
A Theoretical and Numerical Analysis of the Faraday Wave Experiment

by

Marième Ngom
MEng (ENSEEIHT) 2013
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SUMMARY

This thesis focuses on the well-posedness and stability of the Water Wave Equation in the

context of the Faraday wave experiment. We prove that the solutions to the viscous water wave

equation formulated by Dias, Dyachenko and Zakharov (DDZ) and supplemented with viscosity,

surface tension and small vertical forcing is well-posed. We then derive some numerical stability

results in the case of larger forcing and solve these equations numerically by using High Order

Perturbation of Surfaces (HOPS) methods. We validate our code by first testing it in the case

of traveling waves where exact solutions can be derived and by testing our approach against

methods present in the literature.
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CHAPTER 1

INTRODUCTION

(Previously published as Ngom, M. and Nicholls, D. P.: Well-posedness and analyticity of solutions to a water wave

problem with viscosity. J. Differential Equations, 265:5031-5075, 2018.)

One of the central problems in fluid mechanics is the accurate modeling of the free–surface

motion of a large body of water (e.g., a lake or an ocean) (55; 99; 1). It is not only a problem

of classical interest (97; 3; 100; 17; 53), but also one of present importance due to its role in a

number of applications from the formation and movement of sandbars, to the forces generated

by waves on open–ocean oil rigs, to the propagation of tsunamis and the transport of pollu-

tants. The “water wave equations” are the most faithful and successful model for this problem,

but they have a surprisingly difficult and subtle well–posedness theory (103; 104; 13; 12; 56).

We refer the interested reader to these papers, their extensive bibliographies, and the recent

collection (18) for the state of the art in the field (in particular, see the chapters by Ambrose

(11) and Wu (105)).

Due to the extremely important role of this model, we were inspired to find a new proof

of well–posedness which did not rely on the sophisticated technology required in the papers

mentioned above. While this has proven elusive, we demonstrate in this thesis that if a physi-

cally motivated viscosity is added, then a straightforward existence and uniqueness result can
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be established. For this we follow the lead of (8) where such a philosophy was pursued for a

weakly nonlinear approximation of the full water wave problem.

Another motivation for this work is modeling the Faraday wave experiment (35) which con-

siders the motion of the free air–fluid interface of a container of fluid which is being periodically

shaken from below. As it is usually the case when studying the Faraday wave experiment, we

produced a stability diagram of growth rate versus forcing and frequency similar to the ones

provided by (102) where the governing equations were transformed into a Mathieu type equa-

tion. Here, we use a High Order Perturbation of Surfaces (HOPS) method (74) and a fourth

order Runge-Kutta method to simulate the experiment.

The rest of this thesis is organized as follows: here in Chapter 1, we present our governing

equations, then, in Chapter 2, we present our well-posedness theorem before showing in Chapter

3 our numerical results and simulations. These begin with the case of a traveling water solution

and move to the case of the Faraday wave experiment.

1.1 Governing Equations

The well–known (55; 99; 1) equations governing the motion of two dimensional laterally

periodic gravity–capillary water waves on a fluid of depth h are

∆ϕ = 0, − h < y < η,

∂yϕ = 0, y = −h,

∂tη = ∂yϕ− (∂xη)∂xϕ, y = η,

∂tϕ = −gη + σ∂2
xη + σ∂x [(∂xη)H(∂xη)]− 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2, y = η,
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where ϕ is the velocity potential (u = ∇ϕ), y = η is the free air–fluid interface,

H(∂xη) :=
1√

1 + (∂xη)2
− 1,

and g > 0 and σ > 0 are the constants of gravity and surface tension, respectively. These are

supplemented with the boundary conditions

ϕ(x+ 2π, y, t) = ϕ(x, y, t), η(x+ 2π, t) = η(x, t),

and initial conditions

η(x, 0) = η(0)(x), ϕ(x, η(0), 0) = ξ(0)(x),
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where standard elliptic theory (32) reveals that specifying the initial velocity potential at the

surface is sufficient. We supplement this with viscous terms first introduced by Dias, Dyachenko,

and Zakharov (30) resulting in the “water wave equations with viscosity”

