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S U M M A R Y 

In this thesis we examined Dias. Dyachenko and Zakharov*s equations (DDZ08) in two 

spatial dimensions and restated them using differential operators that we derived valid at the 

fluid surface. The model derived is both viscous and weakly nonlinear and we refer to it as Water 

Waves with Viscosity of order approximation two (WWV2). Next, we found exact solutions 

for two cases of WWV2: i) linear viscous waves and it) inviscid travelling waves. We then 

sought a numerical solution to WWV2 by applying a Fourier spectral collocation method along 

with the RK-4 time-stepping scheme. Upon comparing our numerical scheme to both of the 

exact solutions that we found, we extended the RK4 scheme to the full WWV2 model. We 

then investigated the following numerically: spatial convergence, temporal convergence, order 

of accuracy of the solution, decay rate and relative error in energy. Interestingly, we notice that 

inviscid water wave equations can be numerically estimated fairly accurately by our slightly 

viscous model without the use of filtering. 

x 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The free-surface evolution of surface ocean waves is important in a wide array of engineering 

applications from wave-structure interactions in deep-sea oil rig design, to the shoaling and 

breaking of waves in near-shore regions, to the transport and dispersion of pollutants in lakes, 

seas, and oceans. The Euler equations which model this water wave problem (Lam93) are 

notoriously difficult for numerical schemes to simulate and the most successful approaches 

involve sophisticated integral simulations, subtle quadrature rules, and preconditioned iterative 

solution methods accelerated by. e.g. Fast Multiple methods (see (GGD01) and (FD06)). In 

this thesis we propose a new model which is not only simple to implement numerically, but also 

incorporates a physically motivated dissipation mechanism to overcome some of the difficulties 

mentioned above. 

The computation of these surface water waves is challenging for several reasons, but the 

most important are that the domain of definition of the problem is one of the unknowns, 

and that there is no natural dissipation mechanism to damp the growth of spurious, high-

frequency modes. One method for addressing the first difficulty, and reducing the size of 

the computational domain by a dimension, is to resort to a surface formulation. One way 

to accomplish this is to utilize surface integrals (for a sampling of the vast literature on this 

1 
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subject see the survey articles of (Mei78), (Yeu82), (SF82), (TY96), (SZ99) from the Annual 

Review of Fluid Mechanics). Another approach, is to use the Hamiltonian surface formulation 

of Zakharov (Zak68) which was augmented and simplified by Craig and Sulem (CS93) (see 

also closely related work of Watson and West (WW75), West et al (WBJ+87), and Milder 

(Mil90)). The contribution of Craig and Sulem to the formulation was the introduction of the 

Dirichlet-Neumann operator (DNO)- in this context a surface operator which inputs surface 

Dirichlet data for Laplace's equation inside the fluid domain and produces surface Neumann 

data- together with a perturbative method for its calculation. In this thesis, we will use this 

perturbative approach on the surface operators to derive a weakly nonlinear model for the water 

wave problem. 

Recently, Dias, Dyachenko, and Zakharov (DDZ08) have generalized the water wave problem 

to incorporate weak surface viscosity effects. While their derivation is not completely rigorous 

(e.g., they consider irrotational flows though viscosity will certainly destroy this property), it 

is correct in the linear wave limit, and they argue that it is a viable model in the case of small 

viscosity. The reason for putting forward a viscous water wave model is that it is significantly 

simpler to numerically simulate and mathematically analyze than the full Navier-Stokes equa­

tions posed on a moving domain. In this work we take a slightly different point of view to Dias, 

Dyachenko and Zakharov's (DDZ's) (DDZ08) model: It provides a physically-motivated mech­

anism for adding dissipation to the water wave equations. This is important since Craig and 

Sulem's (CS93) implementation of Zakharov's equations for inviscid flows required significant 

filtering in order to stabilize their computations. Our new contribution is to argue that it is 
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more natural to consider the DDZ model with very small viscosity for stabilized, inviscid water 

wave simulations. However, we further simplify the DDZ equations to include only linear and 

quadratic contributions thereby constituting a weakly nonlinear model for viscous water waves. 

This approach has the advantage of capturing nearly all of the essential linear nonlinear effects 

seen in mildly nonlinear water waves, while being considerably simpler to implement that the 

full DDZ equations. 

In the remainder of this introductory chapter, we give a brief overview of the method that 

Dias. Dyachenko and Zakharov (DDZ08) used to derive equations into which we would like to 

introduce damping. 

1.2 Derivation of Linear Equations 

1.2.1 Navier-Stokes 

In this thesis, we seek a numerical approximation of weakly damped, free-surface flows in 

two spacial dimensions. Specifically, we are interested in finding a model of the equations 

that Dias. Dyachenko and Zakharov (DDZ08) proposed for free-surface flows that are weakly 

damped. Their goal was to find a new system of dissipative equations stated only in terms of 

the velocity potential. Using their notation, the Navier-Stokes equations are 

dt~v + {~v • V)~v = — V p + z/A"v +~g (1.1a) 
P 

V - ~ v = 0 (1.1b) 
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where ~v(x, z. t) := (u. w) is the velocity field, p :— p(x, z, t) is the pressure, p is the fluid density 

and assumed to be constant, ~g := (0, —g) is the gravitational vector and v is the kinematic 

viscosity which is also assumed constant. 

The first boundary condition is the kinematic condition which states that fluid particles at 

the surface remain at the surface 

dtr\ + u(x,rj,t)dxrj = w(x,rj,t), :i.2) 

where rj(x, t) is the shape of the free surface. The second boundary condition is the dynamic 

condition. Here, forces on both sides of the fluid's surface z = r](x, t) must be equal so that 

— (j> — Po)~n + r • it = 0, (1.3) 

where the viscous part of the stress tensor is 

Z = pv 
' 2dxu dzu + dxw 

dzu + dxw 2dzw 

and the normal to the free surface is 

V7! + (dxV)' 

-dxrj 

I » ) 
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Since they considered deep water flows, there is no need for a kinematic condition at infinite 

depth: instead they enforced 

\lt\ —> 0 as z —> —oo. (1.4) 

1.2.2 Potential Flow Theory 

In studying water waves in potential flow theory (Ach90) and (Lam93), fluid flow is consid­

ered irrotational and viscous terms are ignored. The velocity potential ip is defined as V = V<f 

so that the condition for incompressibility in terms of the velocity potential is 

A^ = 0. (1.5) 

Expressing the kinematic boundary condition (Equation 1.2) in terms of the velocity potential 

Dias. Dyachenko and Zakharov found that 

dti] + dxipdxr) = dzLp at z = i](x, t). (1.6) 

The dynamic condition (Equation 1.3) on the free surface simplifies top(a;. rj. t) = po- They then 

replaced the velocity field V by the velocity potential V<p in the Navier-Stokes conservation of 

momentum equation, integrated it and used p(x, r], t) = po at the surface to get 

dtp + -\Vp\2 + gz = Q> at z = rj(x,t). (1.7) 
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Expressing the boundary condition (Equation 1.4) of an infinitely deep layer in terms of the 

velocity potential, they found 

|V^| -> 0 as z -> -oo . (1.8) 

1.2.3 New Water Wave Equations 

Dias, Dyachenko and Zakharov (DDZ08) wanted to express the Navier-Stokes equations 

using only the potential part of the velocity. To do this, they first expressed the velocity field 

~v̂  as the sum of a scalar potential and a vector potential using Helmholtz's decomposition: 

~v = Vip + V x A, where A is a vector stream function. 

The velocity using the Helmholtz decomposition is 

u(x. z. t) = dxip - dzAy 

w(x, z, t) = dz^p + dxAy. 

They assumed a time-factor of e~1^1 and a space-factor of elkx for wavelength of ^ so that the 

solutions for tp and Ay are of the form 

p(x.zJ) = p0e
t{kx^t)e^z 

Ay(x.z,t) = A0e
i{kx-wt)e 
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where 

2 7 2 • w 

v 

Laplace's equation Aip = 0 and the boundary condition for infinite depth, | W | —> 0 as z —> —oc. 

remain unaffected. Their main analysis comes from the kinematic and dynamic boundary 

conditions. For very small viscosity, they found that the vortical component of velocity is much 

less than the potential component of velocity. More precisely, they showed that 

T- i T< 1 
I Pol 

and that 

dx.Ay\z=o = 2vd%rj at 2 = 0. 

The linearized kinematic condition (Equation 1.6) at z = 0 is 

dtrj = w{x,0J). 

Separating it into its potential and vortical components, they arrived at 

dtr) = dz<p + dxAy 

at z = 0. Additionally, they found that 

dxAy\z=0 = 2vdlr) 
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at the surface so that the kinematic boundary condition can be written as 

dtr] = dz<p + 2vd2
xr) at z = 0 (1.10) 

and the dynamic condition (Equation 1.7) as 

dtif + gi] = ~2vd2
zip at 2 = 0. (1.11) 

1.3 Nonlinear Equations with Dissipation 

By combining these linear dissipitative equations (Equation 1.10). (Equation 1.11) with the 

nonlinear inviscid equations (Equation 1.6),(Equation 1.7). Dias. Dyachenko and Zakharov pro­

pose that a good model is: 

Av? = 0 (1.12a) 

|Vp| - • 0 z -> -oo (1.12b) 

dtf] = dzLp + 2z/Ar/ - Vr/ • V^ z = rj(x, y, t) (1.12c) 

dt(p = -gv-2u8^(p--\Vip\2 z = r](x.y,t). (1.12d) 



CHAPTER 2 

GOVERNING EQUATIONS 

Consider the Euler equations which model the free-surface evolution of a deep, two-dimensional 

ideal fluid that is irrotational, incompressible and inviscid (Lam93). We define the fluid domain 

Sv:={(x,y)£R.xR\y<r)(x,t)}, 

where x and y respectively denote space in the horizontal and vertical directions, t is time 

and r](x, t) measures the deviation of the fluid surface from y = 0. The well-known governing 

equations of an ideal fluid under the influence of gravity (Lam93) are 

in Sv (2.1a) 

y - -oc (2.1b) 

y = r](x,t) (2.1c) 

y = j](x.t), (2.Id) 

where g is the gravitational constant, and y? is the velocity potential. This must supplemented 

with initial conditions: 

i](x, 0) = T]O(X), <p(x, y. 0) = ipo{x, y), (2.2) 

dyif —> 0 

dtrj = dytp - {dxr))(dxy) 

1 1 

9 
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though, from the theory of elliptic partial differential equations (Eva98), the boundary data 

tp(x, i](x, 0). 0) suffices. Additionally, lateral boundary conditions must be specified and for this 

we make the classical choice of periodicity: 

7](x + 2ir,t) = 7](x.t), ip(x + 2n,y,t) = <p(x.y,t). (2.3) 

As we saw in Chapter 1, Dias, Dyachenko and Zakharov (DDZ08) proposed a modification 

of (Equation 2.1) to take into account some weak effects of surface viscosity: 

A<p = 0 in Sv (2.4a) 

dyLp -> 0 y -> -oo (2.4b) 

dtrj = dy^> + 2vdlr) - {dxrj)(dxip) y = rj{x. t) (2.4c) 

dt<p = -gV - 2vc$<p - ^(dx^)2 - \{dyrf y = V(x, t), (2.4d) 

together with initial and boundary conditions. We point out that in this modification, only 

(Equation 2.1c) and (Equation 2.Id) are changed, each with the addition of a linear term scaled 

by the viscosity v. 

2.1 Surface Variables 

Zakharov (Zak68) showed that the Euler equations are a Hamiltonian system in the variables 

r\ and i^l,,; if the velocity potential 93 is known at the surface, then ip can be reconstructed 
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everywhere. To make this more explicit we use the approach of Craig and Sulem (CS93) and 

let 

S(x,t):=ip(x,ri(x,t),t), (2.5) 

so that £ is the velocity potential at the free surface. From (Equation 2.4), we can see that it 

is necessary to produce first and second order derivatives in order to find solutions for ij(x, t) 

and £(a\ t) at the surface. With this in mind we define the following maps: Given a solution to 

the prototype elliptic equation 

Acp = 0 y < a(x) (2.6a) 

dy(p ^ 0 y -> - o o (2.6b) 

<? = ( V = <T(X), (2.6C) 

we can compute 

X(*)[{] :=dx0(x,a), Y(a)[C]:=dy0(x,a). Z{a)[C] := d2
y0(x,a), (2.7a) 

where W'X0")!̂ ] denotes a surface operator that is similar to the Dirichlet-Neumann operator 

(CS93) and (NR01). The brackets indicate that W depends on ( linearly whereas the parenthe­

ses indicate nonlinear dependence on a. In other words. X(CT)[C] is another way of expressing 

the first partial derivative with respect to x, Y(a)[Q as the first partial derivative with respect 

to y and Z{a){Q as the second partial derivative with respect to y. 
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Restating the kinematic condition and the dynamic condition in terms of these operators 

we have that (Equation 2.4c) is 

dtV = YivM + 2"d$ri - (d^X^M 

and (Equation 2.4d) becomes 

dti = (dyip)(dtri) + dtip 

= Y(V)lt}(dtr]) + dtV 

= Y(r,)[£\{Y(r,M + 2v&xr] - dxr,X(r,)[S}} - gr, - 2vZ(r,M] - \(X(rM})2 - ±(Y(r,Mf 

= -gr, - 2uZ(r,m + \{Y(r,M)2 ~ \{X{r,M? + 2v(%r,)Y(r,)[Z] - (dxv)X(r,)[£\Y(r,)[£\ 

for a = r, and £ = £. The surface formulation of the water wave equations with viscosity now 

reads: 

dtV = Y(V)[€\ + 21/9*77 - (dxr,)X(r,)[£] (2.9a) 

dtt = -gr, - 2vZ(r,M + ^(Y(r,)[£])2 - \(X(r,M)'2 

+ 2v(%r,)Y(r,)[Z] - {dxr,)X(r,)[Z]Y{r,)[£\. (2.9b) 



13 

2.2 Analytic Dependence of Surface Integral Operators 

From Nicholls and Reitich (NR01) it can be shown that the surface operators X,Y and Z 

depend analytically on the surface deformation a(x) provided that a has 2 classical derivatives. 

