:tmax];

figure(l);

subplot(2,2,1);

waterfall(x,time,data_eta);

title('eta');

xlabel('x');ylabel('t');zlabel('eta');

subplot(2,2,2);

waterfall(x,time,data_ksi);

title('xi');

xlabel('x');ylabel('t');zlabel('xi');

subplot(2,2,3);

semilogy(tdata,amp_eta,'b-o*,tdata,amp_ksi, 'r-*');

x l a b e l (' t ') ; ylabelCamplitude') ;

legendC |e ta | ' , ' | x i | ') ;

subplot(2,2,4);

96

Appendix F (Continued)

semilogy(tdata, en,'g-o');

xlabel('t'); ylabel0energy');

fprintf('Relative energy change = %g\n',(en(l)-en(length(en)))/en(l));

figure(2);

hh = surf(x,time,data_eta);

view(39,76);

xlabel('x'); ylabel O f) ; zlabel('eta');

saveas(hh,'etasurf.fig');

saveas(hh,'etasurf.eps');

end

F . l . l Function energy.m

0/ o / at 0/ 0/ o / 0/ <y 0/ 0/ o / o /
A In /o /o /o /o A In lb In In In

'/, energy.m %

/o /o A A A A A A A A A A

function [en] = energy(v_eta,v_ksi,g,nu,L,p)

pp = p'; absp = abs(pp); absp2 = abs(pp)."2; etahat =

fft(v_eta.'); xihat = fft(v_ksi.'); etaxhat = (i*pp).*etahat;

"In Kinetic energy

97

A p p e n d i x F (C o n t i n u e d)

XOhat = (i * p p) . * x i h a t ; YOhat = a b s p . * x i h a t ; tempi = a b s p 2 . * x i h a t ;

Ylha t = n e w c o n v (e t a h a t . t e m p i) ; tempi = a b s p . * x i h a t ; temp2 =

n e w c o n v (e t a h a t . t e m p i) ; temp3 = absp .* t emp2; Ylhat = Ylhat - temp3;

Xhat = XOhat; Yhat = YOhat + Y l h a t ; Ghat = Yhat -

n e w c o n v (e t a x h a t . X h a t) ; Khat = 0 . 5 * n e w c o n v (x i h a t , G h a t) ;

°/0 P o t e n t i a l energy

Vhat = 0 . 5 * g * n e w c o n v (e t a h a t . e t a h a t) ; EHat = Khat + Vhat; nx =

length(etahat); en = real(EHat(0+l))/nx;

98

CITED LITERATURE

D. J. Acheson. Elementary fluid dynamics. The Clarendon Press, Oxford University
Press, New York. 1990.

Claudio Canuto, M. Yousuff Hussaini. Alflo Quarteroni. and Thomas A. Zang. Spec
tral methods in fluid dynamics. Springer-Verlag. New York. 1988.

Walter Craig and Catherine Sulem. Numerical simulation of gravity waves. Journal
of Computational Physics, 108:73-83. 1993.

F. Dias, A.I. Dyachenko, and V.E. Zakharov. Theory of weakly damped free-surface
flows: A new formulation based on potential flow solutions. Phys. Lett. A.
372:1297-1302. 2008.

Lawrence C. Evans. Partial differential equations. American Mathematical Society,
Providence, RI, 1998.

Christophe Fochesato and Frederic Dias. A fast method for nonlinear three-
dimensional free-surface waves. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 462(2073):2715-2735. 2006.

S.T. Grilli, P. Guyenne, and F. Dias. A fully nonlinear model for three-dimensional
overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids.
35:829-867, 2001.

David Gottlieb and Steven A. Orszag. Numerical analysis of spectral methods: theory
and applications. Society for Industrial and Applied Mathematics, Philadel
phia, Pa., 1977. CBMS-NSF Regional Conference Series in Applied Mathe
matics, No. 26.

Horace Lamb. Hydrodynamics. Cambridge University Press, Cambridge, sixth edi
tion, 1993.

C.C. Mei. Numerical methods in water-wave diffraction and radiation. Annual
Review of Fluid Mechanics. 10:393-416. 1978.