∆ϕ = 0, − h < y < η, (1.1.1a)

∂yϕ = 0, y = −h, (1.1.1b)

∂tη = ∂yϕ+ 2µ∂2
xη − (∂xη)∂xϕ, y = η, (1.1.1c)

∂tϕ = −gη + σ∂2
xη − 2µ∂2

yϕ+ σ∂x [(∂xη)H(∂xη)]

− 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2, y = η, (1.1.1d)

ϕ(x, η, 0) = ξ(0)(x), (1.1.1e)

η(x, 0) = η(0)(x), (1.1.1f)

for a surface viscosity parameter µ > 0. In these we have slightly modified Dias, Dyachenko,

and Zakharov’s equations by dropping the bottom viscosity terms included in (31). We will

show that this problem is well–posed with analytic solutions.

Remark 1.1.1. We make two important observations: First, the mass

M =

∫ 2π

0
η(x, t) dx,
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is conserved by the flow. Indeed, it is well–known in the inviscid case (see, e.g., (26)) that

∂t[M ]µ=0 = ∂t

∫ 2π

0
η(x, t) dx =

∫ 2π

0
∂tη(x, t) dx =

∫ 2π

0
[∂yϕ− (∂xη)∂xϕ]y=η = 0.

The addition of viscosity introduces only the term
∫ 2π

0 µ∂2
xη dx to this computation, which is

zero as it features an exact derivative and η is periodic.

Second, one can arrange for the mean of the surface velocity

ξ(x, t) := ϕ(x, η(x, t), t),

to remain zero if it is initially set that way. For this one must remember that the velocity

potential is only meaningfully defined up to a time–dependent constant (55; 99; 1),

ϕ(x, y, t) = ϕ̃(x, y, t) + C(t).

With this we can consider the average surface velocity potentials

Ξ(t) =

∫ 2π

0
ϕ(x, η, t) dx, Ξ̃(t) =

∫ 2π

0
ϕ̃(x, η, t) dx = Ξ(t)− 2πC(t).

So, if we choose C(t) = Ξ(t)/(2π) and drop the tildes we are done. Thus we restrict our function

spaces by requiring M = Ξ = 0.
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1.2 Reformulation on a Fixed Domain

It was shown in (79; 81; 49) how a simple change of variables could be used to demonstrate

the analyticity of Dirichlet–Neumann Operators (DNOs) with respect to sufficiently small and

regular surface deformations η = εf . The problem of computing DNOs for Laplace’s equation

is closely related to the water wave problem and, in fact, our equations could be equivalently

restated at the fluid surface in terms of these operators (see, e.g., (29; 28; 64)), though we do

not pursue it in this chapter, we do so in chapter 3.

To imitate this success for DNOs in the context of the water wave problem with viscosity,

we follow the lead of (79) and perform the domain–flattening change of variables (known as

σ–coordinates (95) and the C–Method (20))

x′ = x, y′ = h

(
y − η
h+ η

)
, t′ = t,

from which we define

u(x′, y′, t′) := ϕ

(
x′,

(
h+ η

h

)
y′ + η, t′

)
.

It is not difficult to show (93) that derivatives change as

M(x, t)∂x = M(x′, t′)∂x′ +N(x′, y′, t′)∂y′ ,

M(x, t)∂t = M(x′, t′)∂t′ + P (x′, y′, t′)∂y′ ,

M(x, t)∂y = h∂y′ ,
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where

M(x, t) = h+ η(x, t),

N(x, y, t) = −(∂xη(x, t))(y + h),

P (x, y, t) = −(∂tη(x, t))(y + h).