Setting a(x) = ef(x), we have 

X(<r) = X(ef) = Y,Xn(f)en, (2.10a) 
n=0 

oo 

Y(a) = Y(,f) = ^2Yn(f)e'\ (2.10b) 
n=0 
oc 

Z(a) = Z(ef) = J2Zn(fy\ (2.10c) 

We are interested in investigating a set of weakly nonlinear model equations that are accurate to 

quadratic order. Our goal is to turn (Equation 2.9) into a weakly nonlinear model by expressing 

it only in terms of surface operators XQ.XI.YQ, Y\,ZQ and Z\. 

We seek expressions for the surface operators Xo, X\,Yo, Yy, ZQ and Z\ by implementing the 

Method of Operator Expansions proposed by Milder (Mil91) and Craig and Sulem (CS93). We 

use 

Vp(x,y) = evpx+lply. peZ (2.11) 

as the basis for our solution since we know that it satisfies the prototype elliptic problem 

(Equation 2.6) and is 2TT periodic in x. WTe also define £p = {pv at the surface. 
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We derive YQ and Y\ from Y. and the other operators Xo,-X\, Z0 and Z\ can be found from 

X and Z similarly. To find Yj and Yi we first apply the definition of Y to ipp at the surface 

where y = a and obtain 

Y(a)[eipx+]p]a} = |p|e ipE+|p | ff. (2.12) 

Implementing a perturbative approach to find our solution, we set a(x) = ef(x) and use the 

Taylor series for the exponential to find 

X>(/y 
VM=0 

U\P\)\n eipx J2 -^r-e-
n=0 

TV. 

(f\p\y\n \p\eipx J2 —-r-e-
i i = 0 

TV 
(2.13) 

Expanding the sum, we obtain 

(y0 + Yi( /)e + y 2 ( / ) e 2 + ...) 

Equating at O(l) we find 

eipx{l + f\p\e + ( / ' P l ) -2 

2! 
6̂  + ...} \p\e,px{l+f\p\ e+(-^e2+...}. 

(2.14) 

y0(/)[e ,px] = \p\eip:' ipx 

and, using Fourier multiplier notation D := \dx. this is 

Yo(f)[evpx] = | i ? | e ^ . 



Recalling that an I? function can be expressed by its Fourier series: 

, J C 1 /*27T 

C(x) = £ CPeipr, 4 = 2 - / t(x)e-ipxdx 
p=-oc ^° 

we conclude that 

YOVMX)] = \D\ax). 

Comparing O(e) terms in (Equation 2.14). we find that 

Yl(f)[e^]+Y0(f)[f\p\e'n = f\p\2eipx. 

Using Fourier multiplier notation this is the same as 

Yi{f)[elpx] + Y0{f)[f\D\eipx) = f\D\2eipx. 

Again, representing a generic function ( by its Fourier series we see that 

Yi(f)iax)} = f\D\2C(x) - Y0(f)[f\D\ax)}. 

Applying the definition of Yb (Equation 2.15) we obtain 

Y1(f)iax)} = f\D\2ax)-\D\[f\D\((x)]. 

file:///D/ax
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In a similar way. we can find expressions for the remaining operators XQ.XI.ZQ and Z\. 

The 0(1) and 0(e) surface operators are summarized as follows: 

X0(f)[C] = iDC = dx( (2.16a) 

y0(/)[C] = I^IC (2.16b) 

Zo(f)[Q = \D\2<; (2.16c) 

*i(/)[C] = f(iD)\D\( - (iD)[f\D\C] (2.16d) 

¥,(/)[(] = f\D\2C-\D\[f\D\C] (2.16e) 

Zi(f)[Q = f\D\\-\D\2[f\D\C,}. (2.16f) 

Noticing that the operators X0.Yb and Z0 do not depend on / , we suppress the notation 

for / for these operators from this point forward. 

2.3 Weakly Nonlinear Model Equations 

In this section we derive our wreakly nonlinear model and put it in dimensionless form. 

2.3.1 Dimensional Model Equations 

We are now ready to form the weakly nonlinear model using the D.D.Z. equations (Equation 2.9) 

and the surface operators just derived. We describe our model as weakly nonlinear because we 

consider small amplitude waves (rj, £ small) and thus truncate (Equation 2.9) after quadratic 
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order. Assuming that r\ and £ are small and of the same order, we set r\ = (fj and £ = e£ in 

(Equation 2.9) and obtain 

at»7 e = y(e^)[e|] + 2 ^ r ] e - dxfjX(efj)[e£] e 

d*f e = -gf)e- 2i/Z(e»j)[e|] + i(y(e»))[e|])2 - i(X(e7J)[ef])2 

+ 2i /9^y( e^)[ e | ] c _ ^X(e^) [e | ] r (e^) [e | ] 6. 

This becomes 

dtfj e = Y, Ynm£\ e"+1 + 2^2f; e - dxfj £ Xri(f/)[|] e"+2 

n=0 n=0 
OO OO OC' 

$ | 6 = -gf; £ - 21/ 2 Z(r))[|] e"+1 + i £(y(>?)[ | ] e"+1 )2 - \ £ (X(*/ ) [ | ] f " + 1 ) 2 

n = 0 77=0 77=0 

+ 2vdtf1YjY{m (
n+2 - dxj,Ctx{fi)[l] e n + 1 ) ( f > ( r j ) [ | ] fn+1) e. 

77=0 « = 0 77=0 

Expanding the series to include differential operators of 0(1) and 0(e) only, we can see that 

dtf] e = {Y0[€\ e + YxirM] ^} + 2ud2f, e - dxfj{X0[S] e2 + X^fj)^} e"} + 0(e'5) 

dti € = -gfje- 2u{Z0[£] e + Z^fjM e2} + ±(Y0[£] e + YMlt] e2)2 - \(X0[£] e + X1(fj)[i] ^f 

+ 2vdxfj{Y0[£] e + Y^f,)^} e2} e - dxfj(X0[£] e + X,(77) [|] e2)(Y0[£] e + Y1m£] e2) e + 0(e3). 
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Upon simplifying and dividing by e we get that 

dtV = YQ{£] + YyifjM e + 2v%fj - (dxfj)X0[£] e + 0(e2) 

dti = -gfj - 2vZ0[i] - 2vZ1{fj)[£] e 

+ \(Y0[i])2 e - i (X 0 [ | ] ) 2 e + 2vd2
xfjY0[i] < + 0(e2). 

Dropping terms of 0(e2), setting e = 1 and renaming fj = r; and £ = £, our model becomes 

% , = Y0[£] + n(r;)K] + 2 ^ 7 7 - (dxTi)X0[£\ 

dti = -<W - 21/ZoK] - 2«/Zi(»7)[e] + ^(loK])2 - ^ o K ] ) 2 + 2^7/yoK]-

Inserting the expressions derived for the O(l) and O(e) surface operators, we arrive at the 

model 

dtr] = \D\£ + 2v&xr\ + rj\D\'2i - \D\[r)\D\S] - {dxrj){dxZ) (2.22a) 

dti = ~m - 2v\D\\ - 2v71\D\ii + 2u\D\2[i1\D\i\ + ^i\D\02 ~ \{dxt)
2 + 2v(d2

x71)\D\i 

(2.22b) 

which we refer to as WWV2 for Water Waves with Viscosity of order approximation 2. 



2.3.2 Dimensionless Equations 

Changing WWV2 into dimensionless form we apply the following scalings 

x = Xx', y = Xy'', t=J—t', rj = arf, £ = ayfgXZ,.' (2.23) 

where A is a typical wavelength which we set to 2TT and a is a typical amplitude. We also scale 

the differential operators in the following manner 

1 ~ ^2 _ 1 »2 a . 1
 a Q 19 

A - * - , - s A 2 - x ' , - y - A - B ' , v ^ - V A w ' , 

A5 D\ = {\D\>, \D\2 = ^(\D\2)', \Df = ±(\D\3)'. 
A1 

1 
A2' 

In dimensionless form we have that 

\fgX6 A L J 

and 

2v $,£' = - , / - " ( | £> |2 )?+ 
gW 
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Letting a := f. [3 := Y— and renaming r( = 77, £' = £ the model in dimensionless form can 

be expressed as 

dtri = \D\£ + 2/3c^ + a {rj\D\2^ - \D\[r,\D\i) - (dxrj)(dxO} (2.25a) 

dti = -TJ- 2/3\D\2S + <* {-2HD\*Z + 2l3\D\2[i1\D\£] + \{\D\i? ~ \{dxtf + 20d2
xi1\D\^ . 

(2.25b) 

In our numerical experiments we set X = a (i.e., o = 1) so that the lengths and amplitude are 

on the same scale, while varying the nondimensional viscosity (3. 

2.4 Two Cases with an Exact Solution 

In this section we present two cases of exact solutions: i) linear water waves with viscosity 

and ii) nonlinear travelling waves without viscosity. 

2.4.1 Exact Solution: Linear Viscous Waves 

The linearized water wave equations with viscosity from WWV2 (Equation 2.22) are 

dtri=\D\Z+2i/d%ri (2.26a) 

di£ = -gn-2v\D\2i. (2.26b) 
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Using 27r-periodic boundary conditions, generic initial conditions i]o(x) and £o(x). and the 

Fourier series 

»/(*,*)= J2 f,pe
ip\ i{X.t)= J2 ip^x-

p=—oo p=—oo 

we find that the Fourier transform of (Equation 2.26) is 

dt 
M 

VP 

2v{ip)2 \p\ \ L \ VP 

\ -g -2v\p\2) \iPJ 
--: Ar. 

M 
VP 

W 
(2.27) 

For p ^ O , the corresponding eigenvalues and eigenvectors for (Equation 2.27) are 

A+ = -2vp + iy/g\p\, v+ = c+ 

A_ = —2up2 - i\/g\p\, ?'- = c. 

\p\ 

\ W9\P\ J 

\P\ 

-iV9\P\ 

The fundamental matrix of the homogeneous system number (Equation 2.27) is 

/ 
q>p(t) := e 'V = e~2vvH 

cos(Upt) jj£- mi(iOpt) 

\ - f i ^ H ^ cos(cjpt) y 

(2.28) 
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where u)p
2 = g\p\. The solution for p ^ 0 is 

-2up2t 
coa(ujpt) 

Up s'm(ujpt) 

IPI 

lplsinH*) \ / fjp(0) 

cos(ujpt) J { 4(0) J 

and for p = 0 

W I 
\ &(*) j 

\ 
HO) 

\ -gm(o) + to(o) J 

(2.29) 

(2.30) 

Please refer to § A for the general solution to the inhomogeneous linear problem. 

2.4.2 Exact Solution: Inviscid Travelling Waves 

In this section, we seek an exact solution to WWV2 (Equation 2.22) in the case of travelling-

waves without viscosity. Beginning with the inviscid WWV2 equations, 

dtr, = |D|e + V\D\2Z - \D\[ri\D\{\ - (dxri)(dxO 

dtt = -gii + \(\D\02-\(dxO'2 

(2.31a) 

(2.31b) 

we convert to a travelling frame moving with speed c by letting 

r](x.t) = Hz:t) 

ax.t) = 7(zJ), 

where z = x + ct. 
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The inviscid equations become 

dtw + cdzyj = |D|7 + ip\D\'2f - |D|[^|D|7] - (dzip){dz'y) 

dtl + ca27 = -<?</> + ^(|^|7)2 - i (a2 7 )2 . 

Renaming the variables r/ = ii'- £ = 7, a* = z and seeking steady state solutions we would like to 

solve 

cdxJi=\D\£,+r}\D\2£,-\D\[T)\D\Z]-(dxrj)(dx£) (2.34a) 

cdx£ = -gr, + \{\D\i? - \{d£?- (2.34b) 

We express these governing equations in matrix form 

Bu = R (2.35) 
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where. 

cdx \D\ 
B = 

V g cdx 

u = 

R = 

( \ 
7] 

W 

V 

<l\D\H-\D\l<i\D\t]-(&<))(&() 

urn)2 - hm>2 
) 

Since we are considering the case of steady state, we are interested in investigating a system 

with low amplitude waves and fluid flow with small velocity potential. We also note that the 

wave speed varies horizontally but not vertically. Seeking solutions to Bu = R, we expand 77. £ 

and c as a function of wave height 5 in the Taylor series 

n = l 

u = u{x\ 8) = Y^ un(x)Sn = \~] 

n=l 

C(<J)= CO + $ > „ * " • 

30 ' r/n(.x-) 

\ Ux) j 
8", 

C = C( 

n = l 

(2.37a) 

(2.37b) 
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2.4.2.1 Solution for n = 1 

Using the expansion for c(5) we can express (Equation 2.35) Bu = R as 

BQu = R (2.38) 

where, 

Bn 

c0dx -\D\ 

y g c0dx J 

( \ 

t 
R 

V\D\2!, - \DMD\Z] - (dxri)(dxO - (c - co)dxri 

k\D\02-kdx£)2-(c-co)dxt 

\ 

Comparing 0(5) terms we And that 

B0ui = 0. (2.40) 

Taking the Fourier transform we obtain 

Bo.pUi.p = 0. (2.41) 

file:///DMD/Z
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where Bo,, 
i icop -\p\ 

. Note that the first subscript in u\,p refers to the perturbation 

y g icop J 
order of 8 while the second subscript refers to the wavenumber p. 

Case 1: n = l,p = ±po,p ^ 0 

Non-trivial solutions to (Equation 2.41) can be found by taking the determinant of B0,p (or the 

opposite of it): 

A(co,p) = (cop)2 -g\p\. 