99

D. Michael Milder. The effects of truncation on surface-wave Hamiltonians. J. Fluid
Mech., 217:249-262, 1990.

D. Michael Milder. An improved formalism for rough-surface scattering of acoustic
and electromagnetic waves. In Proceedings of SPIE - The International Soci
ety for Optical Engineering (San Diego, 1991), volume 1558, pages 213-221.
Int. Soc. for Optical Engineering, Bellingham, WA, 1991.

David P. Nicholls and Fernando Reitich. A new approach to analyticity of Dirichlet-
Neumann operators. Proc. Roy. Soc. Edinburgh Sect. A, 131(6):1411-1433.
2001.

David P. Nicholls and Fernando Reitich. On analyticity of traveling water waves.
Proc. Roy. Soc. Lond., A, 461(2057):1283-1309, 2005.

L. W. Schwartz and J. D. Fenton. Strongly nonlinear waves. In Annual review of
fluid mechanics, Vol. 14- pages 39-60. Annual Reviews. Palo Alto. Calif..
1982.

Ruben Scardovelli and Stephane Zaleski. Direct numerical simulation of free-surface
and interfacial flow. Annual Review of Fluid Mechanics. 31:567-603. 1999.

Lloyd N. Trefethen. Spectral Methods in MATLAB. SIAM, Philadelphia. 2000.

Wu-Ting Tsai and Dick K. P. Yue. Computation of nonlinear free-surface flows. In
Annual review of fluid mechanics. Vol. 28. pages 249-278. Annual Reviews.
Palo Alto. CA, 1996.

B. J. West, K. A. Brueckner. R. S. Janda, D. M. Milder, and R. L. Milton. A new
numerical method for surface hydrodynamics. J. Geophys. Res., 92:11803-
11824, 1987.

Kenneth M. Watson and Bruce J. West. A transport-equation description of nonlin
ear ocean surface wave interactions. Journal of Fluid Mechanics, 70:815-826.
1975.

R.W. Yeung. Numerical methods in free-surface flows. Annual Review of Fluid
Mechanics, 14:395-442. 1982.

100

Vladimir Zakharov. Stability of periodic waves of finite amplitude on the surface of a
deep fluid. Journal of Applied Mechanics and Technical Physics, 9:190-194,
1968.

101

V I T A

MARIA KAKLEAS

mariakakleas@yahoo.com

Objective

To teach mathematics as a full-time instructor with tenure at the junior college level.

Education

-Ph.D. in Mathematics, University of Illinois at Chicago, 5/09

-M.S. in Mathematics, Loyola University of Chicago, 12/02

-B.S. in Agricultural Engineering and Minor in Spanish. University of Illinois at Urbana-

Champaign. 5/99

Work Experience

-Math Instructor & Teaching Assistant, University of Illinois at Chicago, 8/03 - present

-Teaching Fellow. National Teacher's Academy k. Hugh Manley High School in Chicago, IL,

5/07 -5/08

-Adjunct Math Instructor. Wilbur Wright College in Chicago. IL. 1/03 - 8/03

-Adjunct Math Instructor, Oakton Community College in Des Plaines & Skokie, IL. 1/03 - 8/03

mailto:mariakakleas@yahoo.com

102

-Lecturer & Teaching Assistant, Loyola University of Chicago, 8/01 - 12/02

-Math Supervisor & Tutor, Huntington Learning Center in Park Ridge, IL. 1/01 - 8/01

-Mechanical Engineer, United Conveyor Corporation in Waukegan, IL, 8/99 - 1/01

Courses Taught

Elementary Algebra. Intermediate Algebra, College Algebra. PreCalculus, Differential Calcu

lus, Integral Calculus, Multivariable Calculus, Business Calculus, Advanced Math for Business,

Math for Elementary School Teachers. Finite Mathematics. Statistics. Linear Algebra

Educational Software

MATLAB. Maple. Cognitive Tutor. MyMathLab

Fellowship

Scientists, Kids and Teachers (SKIT) Fellowship, Funded by the NSF, 5/07 - 5/08

Colloquium

Numerical Simulation of a Weakly Nonlinear Model for Water Waves with Viscosity. University

of Illinois at Chicago, 11/19/08

Professional Memberships

-Mathematical Graduate Student Association. Vice-President at UIC. 8/05 - 7/06

103

-Association of Mathematical Society

-Association for Women in Mathematics

-Society for Industrial and Applied Mathematics