The governing equations (Equation 1.1.1) transform, upon dropping the primes, to

∆u = F, − h < y < 0, (1.2.1a)

∂yu = 0, y = −h, (1.2.1b)

∂tη = ∂yu+ 2µ∂2
xη +Q, y = 0, (1.2.1c)

∂tu = −gη + σ∂2
xη − 2µ∂2

yu+R, y = 0, (1.2.1d)

u(x, 0, 0) = ξ(0)(x), (1.2.1e)

η(x, 0) = η(0)(x). (1.2.1f)

The form for F can be shown (93) to be

h2F = −div
[
A(1)(η)∇u

]
− div

[
A(2)(η)∇u

]
+ (∂xη)B(0) · ∇u+ (∂xη)B(1)(η) · ∇u,
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where

A(1)(η) =

A(1),xx A(1),xy

A(1),yx A(1),yy

 :=

 2hη −h(y + h)∂xη

−h(y + h)∂xη 0

 ,

A(2)(η) =

A(2),xx A(2),xy

A(2),yx A(2),yy

 :=

 η2 −(y + h)η(∂xη)

−(y + h)η(∂xη) (y + h)2(∂xη)2

 ,

B(0) =

B(0),x

B(0),y

 :=

h
0

 , B(1)(η) =

B(1),x

B(1),y

 :=

 η

−(y + h)∂xη

 .

Therefore,

h2F = −∂x [2hη∂xu] + ∂x [h(y + h)(∂xη)∂yu] + ∂y [h(y + h)(∂xη)∂xu]

− ∂x
[
η2∂xu

]
+ ∂x [(y + h)η(∂xη)∂yu] + ∂y [(y + h)η(∂xη)∂xu]

− ∂y
[
(y + h)2(∂xη)2∂yu

]
+ h(∂xη)∂xu+ η(∂xη)∂xu− (y + h)(∂xη)2∂yu.

Furthermore, multiplying (Equation 1.1.1c) by M and evaluating at y = 0, we find

hQ = −η(∂tη) + 2µη(∂2
xη)− h(∂xη)∂xu− η(∂xη)∂xu+ h(∂xη)2∂yu,

where we have used the fact that, since η is independent of y, we have

∂tη = ∂t′η, ∂xη = ∂x′η.



9

Finally, multiplying (Equation 1.1.1d) by M2 and evaluating at y = 0, we discover

h2R = −2hη∂tu− η2∂tu+ h2(∂tη)∂yu+ hη(∂tη)∂yu− 2ghη2 − gη3

+ 2σhη(∂2
xη) + ση2(∂2

xη)

+ σh2∂x [(∂xη)H(∂xη)] + 2σhη∂x [(∂xη)H(∂xη)] + ση2∂x [(∂xη)H(∂xη)]

− 1

2

{
h2(∂xu)2 + 2hη(∂xu)2 + η2(∂xu)2 − 2h2(∂xη)(∂xu)∂yu

−2hη(∂xη)(∂xu)∂yu+ h2(∂xη)2(∂yu)2
}
− 1

2
h2(∂yu)2.

1.2.1 A Boundary Perturbation Expansion

Our procedure for establishing well–posedness is to seek solutions of the form

η = η(x, t; ε) =
∞∑
n=1

ηn(x, t)εn, u = u(x, y, t; ε) =
∞∑
n=1

un(x, y, t)εn, (1.2.2)

given initial data {η(0)(x), ξ(0)(x)}. We will show that if this data lies in appropriate Sobolev

spaces, then the {ηn, ϕn} also exist in (different) Sobolev classes satisfying estimates which
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justify the strong convergence of the series (Equation 1.2.2). Upon insertion of these into

(Equation 1.2.1) we find that, at each perturbation order,

∆un = Fn, − h < y < 0, (1.2.3a)

∂yun = 0, y = −h, (1.2.3b)

∂tηn = ∂yun + 2µ∂2
xηn +Qn, y = 0, (1.2.3c)

∂tun = −gηn + σ∂2
xηn − 2µ∂2

yun +Rn, y = 0. (1.2.3d)

un(x, 0, 0) = δn,0ξ
(0)(x), (1.2.3e)

ηn(x, 0) = δn,0η
(0)(x), (1.2.3f)

where δn,k is the Kronecker delta function. In these Fn, Qn, and Rn can be shown, using the

notation J·Kn from Appendix B, to be

h2Fn = −∂x [2h Jη∂xuKn] + ∂x
[
h(y + h) J(∂xη)∂yuKn

]
+ ∂y [h(y + h) J(∂xη)∂xuKn]

− ∂x
[q
η2∂xu

y
n

]
+ ∂x

[
(y + h) Jη(∂xη)∂yuKn

]
+ ∂y [(y + h) Jη(∂xη)∂xuKn]