Now, given a specific wavenumber po 6 T — {0}, where T is a set of wavenumbers, then one can 

find a CQ such that A(CQ,PO) = 0; that is, 

Co 
\/g\po\ 

Po 
(2.42) 

Using this CQ, one can find that 

Uhpo = K 

i icopo , 

Wl,-po — —U po — " l ,po- (2.43) 

Case 2: n = l ,p = 0 

We notice that p = 0 enforces the condition that the velocity potential at the surface satisfies 

£(x)dx = 0 (2.44) 



which we now assume. Since 7)1.0 = 0, £1.0 is free, we choose £1.0 = 0 and 

(o\ 
Ul,0 

Case 3: n = l,p / ±po 

Since BQ,P is not singular, then f)i.p = £iiP = 0, 

Ul.p = 

2.4.2.2 Solution for n > 1 

(2 

vv 

M 
i°; 

In this section we seek a solution for n > 1. To do this we insert the expansions for u 

c in i?ou = -R. We can then expand R = R(S) = XmLi -R«^" where 

/ 

-Rn = 
\ 

so that 

-BoUn = Rn = Cn-1 
dxVi 



where 
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Rl = ̂ 2{Vn-,\D\% - IDI^-zlDIO] - (dxr]n.,)(d^,)} - J ^ c , . , ) ^ , ) , (2.48a) 
1=1 1=2 

Ri = £{^(|£>Kn-/)(l W ) " \(dxU-l)mi)} - Y,{Cn-l)mi)- (2.48b) 

1=1 1=2 

Taking the Fourier transform of (Equation 2.48a), we can see that 

( » . . \ 
Bo.pUn ,p un .p 

R n.p 
Cn-lS-

y Rn.p j 

:p,±po 

(w)m,p 

^ {iP)il.p y 

(2.49) 

where 8p.q is the Kronecker delta function. Notice that the terms involving cn^\ appear only 

at wavenumber p = ±po- There are three cases to consider: 

Case 1: n > l , p ^ ±Po,P 7̂  0 

In this case BQ.P is non-singular, so we can multiply both sides of 

Bo.pUn, ,p un ,p 

1 vn .p 

y Rn.p J 

by B0p to find 

1 
^n.p — 

g\p\ - {COP)' 

icopRH.p + \p\Ri,p 

y -gRl.p + icopRi.p j 

(2.50) 

Case 2: n > l.p = 0 
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When p = 0 we find that (Equation 2.49) simplifies to B% 0 = 0 for all n and 

gf)n,0 = R$n.O-

We can see that Rv = 0 from the following computation: 

RO^TtiDft-lDMDltl-idxTiHdxa 

= -V%S-\D\[ri\D\S]-(dxr))(dxZ) 

= -dx(ridxO-\D\[ri\D\$] 

where we have used \Dr = D2 = (—id. d£. Since the operators dx and \D\ map generic 

functions to functions with zeroth Fourier coefficient equal to zero, we have HPn 0 as claimed. 

Regarding £n.o we simply set it to zero which enforces (Equation 2.44). Thus, 

( 3Lo \ 
Un.O a 

0 

(2.51) 

V ° ) 
Case 3: n > l,p = ±po 

In this case, Bo.p0 is singular but we can choose c„_i to ensure a solution. We find that 

Cn-l 
gRnlPo - icopoRJyo 

•po 

(2.52) 
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However, we are left with the issue of uniqueness and follow the approach of Stokes (see(NR05)) 

for the full water problem, that r\n is L2—orthogonal to r/i. As r/i is only supported by wavenum-

bers p = ±po, this is easily enforced by setting fjn,po = 0 which results in £n,Po = _ ' Ln .p(i £0_ 
ICoPt) 

so that 

Un.po — 
-ipocn-iZi,p 

JCopo / 

(2.53) 

We remark that the case p = —po is addressed by setting un^ -Po ln,p0 • 



C H A P T E R 3 

N U M E R I C A L M E T H O D A N D RESULTS 

In this chapter we discuss the methods that were used to find numerical approximations for 

the shape of the free-surface and velocity potential. We show that our numerical approximations 

of 7] and £ appear to converge both in space and in time to the exact solutions that we found 

in Chapter 2 for the cases of i) linear viscous waves and ii) inviscid travelling waves. We then 

extend our numerical scheme to the full WWV2 model for small viscosities. We discuss the 

order of accuracy of our solution and decay rate of our model. Lastly, we compare our model 

to that of Craig and Sulem (CS93) and calculate the relative error in energy for trials with 

different values of wave amplitude, low viscosity and number of grid points. All of the code was 

programmed in MATLAB and is included in Appendices B — F for reference. 

3.1 Numerical Method 

Our numerical scheme approximates solutions of (Equation 2.22) by using the Discrete 

Fourier Transform (DFT) accelerated by the Fast Fourier Transform (FFT) algorithm in the 

spatial variable and the Runge-Kutta scheme of Order Four (RK4) for time-stepping (G077) 

(CHQZ88). According to Trefethen (TreOO), the formula for the DFT is 

Nx 

i = i 

31 
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and for the inverse DFT is 

Nx 

Vj = -^ E <?**>% (3.2) 

where, 

v = DFT, 

p = wavenumbers =—4f + 1. •••• 4p. 

iVj; = number of gridpoints, 

h = ^r1 = spacing of grid points in x. 

j = index for spatial points = 1, 2. ...Nx, and 

i' = inverse DFT. 

Our problem unknowns {r](x,t),£(x,t)} are approximated by {/q^x(x,t).(,fl':r(x,t)} so that 

r ^ ( a U ) : = £ d p ( t ) e^ . £**(*,*):= ] T ap(t)e**, (3.3) 

where iVy represents the number of grid points in the spatial variable x and {dp(t), ap(t)} are 

approximations to the Fourier coefficients {f)p{t). £P(t)}. We enforce WWV2 (Equation 2.22) at 

equally spaced gridpoints Xj = ^ p for j = 0,1,2,.... Nx — 1. 
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Derivatives are computed by utilizing (Equation 3.3), the DFT and the FFT algorithm. The 

Fourier multiplier \D\ is computed in a similar manner except that multiplication on the Fourier 

is replaced by |p|. Note that products on the physical side are computed using the inverse DFT 

and pointwise multiplication. All of this specifies a system of 2 x Nx ordinary differential 

equations whose approximate solution we denote as {d^*(t), a^*(t)} using the Runge-Kutta of 

Order Four (RK4) scheme for time-stepping. 

It is well-known that the RK4 scheme can be stated as follows: 

At 
Wi+\ = Wi + —-(si + 2s2 + 2s-s + S4). (3.4a) 

b 

Si=f(ti,Wi). (3.4b) 

At At 
S2 = f(U + — , Wi + — s i ) , (3.4c) 

At At 
S'i = f(U + ~.wi + —s2). (3.4d) 

s4 = f(U + At. Wi + At • s3), (3.4e) 

where. 

w = the function we would like to solve for, 

At = step size in time, 

si = slope at left end of interval. 

.§2 = slope at midpoint that uses si. 

53 = another slope at the midpoint that uses s2. 

54 = approximate slope at right end of interval that implements .S3, and 
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i = 0.1,2,3.. . . . 

3.2 Spatial Convergence 

Before presenting our numerical results, we verify our codes by displaying convergence of 

our numerically generated solutions to the exact solutions discussed earlier: linear viscous waves 

from § 2.4.1 and nonlinear inviscid travelling water waves from § 2.4.2. Note that in all of the 

following simulations we have set g = 1 and have chosen waves with 2-7T periodicity so that u 

can be viewed as the non-dimensional quantity (5 from § 2.3.2. In this section we focus on the 

spatial convergence (with a fixed temporal discretization) while in the next section we examine 

the temporal discretization (with a fixed spatial resolution). To accomplish this, consider the 

following quantities: 

en(Nx., Nt. T) := \V
N*-N'(; T) - Vex(-, T)\L~ (3.5a) 

e^N^.Nt.T) := \f*-Nt (•, T) - &*(-, T)\L~. (3.5b) 

where 

T = total time of simulation. 

Nx = number of grid point in space x, 

Nt = number of grid points in time t, 

{riNx-Nt{x,t).^Nj-Nt(x.t)} = numerical approximations of r\ and £„ 

{Vex(x,t),$,ex(x,t)} = exact solutions of r\ and £, 
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{eri(Nx^Nt, T), e^(Nx,,Nt. T)} = error between numerical approximation and exact solution of 

r\ and £ estimated by the L^-norm. 

The initial conditions used for the exact solution of linear water waves (Equation 2.30) are 

Vo{x) = — cos(a,-), £0(2:) = ^ sin(a;). (3.6) 

From Table I we can see that in the case of linear viscous waves with a fixed time-step of 

At = 2.45 x 10~3 and simulation time of T = 2, ev and ê  are of the order of 10~14 as Nx —> 64 

for viscosities v = 0,0.01 and 0.1. Similarly, in Table II we can see that for T = 10, ev and ê  

approach the order of 10 - 1 3 as Nx —> 64 for v = 0 and 0.01 and these errors approach the order 

of 10_L4 when v = 0.1. In both Table I and Table II, the linearized water wave equations with 

viscosity (Equation 2.26) with initial conditions (Equation 3.6) are compared against the exact 

solution (Equation 2.29). (Equation 2.30). 

We further test the spatial convergence of our time-stepping algorithm by comparing it to 

the approximations of the travelling wave solutions in the inviscid case and in our simulations 

we set M = 20 and let S = 0.01. We approximate the solutions by 

M 

u" := £ 
n = i 

Vn\X) M 

<f\ cM :=co + X > 5 n . (3.7) 
n = l 

In Table III we can see that in the case of nonlinear inviscid travelling waves. ev and ê  

(Equation 3.5) approach the order of 10 - 1 5 as Nx —> 64 for T = 2 and the order of 10~14 
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V 

0 

0.01 

0.1 

Nx 

16 
32 
64 
16 
32 
64 
16 
32 
64 

e„ 
1.66601 x 10" 
1.03899 x 10" 
5.89095 x 10" 
1.59005 x 10" 
9.98009 x 10" 
5.68504 x 10" 
1.21801 x 10-
7.69267 x 10" 
4.36456 x 10" 

- i : i 

-12 

-14 

-11 

-13 

-14 

- l i 

-13 

-14 

ei 
1.66601 x 10 - 1 1 

1.03898 x 10~12 

5.90188 x 10"14 

1.59005 x 10 - 1 1 

9.97957 x 10~13 

5.68027 x 10"14 

1.21800 x 1 0 _ u 

7.69260 x 10"-13 

4.36456 x 10~14 

TABLE I 

SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT SOLUTION 
WITH FIXED TIME-STEP OF 2.45 x 10"3 AND T = 2. 

as Nx —> 64. Here, the WWV2 model (Equation 2.22) with v = 0 is compared to the exact so­

lution and initial conditions of travelling wave solutions derived in § 2.4.2 with a fixed time-step 

of At = 2.45 x 10^3. 

3.2.1 Graphical Comparisons Between the Numerical Approximations and Exact 

Solutions. 

As can be seen in Figure 1 parts a) and b), our numerical approximations of r\ and £ are very 

close to the exact solutions for both the cases of i) viscous linear waves and ii) inviscid nonlinear 

waves. Part a) graphically portrays the numerical scheme and the exact solution for the case of 

linear waves with viscosity of 0.1 whereas the graph for part b) depicts our numerical scheme 

against the exact solution for inviscid travelling waves. In part c) the plots differ because the 

travelling wave is not an exact solution. In all three cases Nx = 64. T — 10. At = 0.0024544. 
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V 

0 

0.01 

0.1 

Nx 

16 
32 
64 
16 
32 
64 
16 
32 
64 

e^ 

8.20554 x 10-
5.22295 x 10" 
1.86613 x 10" 
6.78144 x 10" 
4.26790 x 10" 
1.53369 x 10" 
1.24571 x 10" 
7.79649 x 10" 
3.51351 x 10" 

- l i 

-12 

-13 

-11 

-12 

-13 

-11 

-13 

-14 

ee 
8.20558 x 10 - 1 1 

5.22374 x 10"12 

1.86566 x 10"13 

6.78143 x 10"11 

4.26798 x 10~12 

1.53350 x 10 - 1 3 

1.24572 x 10 - 1 1 

7.79680 x 10 - 1 3 

3.51837 x 10"14 

TABLE II 

SPATIAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT SOLUTION 
WITH FIXED TIME-STEP OF 2.45 x 10"3 AND T = 10. 

T 

2 

10 

Nx 

16 
32 
64 
16 
32 
64 

6jy 

1.72501 x 10" 
1.09069 x 10" 
6.21920 x 10" 
8.22048 x 10" 
5.24426 x 10" 
1.87376 x 10" 

-12 

-13 

-15 

-12 

-13 

-14 

e< 
1.75794 x 10" 
1.09654 x 10" 
6.24397 x 10" 
8.26373 x 10" 
5.26383 x 10" 
1.88053 x 10" 

-12 

-13 

-15 

-12 

-13 

-14 

TABLE III 

SPATIAL CONVERGENCE OF WWV2 MODEL WITH v = 0 TO EXACT SOLUTION OF 
INVISCID TRAVELLING WAVES WITH FIXED TIME-STEP OF 2.45 x 10"3. 
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Please refer to § B for the code used to calculate the graph in part a) and § C for parts b) and 

c). 

3.3 Temporal Convergence 

We now investigate the temporal rate of convergence of our scheme by fixing the number of 

spatial collocation points at Nx = 64 and examining the quantities {e?/.e^}. Carrying this out 

with the exact solution of linear water waves (Equation 2.29) and (Equation 2.30) with initial 

conditions (Equation 3.6) for final times of T = 2 and T = 10 we have the data presented in 

Tables IV and V respectively. The results are presented for v = 0.0.01.0.1. 

From Table IV we can see that as At —> 2.45 x 10_3,e^ and e^ are of order 10 - 1 4 for 

v = 0,0.01 and 0.1 with T = 2. In Table V, as At -> 2.45 x 10"3 with T = 10, ev and e5 are of 

order 10~13 for v = 0,0.01 and of order 10~14 for v = 0.1. Table VI indicates that in the case of 

nonlinear inviscid travelling waves. et] and ê  are of order 10~15 and 10~14 as At —+ 2.45 x 10 - 3 

for simulation times of T = 2 and T = 10 respectively. 

3.3.1 Temporal Order of Accuracy of Solution 

We define the order of accuracy of a solution as the number r such that 

erroritn) = 0({At)r). (3.8) 
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N=64 , n u = 0 . 1 , T=10 , d t=0 .0024544 N=64. n u = 0 . 1 . T=10 , d t=0.0024544 

- •-"-'• -- xi rk4 
xi exact 

Nx = 64, v = 0.1, T = 10, dt = 0.0024544 

N=64 , nu=0 , T = 10, d t=0 .0024544 
O.015 i 

—© eta rk4 
eta tw exact 

(b) Nx = 64, v = 0. T = 10, dt = 0.0024544 

(c) Nx = 64. v = 0.1. T = 10. dt = 0.0024544 

Figure 1. Graphical comparison of numerical approximation using RK-4 scheme of a) 
linearized water waves with viscosity to exact linear solution, b) WWV2 with v = 0 to exact 
solution of inviscid travelling wave solution, and c) WWV2 with v = 0.1 to inviscid travelling 

wave solution. 
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V 

0 

0.01 

0.1 

At 
9.82 x 10"3 

4.91 x 10"3 

2.45 x 10"3 

9.82 x 10"3 

4.91 x 10"3 

2.45 x 10"3 

9.82 x 10"3 

4.91 x 10"3 

2.45 x 10"3 

e„ 
1.67 x 10"" 
1.04 x 10"12 

5.89 x 10"14 

1.60 x 1 0 " n 

9.99 x 10"13 

5.69 x 10"14 

1.23 x 1 0 " n 

7.69 x 10"13 

4.36 x 10"14 

e« 
1.67 x 10"11 

1.04 x 10"12 

5.90 x 10"14 

1.60 x 10~ n 

9.99 x 10"13 

5.68 x 10"14 

1.23 x 10"1] 

7.69 x 10 - 1 3 

4.36 x 10^14 

TABLE IV 

TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT 
SOLUTION WITH Nx = 64 AND T = 2. 

V 

0 

0.01 

0.1 

At 
9.82 x 10"3 

4.91 x 10"3 

2.45 x 10-3 

9.82 x 10"3 

4.91 x 10"3 

2.45 x 10~3 

9.82 x 10^3 

4.91 x 10"3 

2.45 x 10 - 3 

ev 

8.33 x 10"11 

5.22 x 10"12 

1.87 x 10"13 

6.83 x 10"11 

4.28 x 10"12 

1.53 x 10"13 

1.25 x 10"11 

7.80 x 10"13 

3.51 x 10"14 

ei 
8.33 x 10"11 

5.22 x 10"12 

1.87 x 10"14 

6.83 x 10"11 

4.28 x 10"12 

1.53 x 10"13 

1.25 x 1 0 " u 

7.80 x 10"13 

3.51 x 10"14 

TABLE V 

TEMPORAL CONVERGENCE OF LINEARIZED WWV2 MODEL TO EXACT 
SOLUTION WITH Nx = 64 AND T = 10. 
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T 

2 

10 

At 
9.82 x 10 - 3 

4.91 x 1(T3 

2.45 x 1(T3 

9.82 x 10"3 

4.91 x 10~3 

2.45 x 1(T3 

e„ 
1.75 x 1(T12 

1.09 x 10"13 

6.22 x 10~15 

8.36 x 10~12 

5.24 x 10 - 1 3 

1.87 x 10-14 

e? 
1.76 x 10~12 

1.10 x 10"13 

6.24 x 1(T15 

8.39 x HT12 

5.26 x 10"13 

1.88 x 10~14 

TABLE VI 

TEMPORAL CONVERGENCE OF WWV2 MODEL WITH v = 0 TO EXACT SOLUTION 
OF INVISCID TRAVELLING WAVES WITH Nx = 64. 

In this case, the error in (Equation 3.8) is the supremum between the numerical approximation 

and one of the exact solutions that we found for r; and £. The order of accuracy r was found 

by setting 

error « C(At)r, 

taking the logs of both sides 

log (error) ~ log(C) + rlog(At) 

and completing a least-squares fit of log(error) vs. log(At) to find the slope. Well-known 

theory tells us that r should be 4. 

As seen in Table VII. the order of accuracy rn and rj is about 4.07 for both the linearized 

and the inviscid WWV2 models when compared to their corresponding exact solutions with 
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T = 2. For a simulation time of T = 10 we notice that rn and r^ is about 4.4 for ^ = 0 and 0.01 

in the linear case and for v = 0 in WWV2. Interestingly, we notice that the order of accuracy 

improved to 4.23 from about 4.40 when the viscosity was increased from v = 0.01 to v = 0.1 

in the linear model with T = 10. All of the simulations described in Table VII were taken with 

Nx = 64. In the case of inviscid travelling waves, M = 20 and 5 = 0.01 in (Equation 3.7). 

We can also see the order of accuracy r graphically in Figure 2 as it is the slope of log(error) 

vs. log(At). In part a) the log(error) vs. the log(At) was plotted comparing the linearized 

water wave model to the exact solution with v = 0.1. Similarly, in part b) the log(error) vs. 

the log(At) was plotted comparing the water waves model (WWV2) with v = 0 and the exact 

solution of inviscid travelling waves. Both of these plots were executed for a simulation time of 

T = 10 and Nx = 64. Again, a good order of accuracy for the RK4 scheme is 4 or close to it. 

In part a) rv and r$ was about 4.23 and in part b) rv and r% was about 4.4. 

3.4 Numerical Results 

We now present numerical results which illustrate the properties of the solutions to our 

model equations (Equation 2.22) and the capabilities of our numerical simulation strategy. In 

particular, we display the decay rates of our solutions to the nonlinear WWV2 equations and 

then show how our numerical scheme can be used to stably compute inviscid surface water 

waves. 

3.4.1 Travelling Waves 

We created some plots to investigate the behavior of our inviscid travelling waves model. 

Referring to the top two plots in Figure 3, we graphed both r\ and £ vs. x and 6. With M = 20 
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log(dt) log(dt) 

(a) Log(error) vs. Log(dt ) for Linear Wate r Waves with Viscosity. 

N=64, nu=0, T=10, r =4.4009 

log(dt) log(dt) 

(b) Log(error) vs. Log(dt ) for Inviscid Wate r Waves. 

Figure 2. a) Plot of log(error) vs. log(Ai) between linearized water wave equations with 
viscosity and exact linear solution, b) Plot of log(error) vs. log(At) between water wave 
equations with viscosity (WWV2) with v = 0 and exact inviscid travelling wave solution. 
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Linearized WWV2 Compared to Exact Linear Solution or 
WWV2 Compared to Exact Inviscid Travelling Waves Solution v T rn r^ 

Linear 0 2 4.07184 4.07051 
Linear 0 10 4.40103 4.40121 
Linear 0.01 2 4.06946 4.07006 
Linear 0.01 10 4.39915 4.39924 
Linear 0.1 2 4.07145 4.07145 
Linear 0.1 10 4.23492 4.23392 
WWV2 0 2 4.06728 4.06862 
WWV2 0 10 4.40097 4.40093 

TABLE VII 

ORDER OF ACCURACY OF SOLUTION. Nx = 64. 

and perturbation parameter 8 in (Equation 3.7) ranging from 0 to 0.05 in increments of 0.001, 

we can see that the waveform starts out flat for 8 = 0 but gains amplitude and becomes more 

nonlinear as 8 increases to a value of 0.05 as expected. The bottom two graphs in Figure 3 

show the amplitude of rj and £ against the wave speed c. These graphs indicate that the wave 

amplitude increases as the wave speed increases. Please refer to § D for the code used to create 

these graphs. 

3.4.2 Decay Rate 

We note that from the exact solution, linear solutions (Equation 2.29) should decay like 

e-2vtp a^ wavenumber p. We have numerically simulated such solutions using initial conditions 

(Equation 3.6) so that p = 1 and report experimental decays in Table VIII for both T = 2 and 

T = 10. We see that within a very small tolerance (e.g. 10~5) the theoretical decay is realized. 
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-0.1 
0.05 

0.05, 

0 

-0.05 
0.05 

10 

delta 0 0 delta 0 0 

0.06 

0.04 

•Q3 

0.02 

1.001 1.001 

Figure 3. The top two graphs are waterfall plots of travelling waves with different values of 5. 
The bottom two graphs show the amplitude of 77 and £ vs. the wave speed c. 
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T 

2 

10 

V 

0 
0.01 

0.1 
0 
0.01 

0.1 

an 

-3.33 x 10~4 

-2.03 x 10"2 

-2.00 x 10"1 

-1.78 x 10~5 

-2.00 x 10"2 

-2.00 x 10_1 

dj 

-3.33 x 10~4 

-2.03 x 10"2 

-2.00 x 10_1 

-1.78 x 10~5 

-2.00 x 10"2 

-2.00 x 10_1 

TABLE VIII 

RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SOLUTIONS OF 
LINEARIZED WWV2. THESE AMPLITUDES ARE MEASURED AT TIMES T = 2 AND 

T = 10. 

Additionally, we have evolved the travelling waveforms. (Equation 3.7). in the nonlinear WWV2 

equations with initial conditions provided by the travelling wave solutions derived in § 2.4.2 

and report in Table IX our results for T = 2 and T = 10. We see how strong the effects of 

viscosity can be as these nonlinear solutions also decay at roughly the rate expected for linear 

solutions. 

In Figure 4 the rate of decay can be seen graphically as the slope of the log(amplitude) vs. 

time. These plots were created with Nx = 64, i> = 0.1.T = 10, At = 0.0024544. The plot in 

part a) was created using simulated solutions to the linearized wave equations with viscosity 

(Equation 2.26) whereas the plot in part b) was created using the nonlinear WWV2 equations 

(Equation 2.22). In part a) the rate of decay is —0.20002 for both r\ and £ and in part b) the 

rate of decay is -0.20036 for r\ and -0.20002 for £. Please refer to § B for the code used to 

create Figure 4 part a) and § C for part b). 
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-2.5 

£ 
-3.5 

-4.5 

(a) log(amplitude) vs. t, linearized model 

-4.5 

(b) log(amplitude) vs. t. nonlinear model 

Figure 4. Rate of decay of the amplitude of simulated solutions of a) linearized water wave 
equations with viscosity and b) nonlinear water wave equations with viscosity. These 

amplitudes were measured with Nx = 64, v = 0.1. T = 10. At = 0.0024544. 



48 

T 

2 

10 

V 

0 
0.01 
0.1 
0 
0.01 
0.1 

an 

-3.39 x 10"4 

-2.05 x 10^2 

-2.01 x 10"1 

-1.78 x 10"5 

-2.01 x 10~2 

-2.00 x 10"1 

d j 

-1.51 x 10"4 

-2.01 x 10~2 

-2.00 x 10"1 

-8.80 x 10"6 

-2.00 x 10~2 

-2.00 x 10_ 1 

TABLE IX 

RATE OF DECAY OF THE AMPLITUDE OF SIMULATED SOLUTIONS OF WWV2. 
THESE AMPLITUDES ARE MEASURED AT TIMES T = 2 AND T = 10. 

3.4.3 Evolving Inviscid Surface Water Waves Using a Slightly Viscous Model 

The results shown in § 3.4.2 also suggest a new strategy for evolving inviscid surface water 

waves in a stable way. As noted in the publication (CS93). the computation of these waves 

is quite delicate and filtering is typically required to ensure that the solutions do not blow 

up. The reason for this is the energy conserving nature of the equations implying no natural 

energy dissipation mechanism coupled to very strong nonlinearities. Of course our new set 

of equations circumvent this first challenge with the introduction of viscous dissipation terms. 

Thus, it seems natural to consider the possibility of approximating inviscid water waves by 

solving slightly viscous equations. 

We have carried out this program for the modulated cosine profile 

r]o(x) = Acos(10x)e~l{x-^)2, £Q(x) = 0. (3.9) 
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proposed by Craig and Sulem (CS93). To study the evolution of this profile we have chosen 

the same physical parameter values as those given in (CS93), namely L = 2TT,A = 0.01 and 

final time T = 10. In all of these simulations. Aa; = ^-. For this configuration we were able 

to satisfactorily evolve the initial conditions (Equation 3.9) without the need of any filtering or 

viscosity v — 0, for Nx = 64.128 and At = -^. Please refer to Figure 5. 

(a) Nx = 64. v = 0 (b) Nx = 128. v = 0 

Figure 5. Evolution of WWV2 with modulated cosine initial condition 
(Equation 3.9), A = 0.01,u = 0,T = 10,At = ^ . In part a) Nx = 64 and in part b) Nx = 128. 

However, if A is increased to a value of A = 0.045 we found that with a moderate number 

of Fourier collocation points, Nx = 64. and a reasonable time-step, Af = ^# , we were unable 
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to resolve a believable solution. To make these ideas more precise we note that from (CS93), 

the energy of the full Euler equations (Equation 2.1) is 

H = \J(ZG(r]m+gr1
2)dx, (3.10) 

where G{-q)[£\ = Vip • N,V<p = (X{ri)[&Y{ri)[£\),N = ( - 9 ^ , 1 ) and G(r])[^} is the DNO 

(CS93). 

The inviscid version of our model equations is essentially (Equation 2.1) truncated after 

quadratic contributions. Thus it has energy given by (Equation 3.10) truncated after quadratic 

order, i.e., 

H'2 = lj SWS+^m-idrtfXoW+gtfdx. (3.11) 

To measure the integrity of our solutions we measure the relative change of this energy from 

the initial to the final time: 

. H2(t = T)-H2(t = 0) 
6H = HM=0) ' ( 3 ' 1 2 ) 

In the case mentioned above (A = 0.045, Nx = 64) this relative error is approximately 0.39. 

while this quantity is unchanged if the time step is reduced by a factor of 10. If the number of 

collocation points is increased to Nx = 128. then for both At = - ^ and At = -^, the solution 

blows up after t = 2. By contrast, if we select v = 2Ax 10~5 with Nx = 64 and At = ^ , then 

we can produce a solution which not only looks quite reasonable, but also produces a relative 
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energy error of e# « 7 x 10 - 3 , under 1%. If we select ^ = 1.095 x 10~4 with Nx = 128 and 

At = - j ^ , then we can compute the solution depicted in Figure 6 b) with e n ~ 8 x 10~2. 