− ∂y
[
(y + h)2

q
(∂xη)2∂yu

y
n

]
+ h J(∂xη)∂xuKn

+ Jη(∂xη)∂xuKn − (y + h)
q
(∂xη)2∂yu

y
n
, (1.2.4a)

hQn = − Jη(∂tη)Kn+2µ
q
η(∂2

xη)
y
n
−h J(∂xη)∂xuKn− Jη(∂xη)∂xuKn+h

q
(∂xη)2∂yu

y
n
, (1.2.4b)
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and

h2Rn = −2h Jη∂tuKn −
q
η2∂tu

y
n

+ h2 J(∂tη)∂yuKn + h Jη(∂tη)∂yuKn

− 2gh
q
η2

y
n
− g

q
η3

y
n

+ 2σh
q
η(∂2

xη)
y
n

+ σ
q
η2(∂2

xη)
y
n

+ σh2 J∂x [(∂xη)H(∂xη)]Kn + 2σh Jη∂x [(∂xη)H(∂xη)]Kn + σ
q
η2∂x [(∂xη)H(∂xη)]

y
n

− 1

2

{
h2

q
(∂xu)2

y
n

+ 2h
q
η(∂xu)2

y
n

+
q
η2(∂xu)2

y
n
− 2h2 J(∂xη)(∂xu)∂yuKn

−2h Jη(∂xη)(∂xu)∂yuKn + h2
q
(∂xη)2(∂yu)2

y
n

}
− 1

2
h2

q
(∂yu)2

y
n
. (1.2.4c)

Remark 1.2.1. For the expansion of H we recall that

H(ψ) =
1√

1 + ψ2
− 1,

which, upon squaring, can be written as

(H2 + 2H + 1)(1 + ψ2) = 1,

or

H = −1

2

{
ψ2 +H2 + 2ψ2H + ψ2H2

}
. (1.2.5)

If we make the expansion, c.f. (Equation 1.2.2),

ψ = ψ(x, t; ε) =

∞∑
n=1

ψn(x, t)εn,
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then it is easy to see that

H = H(x, t; ε) =

∞∑
n=2

Hnε
n.

In fact, from (Equation 1.2.5) we have

Hn = −1

2

{q
ψ2

y
n

+
q
H2

y
n

+ 2
q
ψ2H

y
n

+
q
ψ2H2

y
n

}
, (1.2.6)

and it is clear that Hn depends only on {ψ1, . . . , ψn−1} = {∂xη1, . . . , ∂xηn−1}.



CHAPTER 2

WELL-POSEDNESS

(Previously published as Ngom, M. and Nicholls, D. P.: Well-posedness and analyticity of solutions to a water wave

problem with viscosity. J. Differential Equations, 265:5031-5075, 2018.)

2.1 Introduction

In this chapter, we present our well-posedness theorem for the above system of equations.

Before proceeding, we point out that our method of proof is rather different from the standard

techniques, e.g., described in (57; 8). Rather than seeking a fixed point of a contraction mapping,

we follow the approach of Friedman and Reitich to free boundary problems, more specifically in

the contexts of the classical Stefan problem (39) and the capillary drop problem (42). Friedman

and Reitich’s method is perturbative in nature, expanding the solution in a Taylor series in a

parameter which characterizes the deformation of the free interface from a simple, separable

geometry. Their proof uses, very strongly, the unique solvability of the governing equations

on a fixed, trivial domain (using separation of variables) to show that higher order corrections

satisfy appropriate bounds which demonstrate the strong convergence of the Taylor series for the

solution. The difficulties here are certain algebra properties of the relevant function spaces and

13
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trace lemmas; these are different in the current context, but we show that their demonstrations

can be extended.

Additionally, we point out that due to the nature of the function spaces we introduce, the

conclusion of our theorem is not only the well–posedness of our model of viscous water waves,

but also the very strong stability of our solutions. Our function spaces demand exponential

decay in time with the rate determined by the value of the viscosity. Thus, not only do unique

solutions exist, they persist globally in time and decay exponentially fast to zero.