(a) Nx = 64. v = 2.4 x 1CT5 (b) A^ = 128. v = 1.095 x 10"4 

Figure 6. Evolution of WWV2 with modulated cosine initial condition 
(Equation 3.9), A = 0.045, T = 10. At = ~ . In part a ) ^ = 64. v = 2.4 x 10~5 and part b) 

Nx = 128,i/ = 1.095 x 10"4. 

In a similar fashion we also investigated the slightly more nonlinear case A = 0.05. Here, 

regardless of our choice of Nx = 64 or 128 or our time-step At = ^ or ~ . we were unable to 

obtain a finite solution at T = 10 using our code with v = 0. In this case, filtering of some sort 

is required. However, if we set v = 5.5 x 10~5 then, again, we found a physically reasonable 

solution with a relative energy error of en ~ 6 x 10~2, just over 6%. If we refine to Nx = 128 

with At = ^ then with v = 1.9356 x 10~4 we find a solution with e# « 0.38. While not really 

a very satisfactory solution, it at least provides a profile without finite-time blow-up. 



(a) N.x = 64. v = 5.5 x 1CTB (b) Nx = 128. v = 1.9365 x 1CT4 

Figure 7. Evolution of WWV2 with modulated cosine initial condition 
(Equation 3.9), A = 0.05, T = 10. At = ^ . In part a)Nx = 64, v = 5.5 x 10 - 5 and part b) 

Nx = 128.i/ = 1.9365 x 10~4. 

While these wave simulations with small viscous effects were quite successful, the values 

of v chosen were quite specific. In general we found that values much larger than the ones 

chosen resulted in solutions which were overly damped and had energies tending to zero quite 

rapidly. On the other hand, if v were chosen much smaller than those reported above, oftentimes 

solutions would blow up significantly before T = 10. However, we do view this as an interesting 

alternative to other filtering techniques which, themselves, can be quite delicate and subtle. 



CHAPTER 4 

CONCLUSION 

We took Dias. Dyachenko and Zakharov's equations [DDZ08] with small viscosity effects 

and restated them in terms of the boundary quantities advocated by Zakharov [Zak68] for a 

Hamiltonian formulation of the water wave problem, namely the surface shape r; and surface 

velocity potential ip. 

Upon analyzing the relevant surface integral operators (related to the Dirichlet-Neumann 

Operator), we used their analyticity properties to derive a new, second order weakly nonlinear 

model with small viscosity: 

dtr, = |D|£ + 2ud2
xV + V\D\2S - \D\[V\D\£\ - (dxV)(dxO (4.1a) 

dtt = -gr, - 2v\D\2t, - 2^|£>|3£ + 2^|JD|2[??|r>|£] + ~(\D\0'2 - \(dxt,)
2 + 2u(d2r])\D\^ 

(4.1b) 

which we refer to as Water Waves with Viscosity of order approximation two (WWV2). 

We found exact solutions for two cases of WWV2: i) viscous linear waves and ii) inviscid 

travelling waves. The exact solution for viscous linear waves is 

vP(t) -2up2t 
cos(a;pt) |p| sin(u)pt) t] ^ ( fb(0) X 

" ? y ' cos(a;pt) 
(4.2) 

^ 4(0) J 

53 
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where LOP
2 — g\p\. In the case that p — 0. we have that 

HO) 

-gHO)+io(o) J 
(4.3) 

In the case of inviscid travelling waves we have that the solution for perturbation order n = 1 

is 

Ul.pQ — K 

' IPol ^ 
Ul.-po = -Ul. Po-

for p = ±p0 with 

(4.4) 

Co 
y/a\Po\ 

Po 
(4.5) 

and we obtain the trivial solution for all other p. For perturbation orders n > 1 the solution 

falls into one of following these 3 cases: 

Case 1: n > l.p / ±Po,p ^ 0 

" n , i 
1 

g\p\ - (COP)'-

icopRl.p + \p\Ri,p 

i -gR'n.p + icopki.p J 

(4.6) 
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Case 2: n > l.p = 0 

Un.O = 

I *Lo \ 

v ° ; 
(4.7) 

Case 3: n > l,p = ±po 

ln,po 

I 

V 
Rri.p0-ipOCn-l£l.p0 

icopo J 

(4.8) 

We then outlined a Fourier spectral collocation method for their numerical simulation com­

bined with the RK-4 time-stepping scheme. Furthermore, we investigated our schemes by 

performing various numerical tests. 

In studying spatial convergence we observed errors ev and ê  of the order of 10_13,10~14 

with v = 0,0.01,0.1 as Nx —> 64 in the linear model for T = 2,10. In the case of inviscid 

nonlinear waves we saw that the error approached the order of 10~15 and 10~ u for T = 2 and 

T = 10 respectively as N.x —> 64. 

Next, we investigated temporal convergence or our numerical approximation. We saw that 

as At -> 2.45 x 10 - 3 the error was of the order of 10^14 for T = 2 and 10"1 3 .10 - 1 4 for T = 10 

with v = 0,0.01,0.1 in the linearized water wave equations. The error measured between 

approximations of WWV2 with v = 0 to the exact solution of inviscid travelling solution was 

of the order of 10~15 and 10"14 as Af -> 2.45 x 10"3 for T = 2 and T = 10 respectively. 
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Our results also show that the order of accuracy was close to the expected value of 4 and 

that the rate of decay was near the expected value of 2v for both r\ and £. 

We then examined the numerical scheme with a modulated cosine initial condition while 

varying the amplitude and small values of viscosity. These results were then compared to that 

of Craig and Sulem (CS93). To validate our findings we also calculated the relative error in 

energy. Our results show that our scheme is quite stable and we propose that inviscid equations 

can sometimes be approximated numerically without filtering using our nonlinear schemes for 

small viscosities. 
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Appendix A 

GENERAL SOLUTION TO I N H O M O G E N E O U S LINEAR P R O B L E M 

The inhomogeneous linear problem relative to (Equation 2.26) is 

dtr} = \D\S + 2ud%ri + J(x,t) 

dt£ = -grj - 2is\D\2£ + K(x. t). 

(A.la) 

(A.lb) 

Upon taking its Fourier transform, we get 

dt 
M 
\ip) 

( 2v(ip)2 \p\ 

y -g -2u\p\2) 

VP 

+ 
\kp) 

J±n 
VP 

W 
+ 

\kPj 
(A.2) 

Using the method of variation of parameters we are able to find the general solution for 

(Equation A.2). That is, for 

dtXp(t) = ApXp{t)+Fp{t), (A.3) 

where 

Xp(t) 
' %{t) ^ 

K ipit) j 
, Fp(t) = 

f JP(t) ^ 

K KP(t) j 
(A.4) 
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A p p e n d i x A (Continued) 

and Ap is part of the fundamental matrix in (Equation 2.28), the general solution is 

Xp(t) = %{t)C + %{t) j%-1{s)Fp{s)ds1 (A.5) 

where, 

$ p = the fundamental matrix stated in (Equation 2.11) 

' * (0) * 
c 

\ 4(0) j 
( 

$p-] = e
2vp * 

cos(u>pt) - W ^ M 

ujpsin(ujpt) , ,x 
y [p] COS{ulpt) 

which leads to the general solution of 

= e 
-2up2t 

!' 
JO 

cos(u>pt)fjp(0) + g sm(LOpt)ip(0) 

V ~ R sin(u)pt)?)p(0) + cos{u)pt)£p(0)J 

( 
-2vp2(t-s) 

JEL cos(cV(t - s))Jp{s) + g sin(u;p(i - s))Kp(s) 

V " b [ s i u H ( * ~ S))MS) + cos(wp(t - s))A'p(s)^ 

ds. (A.6) 
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A p p e n d i x B 

C O D E C O M P A R I N G R K - 4 S C H E M E TO E X A C T S O L U T I O N OF 

V I S C O U S L I N E A R W A T E R WAVES 

All of the programming was done on in MATLAB R2007a. The computer processor speed 

was 2.2 GHz. the speed for the memory was 667 MHz, the memory for the system was 3.0 G and 

the operating system used was Windows Vista. Five programs were used for the linear water 

waves. The main algorithm is lin.m which is supplemented by functions exactsoln.m. feta.m, 

fksi.m and plotapprox.m. Function exactsoln.m calculates the exact linear solution found in 

§ 2.4.1. The function plotapprox.m plots the numerical approximation for ?/ and £ against the 

exact solution. Functions feta.m and fksi.m calculate the right hand side of (Equation 2.29) 

and (Equation 2.30). 

B. l Algorithm for Viscous Linear Water Waves: lin.m 

tti 0/ 0/ o / o / <y 0/ <y <y o / oy oy a>/ 0/ oy oy oy 0 / oy 0/ oy oy oy oy oy oy oy oy oy oy 0/ oy oy 0 / <y 0 / <y <y 
/o /© A A A A /o A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

°/0 lin.m °/0 

% RK4 scheme applied to linear model °/0 

0 / 0 / 0 / 0 / 0 y 0 / 0 / 0 / 07 0 / 0 / 0 / 0/ 0/ 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0/ 0 / oy oy oy oy oy oy oy oy oy oy oy oy 
/o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /0 /o /o /o /o /o /o /o /o /o /o 10 In In In /o /o /o /o /o 

clear all; elf; N = 6 4 ; g = l ; n u = 0 . 1 ; L = 2*pi; h = L/N; x = 

h*(l:N); p = (2*pi/L)* [0:N/2-1,-N/2:-1]; pmax = (2*pi/L)*N/2; 

'/, Use different values of dt to produce figure(2) in this program. 
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A p p e n d i x B (Continued) 

% dt = [h/10, h /20 , h / 4 0 ] ; 

°/0 Use a small value for dt to output f i g u r e ( l ) and f igure(3) in t h i s program. 

dt = h/40; dtmax = 2*nu*pmax~2/(nu~2*pmax~4 + g*pmax) 

for m = l : l e n g t h ( d t ) 

t = 0; 

dtm = dt(m); 

A = 0.1; D = 0.1; etaO = A*cos(x); ksiO = D*sin(x); v_eta = etaO; 

v_ksi = ksiO; tmax = 10.0; tplot =0.1; plotgap = 

round(tplot/dtm); dtm = tplot/plotgap; nplots = round(tmax/tplot); 

data_eta = [v_eta; zeros(nplots,N)]; data_ksi = [v_ksi; 

zeros(nplots.N)]; amp_eta = norm(v_eta,inf); amp_ksi = 

norm(v_ksi,inf); tdata = t; 

for j = l:nplots 

for n = 1:plotgap 

t = t + dtm; 

kl_e ta = f e t a (v_e t a , v_ks i , g , nu ,L ,p ) ; 

k l_ksi = fk s i (v_e t a ,v_ks i , g , nu ,L ,p ) ; 

k2_eta = fe ta (v_e ta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi ,g,nu,L,p); 
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A p p e n d i x B ( C o n t i n u e d ) 

k2_ks i = f k s i ( v _ e t a + 0 . 5 * d t m * k l _ e t a , v _ k s i + 0 . 5 * d t m * k l _ k s i , g , n u , L , p ) ; 

k 3 _ e t a = f e t a ( v _ e t a + 0 .5*d tm*k2_e t a ,v_ks i + 0 . 5 * d t m * k 2 _ k s i , g , n u , L , p ) ; 

k3_ks i = f k s i ( v _ e t a + 0 .5*d tm*k2_e t a , v_ks i + 0 . 5 * d t m * k 2 _ k s i , g , n u , L , p ) ; 

k 4 _ e t a = f e t a ( v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p ) ; 

k4_ks i = f k s i ( v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p ) ; 

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6; 

slope.ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6; 

v_eta_new = v_eta + slope_eta; 

v_ksi_new = v_ksi + slope_ksi; 

v _ e t a = v_eta_new; 

v_ks i = v_ksi_new; 

end 

d a t a _ e t a ( j , : ) = v _ e t a ; 

d a t a _ k s i ( j , : ) = v _ k s i ; 

amp_eta = [amp_eta; n o r m ( v _ e t a , i n f ) ] ; 

amp_ksi = [amp_ksi; n o r m ( v _ k s i , i n f ) ] ; 

t d a t a = [ t d a t a ; t ] ; 



Appendix B (Continued) 

[ex_eta,ex_ksi] = exactsoln(etaO,ksiO,t,g,nu,p); 

exact_eta(j , :) = ex_eta; 

exact_ksi(j , :) = ex_ksi; 

end 

error_eta(m) = norm(v_eta - ex_eta, inf); error_ksi(m) = 

norm(v_ksi - ex_ksi, inf); 

% Plotting figure(l): comparison between numerical and exact solution 

figure(l); for j=l:nplots 

plotapprox(x,data_eta(j,:),data_ksi(j,:),exact_eta(j,:), 

exact_ksi(j,:),N,nu,tmax,dt); 

fprintf ('[j=°/,d] t=°/„g |err_eta|=%g | err_ksi|=°/„g\n' , j ,tdata(j) , . . . 

norm(data_eta(j,:)-exact_eta(j,:),inf),... 

norm(data_ksi(j,:)-exact_ksi(j,:),inf),N); 

end 

end 

% Calculating and plotting figure(2): log(error) vs. log(dt) 



Appendix B (Continued) 

cc_eta = polyfit(log(dt), log(error_eta), 1); cc_ksi = 

polyfit(log(dt), log(error_ksi), 1); 

fprintf(>cc_eta(l) = 7,g cc_eta(2) = °/.g cc_ksi(l) = °/,g cc_ksi(2) = °/.g\n', 

cc_eta(l),cc_eta(2),cc_ksi(l),cc_ksi(2)); 

figure(2); subplot(l,2,l); loglog(dt, error_eta, '*') 

xlabeK'log(dt) ') ylabel('log(eta_e_r_r)') 

title(['N=',num2str(N),', nu=',num2str(nu),', T=',num2str(tmax),', 

r_e_t_a=',num2str(cc_eta(l))]) subplot(1,2,2); loglog(dt, 

error_ksi, '*') xlabel('log(dt)') ylabel('log(xi_e_r_r)') 

title(['N=',num2str(N),', nu=',num2str(nu),', T=',num2str(tmax),', 

r_x_i=',num2str(cc_ksi(l))]) hold on; 

°L Calculating decay rate alpha and plotting figure (3): log (amplitude) vs. 

cc2_eta = polyfit(tdata, log(amp_eta), 1); cc2_ksi = 

polyfit(tdata, log(amp_ksi), 1); 

fprintf('alpha_eta = °/0g\n', cc2_eta(l)); 

fprintf('alpha_ksi = %g\n', cc2_ksi(l)); 

figure(3); subplot(1,2,1) plot(tdata, log(amp_eta),'*') 

xlabel('t') ylabel('log(eta_a_m_p)') title( [,N=',num2str(N),', 

nu=',num2str(nu),', T=',num2str(tmax), ', 

alpha_e_t_a=',num2str(cc2_eta(l))]) subplot(1,2,2) plot(tdata, 
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log(amp_ks i ) , ' * ' ) x l a b e l ( ' t ' ) y label ( ' log(xi_a_m_p) ' ) 

t i t l e ( [ ' N = ' , n u m 2 s t r ( N ) , ' , n u = ) , m i m 2 s t r ( n u ) , ' , T= ' ,num2str ( tmax) , ' , 

a lpha_k_s_i= ' ,num2st r (cc2_ksi ( l ) ) ] ) 

B.2 Function exactsoln.m 

0 / 0 / 0 / 01 0/ 0 / 0 / 0 10 / 91 0 / 0 / 0 j 0/ 0/ 

/o /o /o /o /o /o /o /o /o A /o /o /o /o /o 

% exactsoln.m % 

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ HI 0/ 0/ 0/ 0/ 
ID h /o /o /o /o /o /o /o /o /o /o /o /o /e 

function [eta.ksi] = exactsoln(etaO,ksiO,t,g,nu,p); 

nx = length(p); etahat = 0*etaO; ksihat = 0*ksiO; etaOhat = 

fft(etaO); ksiOhat = fft(ksiO); 

for j=l:nx 

pp = p(j); 

omega = sqrt(g*abs(pp)); 

if(abs(pp)<le-14) 

all = 1.0; 

al2 = 0.0; 

a21 = -g*t; 
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a22 = 1.0; 

ee = 1.0; 

else 

all = cos(omega*t); 

al2 = (abs(pp)/omega)*sin(omega*t); 

a21 = -(omega/abs(pp))*sin(omega*t); 

a22 = cos(omega*t); 

ee = exp(-2*nu*abs(pp)~2*t); 

end 

e t a h a t ( j ) = ee*(a l l*e taOha t ( j )+a l2*ks i0ha t ( j ) ) ; 

k s i h a t ( j ) = ee*(a21*eta0hat( j )+a22*ksi0hat( j ) ) ; 

end 

e t a = r e a l ( i f f t ( e t a h a t ) ) ; ks i = r e a l ( i f f t ( k s i h a t ) ) ; 

B.3 Funct ion feta.m 

HI HI HI 0 / HI HI HI HI HI HI 

/H IH ID /O IH /O /O /O U /O 

°/„ f e t a . m "L 

HI HI HI HI HI HI HI HI HI HI 

IH IH IH IH IH IH IH /O /o /O 
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f u n c t i o n [ fe ] = f e t a ( v _ e t a , v _ k s i , g , n u , L , p ) 

f e l = r e a l ( i f f t ( a b s ( p ) . * f f t ( v _ k s i ) ) ) ; fe2 = 2*nu* rea l ( i f f t ( 

( - p . ~ 2 ) . * f f t ( v _ e t a ) ) ) ; f e = f e l + f e 2 ; 

B . 4 Funct ion fksi .m 

oy o / oy oy oy oy oy oy oy oy 
/o /o /o /o /o /o /o /o to /o 

% f k s i . m % 

0/ 0/ 0 / 0/ 0/ 0 / 0/ 0 / 0/ 0/ 
/o /o /o /o /o /o /o /o /o /o 

f u n c t i o n [fk] = f k s i ( v _ e t a , v _ k s i , g , n u , L , p ) 

f k l = - g * v _ e t a ; fk2 = - 2 * n u * r e a l ( i f f t ( ( a b s ( p ) . ~ 2 ) . * f f t ( v _ k s i ) ) 

) ; fk = f k l + fk2 ; 

B . 5 Func t ion p l o t a p p r o x . m 

0 / 0/ 0/ 01 01 0/ 0/ 01 Oj 01 0/ 0/ 0/ 01 0/ 01 
to /o /o /o /o /o /o /o /o A /o to to to to to 

% plotapprox.m % 

o/ oy o / o/ o / o / o / o/ o/ o / o / oy oy oy oy oy 
/o to to to to to lo to to to to to to to to to 

f u n c t i o n [] = p l o t a p p r o x ( x , e t a 5 k s i , e t a _ e x , k s i _ e x , N , n u , t m a x , d t ) 
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subplot(1,2,1); p l o t ( x , e t a , ' b - o ' , x , e t a _ e x , ' r ' ) ; x l abe l ( ' x ' ) ; 

y l a b e l ( ' e t a ' ) ; t i t le([ 'N=' ,num2str(N), ' , nu=',num2str(nu),', 

T=',num2str(tmax),', dt=' num2str(dt)]) legend('eta r k 4 ' , ' e t a 

exac t ' ) ; 

subplot (1,2,2) ; plot (x.ksi , ' g -o ' , x ,k s i_ex , ' c ' ) ; x l abe l ( ' x ' ) ; 

y l a b e l ( ' x i ' ) ; t i t le([ 'N=' ,num2str(N), ' , nu=',num2str(nu), ' , 

T=',num2str(tmax),', dt=' num2str(dt)]) legend('xi r k 4 ' , ' x i 

exac t ' ) ; pause(O.l); 
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A p p e n d i x C 

C O D E C O M P A R I N G R K - 4 S C H E M E F O R W W V 2 TO E X A C T 

S O L U T I O N OF IN V I S C I D T R A V E L L I N G WAVES 

Seven programs were used to compare the numerical approximation of WWV2 through 

the RK-4 scheme to the exact solution of inviscid travelling waves found in § 2.4.2. The main 

program is nonlin.m that is supported by functions exactsoln_nltw.m, feta_nl.m, fksLnl.m, new-

conv.m, plotapprox.m and tw_ww2.m. Program nonlin.m calculates r; and £ using the RK-4 

scheme. Functions feta_nl.ni and fksLnl.m calculate the right hand side of dtr\ and dt£ in 

WWV2. Function newconv.m is used by feta_nl.m, fksi_nl.m and tw_ww2.m to execute mul­

tiplication. Function plotapprox.m plots the numerical estimate of rj and £ against the exact 

solution of the inviscid travelling waves calculated by tw_ww2.m 

C.l Algorithm for W W V 2 : nonlin.m 

oI y y o/ y y y y y y y o/ y y y y y y y y y y y y y oy y y y y o / y y y y y y y y y y 
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

% nonlin.m 1 

7, RK4 scheme applied to nonlinear model % 

o I y o/ o/ oy o / o / o / ttj <ti <y o / ty o / ty oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o /o /o /o A /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o 

clear all; elf; 

N = 64; nx = 64; g = 1; nu = 0; L = 2*pi; h = L/N; x = h*[0:N-l]; 

http://feta_nl.ni
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p = ( 2 * p i / L ) * [ 0 : N / 2 - l , - N / 2 : - l ] ; pmax = (2*pi/L)*N/2; 

°/0 Use different values of dt to produce figure(2) in this program. 

7. dt = [h/10, h/20, h/40] ; 

% Use a small value for dt to output figure(l) and figure(3) in this program. 

dt =h/40; dtmax = 2*nu*pmax~2/(nu~2*pmax"4 + g*pmax); M = 20; j = 

1; delta = 0.01; nt = 1000; [tw_eta, tw_ksi, c] = 

tw_ww2(L,g,nx,M,j.delta); num_dt = length(dt); 

for m = l:length(dt) 

t = 0; 

dtm = dt(m); 

eta0_nltw = tw_eta'; 

ksi0_nltw = tw_ksi'; 

A = .1; D = .1; v_eta = tw_eta'; v_ksi = tw_ksi'; 

tmax = 10.0; tplot = 0.1; plotgap = round(tplot/dtm); dtm = 

tplot/plotgap; nplots = round(tmax/tplot); data_eta = [v_eta; 

zeros(nplots,N)]; data_ksi = [v_ksi; zeros(nplots,N)]; amp_eta = 

norm(v_eta,inf); amp_ksi = norm(v_ksi,inf); tdata = t; 



Appendix C (Continued) 

for j = l:nplots 

for n = l:plotgap 

t = t + dtm; 

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p); 

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p); 

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p) 

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p) 

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p) 

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p) 

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p); 

k4_ksi = fksi_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p); 

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6; 

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6; 

v_eta_new = v_eta + slope_eta; 

v_ksi_new = v_ksi + slope_ksi; 

v_eta = v_eta_new; 

v_ksi = v_ksi_new; 

end 
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d a t a _ e t a ( j , : ) = v _ e t a ; 

d a t a _ k s i ( j , : ) = v _ k s i ; 

amp_eta = [amp_eta; n o r m ( v _ e t a , i n f ) ] ; 

amp_ksi = [amp_ksi; n o r m ( v _ k s i , i n f ) ] ; 

t d a t a = [ t d a t a ; t ] ; 

[ e x _ e t a , e x _ k s i ] = e x a c t s o l n _ n l t w ( e t a O _ n l t w , k s i O _ n l t w , - c , L , x , t ) ; 

e x a c t _ e t a ( j , : ) = e x _ e t a ; 

e x a c t _ k s i ( j , : ) = e x _ k s i ; 

end e t a _ f i n a l ( m , : ) = v _ e t a ; k s i _ f i n a l ( m , : ) = v _ k s i ; 

e r r o r _ e t a ( m ) = norm(v_e ta - e x _ e t a , i n f ) ; e r r o r _ k s i ( m ) = 

norm(v_ksi - e x _ k s i , i n f ) ; 

% P l o t t i n g f i g u r e ( l ) : comparison between numer i ca l and exac t s o l u t i o n v s . x 

f i g u r e ( l ) ; f o r j = l : n p l o t s 

p l o t a p p r o x ( x , d a t a _ e t a ( j , : ) , d a t a _ k s i ( j , : ) , e x a c t _ e t a ( j , : ) , e x a c t _ k s i ( j , : ) , 

N , n u , t m a x , d t ) ; 

f p r i n t f ( '[j=°/,d] t='/,g I err_eta|=°/„g | e r r _ k s i |=°/0g\n', j , t d a t a ( j ) , . . . 

n o r m ( d a t a _ e t a ( j , : ) - e x a c t _ e t a ( j , : ) , i n f ) , . . . 

n o r m ( d a t a _ k s i ( j , : ) - e x a c t _ k s i ( j , : ) , i n f ) ) ; 

end 
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end 

% C a l c u l a t i n g and p l o t t i n g f i g u r e ( 2 ) : l o g ( e r r o r ) v s . l o g ( d t ) 

c c _ e t a = p o l y f i t ( l o g ( d t ) , l o g ( e r r o r _ e t a ) , 1 ) ; c c_ks i = 

p o l y f i t ( l o g ( d t ) , l o g ( e r r o r _ k s i ) , 1 ) ; 

f p r i n t f C c c _ e t a ( l ) = '/.g c c _ e t a ( 2 ) = °/.g c c _ k s i ( l ) = °/,g c c _ k s i ( 2 ) = 7 .g \n ' , 

c c _ e t a ( l ) , c c _ e t a ( 2 ) , c c _ k s i ( l ) , c c _ k s i ( 2 ) ) ; 

f i g u r e ( 2 ) ; s u b p l o t ( 1 , 2 , 1 ) ; l o g l o g ( d t , e r r o r _ e t a , ' * ' ) 

x l a b e K ' l o g ( d t ) ' ) y l a b e K ' l o g ( e t a _ e _ r _ r ) ' ) 

t i t l e ( [ ' N = ' , n u m 2 s t r ( N ) , ' , n u = ' , n u m 2 s t r ( n u ) , ' , T = ' , n u m 2 s t r ( t m a x ) , ' , 

r _ e _ t _ a = ' , n u m 2 s t r ( c c _ e t a ( l ) ) ] ) s u b p l o t d , 2 , 2 ) ; l o g l o g ( d t , 

e r r o r _ k s i , ' * ' ) x l a b e l ( ' l o g ( d t ) ' ) y l a b e K ' l o g ( x i _ e _ r _ r ) ' ) 

t i t l e ( t , N = ' , n u m 2 s t r ( N ) , ' , n u = J , n u m 2 s t r ( n u ) , ' , T = ' , n u m 2 s t r ( t m a x ) , ' , 

r _ x _ i = ' , n u m 2 s t r ( c c _ k s i ( l ) ) ] ) ho ld on; 

% Calculating decay rate alpha and plotting figure(3): log(amplitude) vs. t 

cc2_eta = polyfit(tdata, log(amp_eta), 1); cc2_ksi = 

polyfit(tdata, log(amp_ksi), 1); 

fprintf('alpha_eta = yog\n', cc2_eta(l)); 

fprintf('alpha_ksi = %g\n', cc2_ksi(l)); 
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figure(3); subplot(1,2,1) plot(tdata, log(amp_eta),'*') 

xlabel('t') ylabel('log(eta_a_m_p)') title( ['N=',num2str(N),', 

nu=',num2str(nu),', T=',num2str(tmax), ', 

alpha_e_t_a= ' ,num2st r (cc2_eta( l ) ) ] ) subplo t (1 ,2 ,2) p l o t ( t d a t a , 

log(amp_ks i ) , ' * ' ) x l a b e l ( ' t ' ) y label ( ' log(xi_a_m_p) ' ) 

t i t l e ( [ ' N = ' , n u m 2 s t r ( N ) , ' , nu= ' ,num2s t r (nu) , ' , T=' ,num2str( tmax) , ' , 

a lpha_k_s_i= ' ,num2str (cc2_ksi ( l ) ) ] ) 

C.2 Funct ion exactsoln_nltw.m 

oy oy oy oy o/ o10/ oy o/ o / oy 0/ 0 / 0 / 0/ 0/ 0 / 0 / 0/ 0/ 
/o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o 

% exactsoln_nltw.m % 

0 / 0y oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o A /o /o /o /o /o /0 /o /o /o /o /o /o /o /o /o /o /o /o 

function [eta_nltw,ksi_nltw] = 

exactsoln_nltw(etaO_nltw,ksiO_nltw,c,L,x,t); 

nx = length(etaO_nltw); 

y, Exact solution is eta(x,t) = etaO_nltw(x-ct) , ksi(x.t) = ksiO_nltw(x-ct) 

y = x-c*t; 
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e t aOha t_n l tw = f f t ( e t a O _ n l t w ) ; k s i O h a t _ n l t w = f f t ( k s i O _ n l t w ) ; 

e t a _ n l t w = 0 .0*e taO_n l tw; k s i _ n l t w = 0 .0*ks iO_nl tw; 

f o r j = l : n x 

e t a _ n l t w ( j ) = e t a O h a t _ n l t w ( 0 + l ) / n x ; 

f o r k = l : n x / 2 - l 

e t a _ n l t w ( j ) = e t a _ n l t w ( j ) . . . 

+ 2 * r e a l ( e t a 0 h a t _ n l t w ( k + l ) / n x ) * c o s ( 2 * p i * k * y ( j ) / L ) . . . 

- 2*imag(eta0hat_nltw(k+l)/nx)*sin(2*pi*k*y(j) /L); 

end 

end 

for j= l :nx 

ks i_nl tw(j ) = ksiOhat_nltw(0+l)/nx; 

for k=l :nx /2- l 

ks i_nl tw( j ) = ks i_nl tw( j ) . . . 

+ 2*real(ksi0hat_nl tw(k+l) /nx)*cos(2*pi*k*y(j) /L) . . . 

- 2*imag(ksi0hat_nltw(k+l)/nx)*sin(2*pi*k*y(j) /L); 

end 

end 
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C.3 Function feta_nl.m 

0/ 0/ 0/ o / <y o / 0/ o / o / o / 0/ 0/ o i 
In In In In In In In In In In In In In 

1 feta.nl.m '/, 

In In In In In In In In In In In In In 

function [fe] = feta_nl(v_eta,v_ksi,g,nu,L,p) 

pp = p'; absp = abs(pp); absp2 = abs(pp).~2; etahat = 

fft(v_eta.'); xihat = fft(v_ksi.'); 

fel = absp.*xihat; fe2 = 2*nu*(((i*pp)."2).*etahat); temp = 

absp2.*xihat; fe3 = newconv(etahat,temp); temp = absp.*xihat; 

temp2 = newconv(etahat,temp); fe4 = -absp.*temp2; temp = 

(i*pp).*xihat; temp2 = (i*pp).*etahat; fe5 = -newconv(temp,temp2); 

fe = real( ifft( fel+fe2+fe3+fe4+fe5 ) ) . ' ; 

C.4 Function fksi_nl.m 

o / 0 / 0 / 010/ o / 0 / 0 / 0/ 0/ 0/ o / 0 / 
/o /o /o /o /o /o /o /o ft h h /o A 

% f k s i _ n l . m °/0 

V °/ V V V V °/ V V V V V V /o /o A A A A A A A A A A A 
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function [fk] = fksi_nl(v_eta,v_ksi,g,nu,L,p) 

pp = p'; absp = abs(pp); absp2 = abs(pp).~2; absp3 = abs(pp)."3; 

etahat = fft(v_eta.'); xihat = fft(v_ksi.'); 

fxl = -g*etahat; fx2 = -2*nu*(absp2.*xihat); temp = absp3.*xihat; 

fx3 = -2*nu*newconv(etahat,temp); temp = absp.*xihat; temp2 = 

newconv(etahat,temp); fx4 = 2*nu*absp2.*temp2; temp = absp.*xihat; 

temp2 = absp.*xihat; fx5 = 0.5*newconv(temp,temp2); temp = 

(i*pp).*xihat; temp2 = (i*pp).*xihat; fx6 = 

-0.5*newconv(temp,temp2); temp = absp.*xihat; temp2 = 

((i*pp).~2).*etahat; fx7 = 2*nu*newconv(temp,temp2); 

fk = real( ifft( fxl+fx2+fx3+fx4+fx5+fx6+fx7) ).'; 

C.5 Function newconv.m 

oy o / <y o / oy o/ o/ of o / oy oy oy o/ 
/o /o /o ID ID ID ID ID ID ID ID ID ID 

"ID newconv.m "L 

o / o / o/ oy o / o / o / o / ot DI at <y oy 
ID ID ID ID ID ID ID ID ID ID ID ID ID 

function [c] = newconv(a,b) 
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n = l e n g t h ( a ) ; a t i l d e = [ a ( n / 2 + l : n ) ; a ( l : n / 2 ) ] ; b t i l d e = 

[ b ( n / 2 + l : n ) ; b ( l : n / 2 ) ] ; c t i l d e = c o n v ( a t i l d e , b t i l d e ) ; c = f f t ( 

i f f t ( a ) . * i f f t ( b ) ) ; 

C.6 Funct ion p lo tapprox.m 

/o /o /o A /o /o /o /o A A A A A A A A 

°/0 p l o t a p p r o x . m % 

0/ 0/ 0/ 0/ HI til 0/ 0 /0 / 0/ 0/ 0/ 0/ 0/ 0/ 0/ 
A A A A A A A A A A A A A A A A 

function [] = p lo tapprox(x ,e ta ,ks i , e ta_ex ,ks i_ex ,N,nu , tmax,d t ) 

subp lo t (1 ,2 ,1 ) ; p l o t ( x , e t a , ' b - o ' , x , e t a _ e x , ' r ' ) ; x l a b e l ( ' x ' ) ; 

y l a b e l ( ' e t a ' ) ; t i t l e ( [ ' N = ' , n u m 2 s t r ( N ) , ' , nu= ' ,num2s t r (nu) , ' , 

T= ' ,num2st r ( tmax) , ' , d t= ' num2st r (d t ) ] ) ; l egend( ' e t a r k 4 ' , ' e t a tw 

e x a c t ' ) ; 

% For travelling wave approximation use: °/„ legend('eta rk4',,eta tw approx'); 

subplot(1,2,2); plot(x,ksi,'g-o',x,ksi_ex,'c'); xlabel('x'); 

ylabel('xi'); title(['N=',num2str(N),', nu=',num2str(nu),', 

T=),num2str(tmax),', dt=' num2str(dt)]); % For travelling wave approximation use: 
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" / . legend( 'x i r k 4 ' , ' x i tw a p p r o x ' ) ; 

p a u s e ( 0 . 1 ) ; 

C.7 Funct ion t w _ w w 2 . m 

HI at y y y y y y y y y y 
la la la la In /o /o la /o la A /o 

% tw_ww2.m 7, 

y y y y y y y y o / y y y 
la /o la la la la la la la la la la 

f u n c t i o n [ e t a , x i , c ] = t w _ w w 2 ( L , g , n x , N , j . d e l t a ) 

°/a Data s t r u c t u r e s 

7a E t a -> d_{p,n} 

% Xi -> a_{p ,n} 

dpn = zeros(nx,N+l); apn = zeros(nx,N+l); en = zeros(N+l); dx = 

L/nx; x = dx*[0:nx-l]'; p = (2*pi/L)* [0:nx/2-l,-nx/2:-l]'; absp = 

abs(p); absp2 = absp."2; 

*/.y. n=i 

pO = p(j+l); cO = sqrt(g*abs(pO))/pO; cn(0+l) = cO; dpn(j+l,l+l) = 
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A p p e n d i x C ( C o n t i n u e d ) 

a b s ( p 0 ) * ( n x / 2 . 0 ) ; d p n ( n x - j + l , 1 + 1 ) = c o n j ( d p n ( j + l , 1 + 1 ) ) ; 

a p n ( j + l , l + l ) = i * c 0 * p 0 * ( n x / 2 . 0 ) ; a p n ( n x - j + l , 1 + 1 ) = 

c o n j ( a p n ( j + l , 1 + 1 ) ) ; den = g * ( i * p O ) * d p n ( j + l , l + l ) + 

c 0 * p 0 ~ 2 * a p n ( j + l , l + l ) ; 

n n>l 

f o r n=2:N 

% Se t up REta 

REta = z e r o s ( n x , l ) ; 

f o r l = l : n - l 

temp = a b s p 2 . * a p n ( : , 1 + 1 ) ; 

REta = REta + n e w c o n v ( d p n ( : , n - l + l ) , t e m p ) ; 

temp = a b s p . * a p n ( : , 1 + 1 ) ; 

temp2 = newconv(dpn(:,n-l+l),temp); 

REta = REta - absp.*temp2; 
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A p p e n d i x C (Continued) 

temp = ( i*p) .*apn( : ,1+1) ; 

temp2 = ( i * p ) . * d p n ( : , n - l + l ) ; 

REta = REta - newconv(temp,temp2); 

end 

for l=2 :n - l 

REta = REta - cn (n - l+ l )* ( ( i*p ) .*dpn( : , 1+1) ) ; 

end 

*/. Set up RXi 

RXi = z e r o s ( n x , l ) ; 

for l = l : n - l 

temp = absp.*apn(: ,1+1); 

temp2 = a b s p . * a p n ( : , n - l + l ) ; 

RXi = RXi + (1.0/2.0)*newconv(temp,temp2); 

temp = ( i*p) .*apn( : ,1+1) ; 

temp2 = ( i * p ) . * a p n ( : , n - l + l ) ; 

RXi = RXi - (1.0/2.0)*newconv(temp,temp2); 
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end 

for l=2:n-l 

RXi = RXi - cn(n-l+l)*((i*p).*apn(:,1+1)); 

end 

% Solve for c_{n-l} 

num = g*REta(j+l) - i*cO*pO*RXi(j+l); 

cn(n-l+l) = real( num/den ); 

% Correct REta, RXi 

REta = REta - cn(n-l+l)*(i*p).*dpn(:,1+1); 

RXi = RXi - cn(n-l+l)*(i*p).*apn(:,1+1); 

°/, Solve for d_{p,n}, a_{p,n} 

dpn(0+l,n+l) = RXi(0+1)/g; 

apn(0+l,n+l) = 0; 



Appendix C (Continued) 

for q=l :nx /2- l 

PP = p (q+D; 

if(q~=j) 

deter = g*abs(pp) - (c0*pp)~2; 

dpn(q+l,n+l) = (i*pp*cO*REta(q+l) + abs(pp)*RXi(q+l))/deter; 

apn(q+l,n+l) = (-g*REta(q+l) + i*pp*cO*RXi(q+l))/deter; 

e l se 

dpn(q+l,n+l) = 0 . 0 ; 

apn(q+l,n+l) = RXi(q+l)/(i*cO*pO); 

end 

dpn(nx-q+l,n+l) = conj(dpn(q+l ,n+l) ) ; 

apn(nx-q+l,n+l) = conj (apn(q+l ,n+l ) ) ; 

end 

end 

% Find Eta(x), Xi(x) by summing series for d_{p,n}, a_{p,n} 

dp = zeros(nx,l); ap = zeros(nx,1); c = cO; 



Appendix C (Continued) 

84 

for 1=1:N 

dp = dp + d p n ( : , l + l ) * d e l t a ~ l ; 

ap = ap + a p n ( : , l + l ) * d e l t a ~ l ; 

c = c + cn ( l+ l )*de l t a~ l ; 

end 

e t a = r e a l ( i f f t ( dp ) ) ; x i = r e a l ( i f f t ( ap ) ) ; 
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A p p e n d i x D 

C O D E F O R T R A V E L L I N G W A V E WATERFALL P L O T S 

Three programs were used to create the waterfall plots for travelling waves along with the 

plots of \JJ\ vs. c and |£| vs. c. They are plotetaxi.m, tw_ww2.m and newconv.m. Please refer 

to § C for the codes to functions tw_ww2.m and newconv.m. 

D . l Algorithm for Plotting Travelling Wave Waterfall Plots: plotetaxi.m 

0/ 0/ ty o/ o/ <y o/ o/<ti oi HI o/ o/ y o/ 
/o /o /o /o A /o /o /o /o /o /o /o /o /o /o 

% plotetaxi.m 7, 

0/ 0/ 0/ 0/ 01 til 01 HI 01 01 01 01 01 01 01 

lo lo to to to /o lo to to to to to to to to 

°L Plotting travelling solutions of WWV2 (with nu=0) 

°/o for different values of delta. 

clear all; elf; L = 2.0*pi; g = 1.0; nx = 128; N = 20; j = 1; dx = 

L/nx; x = dx* [0:nx-l]'; delta = [0:0.001:0.05]; nd = 

length(delta); etaplot = zeros(nd.nx); xiplot = zeros(nd.nx); h = 

waitbar(0,'please wait...'); 

for m=l:nd 
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waitbar(m/nd); 

[ e t a , x i , c ] = tw_ww2(L,g,nx,N,j ,delta(m)); 

cc(m) = c; 

etamax(m) = norm(eta,inf); 

ximax(m) = norm(xi,inf); 

etaplot(m,:) = eta; 

xiplot(m,:) = xi; 

end 

close(h); 

subplot(2,2,1); waterfall(x,delta,etaplot); 

xlabel('x');ylabel('delta');zlabel('eta'); subplot(2,2,2); 

waterfall(x,delta,xiplot); xlabel('x'); ylabel('delta'); 

zlabeK'xi'); subplot(2,2,3); plot(cc,etamax,'b-o'); xlabel('c'); 

ylabel('|eta|'); subplot(2,2,4); plot(cc.ximax,'b-o'); 

xlabel('c'); ylabel('|xi|'); 
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CODE FOR WATERFALL PLOTS WITH MODULATED COSINE 

INITIAL CONDITION 

Four programs were used in creating the waterfall plots. The algorithm waterfall.m requires 

subroutines feta_nl.m, fksi_nl.m and newconv.m. Functions feta_nl.m and fksLnl.m calculate 

the right hand side of dtf] and dt£, in WWV2. Function newconv.m is used by feta_ul.m and 

fksi_nl.m to execute multiplication. Please refer to § C for feta_nl.m, fksi_nl.m and newconv.m. 

E.l Algorithm for Waterfall Plots with Modulated Cosine IC: waterfall.m 

oy oy oy oy oy o / oy oy oy oy oy oy oy oy ot oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
A /o /o It /o /o /o /o It /o /o /o /o It /o /o /o /o It It /o /o /o /o lo It It It It It It It It It It It It It It It It It It It It It It It It It 

°/t waterfall.m °/« 

°/0 Full model with modulated cosine IC simulating */, 

°/t Craig and Sulem waterfall plots °/0 

oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It 

clear all; elf; 

N = 64; nx = 64; g = 1; nu = 0; L = 2*pi; h = L/N; x = h*[0:N-l]; 

p = (2*pi/L)* [0:N/2-1,-N/2:-1]; pmax = (2*pi/L)*N/2; dt = 0.1; 

dtmax = 2*nu*pmax~2/(nu~2*pmax~4 + g*pmax); M = 20; j = 1; delta = 

0.01; nt = 1000; num_dt = length(dt); 
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for m = 1: length(dt) 

t = 0; 

dtm = dt(m); 

eta0_nltw = 0.01*exp(-(4/3)*(x - pi).*(x - pi)).*cos(10*x); 

ksi0_nltw = 0*x; v_eta = eta0_nltw; v_ksi = ksi0_nltw; tmax = 5; 

tplot = 0.1; plotgap = round(tplot/dtm); dtm = tplot/plotgap; 

nplots = round(tmax/tplot); data_eta = [v_eta; zeros(nplots,N)]; 

data_ksi = [v_ksi; zeros(nplots.N)]; amp_eta = norm(v_eta,inf); 

amp_ksi = norm(v_ksi,inf); tdata = t; 

for j = 1:nplots 

for n = 1:plotgap 

t = t + dtm; 

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p); 

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p); 

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p); 

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p); 

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p); 

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p); 

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p); 



A p p e n d i x E (Continued) 

k4_ksi = fksi_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p); 

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6; 

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6; 

v_eta_new = v_eta + slope_eta; 

v_ksi_new = v_ksi + slope_ksi; 

v_eta = v_eta_new; 

v_ksi = v_ksi_new; 

end 

d a t a _ e t a ( j , : ) = v_eta; 

d a t a _ k s i ( j , : ) = v_ksi; 

amp_eta = [amp_eta; norm(v_eta , in f ) ] ; 

amp_ksi = [amp_ksi; norm(v_ks i , in f ) ] ; 

t d a t a = [ tda ta ; t ] ; 

end e ta_f ina l (m, : ) = v_eta; k s i_ f ina l (m, : ) = v_ksi; 

f i g u r e ( l ) ; t imestep = tmax/nplots; time = [0: t imestep:tmax]; 

w a t e r f a l l ( x , t i m e , d a t a _ e t a ) ; x l a b e l ( ' x ' ) ; y l a b e l ( ' t ' ) ; z l a b e l ( ' e t a ' ) ; 

f i gu re (2 ) ; w a t e r f a l l ( x , t i m e , d a t a _ k s i ) ; 

x l a b e l ( ' x ' ) ; y label O f ) ; z l a b e l Ox i ' ) ; 

end 
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A p p e n d i x F 

C O D E F O R C A L C U L A T I N G R E L A T I V E E N E R G Y 

The following programs were used to calculate the relative energy in § 3.4.3: rk4_energy.ni, 

energy.m. feta_nl.m, fksLnl.m and newconv.m. 

F. l Algorithm for Calculating Numerical Approximation and Energy: rk4_energy.ni 

y 01 HI o/ o / o/ o / o/ o/ o/ o/ y 0/ <y o / o / 
/O A /0 /O /O ID 10 10 A A /O A /O 10 fO A 

% rk4_energy.m °/0 

/o /o /o /o /o /o /o /o /o /o /o /o /o 101010 

clear all; elf; g = 1; runnum = 1; if(runnum==l) 

% relerr = 0.000205323 

nx = 64; 

A = 0.01; 

nu = 0.0; 

elseif(runnum==2) 

% relerr = 1.19193e-009 

nx = 128; 

A = 0.01; 

nu = 0.0; 

http://rk4_energy.ni
http://rk4_energy.ni
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elseif(runnum==3) 

% relerr = -0.00758532 

nx = 64; 

A = 0.045; 

nu = 2.4e-5; 

elseif(runnum==4) 

7. relerr = -0.0882224 

nx = 128; 

A = 0.045; 

nu = 1.095e-4; 

elseif(runnum==5) 

1 relerr = -0.0664213 

nx = 64; 

A = 0.05; 

nu = 5.5e-5; 

elseif(runnum==6) 

1 relerr = 0.38409 

nx = 128; 

A = 0.05; 

nu = 1.9365e-4; 

elseif(runnum==7) 



Appendix F (Continued) 

'/. relerr = 0.771103 

nx = 64; 

A = 0.1; 

nu = 1.277e-3; 

end L = 2*pi; h = L/nx; x = h*[0:nx-l]; p = 

(2*pi/L)*[0:nx/2-l,-nx/2:-l]; dt = h/10; inflate = 0; 

f printf (' rk4_nl_waterf all: \n'); f printf ( ' \n'); 

fprintf('nx = °/„d\n',nx); 

fprintfCg = °/,g nu = %g L = °/.g\n' ,g,nu,L) ; 

fprintfCh = %g dt = °/,g\n\h,dt); 

f printf ('A = °/.g\n\A); 

fprintf('\n'); 

for m = 1:length(dt) 

t = 0; 

dtm = dt(m); 

v_eta = A*exp(-(4/3)*(x - L/2.0).*(x - L/2.0)).*cos(10*x); 

v_ksi = 0*x; 

tmax = 10.0; 

tplot =0.1; 

plotgap = round(tplot/dtm); 
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dtm = tplot/plotgap; 

nplots = round(tmax/tplot); 

data_eta = [v_eta; zeros(nplots,nx)]; 

data_ksi = [v_ksi; zeros(nplots.nx)]; 

amp_eta = norm(v_eta,inf); 

amp_ksi = norm(v_ksi,inf); 

en = energy(v_eta,v_ksi,g,nu,L,p); 

tdata = t; 

f printf ( ' t='/.g: I eta I =%g | xi I =%g E=°/„g\n 

tdata(l),amp_eta(l),amp_ksi(l),en(l)); 

for j = 1:nplots 

for n = 1rplotgap 

t = t + dtm; 

kl_eta = feta_nl(v_eta,v_ksi,g,nu,L,p); 

kl_ksi = fksi_nl(v_eta,v_ksi,g,nu,L,p); 

k2_eta = feta_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p); 

k2_ksi = fksi_nl(v_eta + 0.5*dtm*kl_eta,v_ksi + 0.5*dtm*kl_ksi,g,nu,L,p); 

k3_eta = feta_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p); 

k3_ksi = fksi_nl(v_eta + 0.5*dtm*k2_eta,v_ksi + 0.5*dtm*k2_ksi,g,nu,L,p); 

k4_eta = feta_nl(v_eta + dtm*k3_eta,v_ksi + dtm*k3_ksi,g,nu,L,p); 
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k4_ks i = f k s i _ n l ( v _ e t a + d t m * k 3 _ e t a , v _ k s i + d t m * k 3 _ k s i , g , n u , L , p ) ; 

slope_eta = dtm*(kl_eta + 2*k2_eta + 2*k3_eta + k4_eta)/6; 

slope_ksi = dtm*(kl_ksi + 2*k2_ksi + 2*k3_ksi + k4_ksi)/6; 

v_eta_new = v_eta + slope_eta; 

v_ksi_new = v_ksi + slope_ksi; 

v_eta = v_eta_new; 

v_ks i = v_ksi_new; 

end 

d a t a _ e t a ( j + l , : ) = v _ e t a ; 

d a t a _ k s i ( j + l , : ) = v _ k s i ; 

amp_eta = [amp_eta; n o r m ( v _ e t a , i n f ) ] ; 

amp_ksi = [amp_ksi; n o r m ( v _ k s i , i n f ) ] ; 

en = [en; e n e r g y ( v _ e t a , v _ k s i , g , n u , L , p ) ] ; 

t d a t a = [ t d a t a ; t ] ; 

f p r i n t f (> t='/.g: I e t a I =*/.g I x i I =°/„g E=°/„g\n' , . . . 

t d a t a ( j + l ) , a m p _ e t a ( j + l ) , a m p _ k s i ( j + l ) , e n ( j + l ) ) ; 
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end 

e ta_f ina l (m, : ) = v_eta; 

k s i_ f ina l (m, : ) = v_ksi; 

timestep = tmax/nplots; 

time = [0:timestep:tmax]; 

figure(l); 

subplot(2,2,1); 

waterfall(x,time,data_eta); 

title('eta'); 

xlabel('x');ylabel('t');zlabel('eta'); 

subplot(2,2,2); 

waterfall(x,time,data_ksi); 

title('xi'); 

xlabel('x');ylabel('t');zlabel('xi'); 

subplot(2,2,3); 

semilogy(tdata,amp_eta,'b-o*,tdata,amp_ksi, 'r-*'); 

x l a b e l ( ' t ' ) ; ylabelCamplitude') ; 

legendC |e ta | ' , ' | x i | ' ) ; 

subplot(2,2,4); 
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semilogy(tdata, en,'g-o'); 

xlabel('t'); ylabel0energy'); 

fprintf('Relative energy change = %g\n',(en(l)-en(length(en)))/en(l)); 

figure(2); 

hh = surf(x,time,data_eta); 

view(39,76); 

xlabel('x'); ylabel O f ) ; zlabel('eta'); 

saveas(hh,'etasurf.fig'); 

saveas(hh,'etasurf.eps'); 

end 

F . l . l Function energy.m 

0/ o / at 0/ 0/ o / 0/ <y 0/ 0/ o / o / 
A In /o /o /o /o A In lb In In In 

'/, energy.m % 

/o /o A A A A A A A A A A 

function [en] = energy(v_eta,v_ksi,g,nu,L,p) 

pp = p'; absp = abs(pp); absp2 = abs(pp)."2; etahat = 

fft(v_eta.'); xihat = fft(v_ksi.'); etaxhat = (i*pp).*etahat; 

"In Kinetic energy 
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XOhat = ( i * p p ) . * x i h a t ; YOhat = a b s p . * x i h a t ; tempi = a b s p 2 . * x i h a t ; 

Ylha t = n e w c o n v ( e t a h a t . t e m p i ) ; tempi = a b s p . * x i h a t ; temp2 = 

n e w c o n v ( e t a h a t . t e m p i ) ; temp3 = absp .* t emp2; Ylhat = Ylhat - temp3; 

Xhat = XOhat; Yhat = YOhat + Y l h a t ; Ghat = Yhat -

n e w c o n v ( e t a x h a t . X h a t ) ; Khat = 0 . 5 * n e w c o n v ( x i h a t , G h a t ) ; 

°/0 P o t e n t i a l energy 

Vhat = 0 . 5 * g * n e w c o n v ( e t a h a t . e t a h a t ) ; EHat = Khat + Vhat; nx = 

length(etahat); en = real(EHat(0+l))/nx; 
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-Math Instructor & Teaching Assistant, University of Illinois at Chicago, 8/03 - present 

-Teaching Fellow. National Teacher's Academy k. Hugh Manley High School in Chicago, IL, 

5/07 -5/08 

-Adjunct Math Instructor. Wilbur Wright College in Chicago. IL. 1/03 - 8/03 

-Adjunct Math Instructor, Oakton Community College in Des Plaines & Skokie, IL. 1/03 - 8/03 

mailto:mariakakleas@yahoo.com
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-Lecturer & Teaching Assistant, Loyola University of Chicago, 8/01 - 12/02 

-Math Supervisor & Tutor, Huntington Learning Center in Park Ridge, IL. 1/01 - 8/01 

-Mechanical Engineer, United Conveyor Corporation in Waukegan, IL, 8/99 - 1/01 

Courses Taught 

Elementary Algebra. Intermediate Algebra, College Algebra. PreCalculus, Differential Calcu­

lus, Integral Calculus, Multivariable Calculus, Business Calculus, Advanced Math for Business, 

Math for Elementary School Teachers. Finite Mathematics. Statistics. Linear Algebra 

Educational Software 

MATLAB. Maple. Cognitive Tutor. MyMathLab 

Fellowship 

Scientists, Kids and Teachers (SKIT) Fellowship, Funded by the NSF, 5/07 - 5/08 

Colloquium 

Numerical Simulation of a Weakly Nonlinear Model for Water Waves with Viscosity. University 

of Illinois at Chicago, 11/19/08 

Professional Memberships 

-Mathematical Graduate Student Association. Vice-President at UIC. 8/05 - 7/06 
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-Association of Mathematical Society 

-Association for Women in Mathematics 

-Society for Industrial and Applied Mathematics 