The rest of this chapter is organized as follows. In § 2.2 we introduce the function spaces

we require to establish our well–posedness result, together with crucial lemmas on algebra

properties of functions in these spaces, and trace estimates on the same. In § 2.3 and 2.4 we

state and prove fundamental estimates on the elliptic and parabolic problems which arise in

the linearization of our governing equations about the trivial configuration which we analyze in

§ 2.5. In § 2.6 we state and prove an inductive lemma which enables the proof of our central

well–posedness result which is established in § 2.7. We make concluding remarks in § 2.8. We

collect the proofs of the trace lemma in § A and a lemma on products of analytic functions in

§ B.

2.2 Function Spaces

Following Friedman and Reitich (39; 42) we define, for the function g = g(t), the norm

[g]2t :=

∫ t

0
e2αu |g(u)|2 du,
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for some α > 0, and recall, for the function f = f(x), the classical Sobolev norm (54; 2; 32),

for real s ≥ 0,

‖f‖2Hs([0,2π]) :=

∞∑
p=−∞

〈p〉2s
∣∣∣f̂p∣∣∣2 , 〈p〉2 := 1 + |p|2 , f̂p :=

1

2π

∫ 2π

0
f(x)e−ipx dx.

With these, for the function U = U(x, t), we define, for real s ≥ 4,

‖U‖2Xs :=
[
‖U‖2Hs([0,2π])

]2

∞
+
[
‖∂tU‖2Hs−2([0,2π])

]2

∞
+
[∥∥∂2

t U
∥∥2

Hs−4([0,2π])

]2

∞

=

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2s

∣∣∣Ûp(u)
∣∣∣2 du+

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2(s−2)

∣∣∣∂tÛp(u)
∣∣∣2 du

+

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2(s−4)

∣∣∣∂2
t Ûp(u)

∣∣∣2 du,

where the second time derivative is required for the algebra property (Lemma 2.2.1 below) to

be valid, c.f. (39; 42).

In addition, in the next section we require volumetric norms. For the function v = v(x, y),

the classical Sobolev norm is (54; 2; 32), for integer s ≥ 0,

‖v‖2Hs([0,2π]×[−h,0]) :=

s∑
`=0

∞∑
p=−∞

〈p〉2(s−`)
∫ 0

−h

∣∣∣∂`yv̂p(y)
∣∣∣2 dy.
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Finally, for the function w = w(x, y, t), we define the following norm for integer s ≥ 4,

|||w|||2V s :=
[
‖w‖Hs([0,2π]×[−h,0])

]2

∞
+
[
‖∂tw‖Hs−2([0,2π]×[−h,0])

]2

∞

+
[∥∥∂2

tw
∥∥
Hs−4([0,2π]×[−h,0])

]2

∞

=

∫ ∞
0

e2αu
s∑
`=0

∞∑
p=−∞

〈p〉2(s−`)
∫ 0

−h

∣∣∣∂`yŵp(y, u)
∣∣∣2 dy du

+

∫ ∞
0

e2αu
s−2∑
`=0

∞∑
p=−∞

〈p〉2(s−2−`)
∫ 0

−h

∣∣∣∂`y∂tŵp(y, u)
∣∣∣2 dy du

+

∫ ∞
0

e2αu
s−4∑
`=0

∞∑
p=−∞

〈p〉2(s−4−`)
∫ 0

−h

∣∣∣∂`y∂2
t ŵp(y, u)

∣∣∣2 dy du.

With these norms we define the function spaces, for real s ≥ 0,

Hs([0, 2π]) :=
{
f(x) ∈ L2([0, 2π])

∣∣∣ ∫ 2π

0
f(x) dx = 0, ‖f‖Hs([0,2π]) <∞

}
,

and, for real s ≥ 4,

Xs([0, 2π]× [0,∞)) :=
{
U(x, t) ∈ L2([0, 2π]× [0,∞))

∣∣∣ ∫ 2π

0
U(x, t) dx = 0, ‖U‖Xs <∞

}
,

and, for integer s ≥ 0,

Hs([0, 2π]× [−h, 0]) :=
{
v(x, y) ∈ L2([0, 2π]× [−h, 0])

∣∣∣ ‖v‖Hs([0,2π]×[−h,0]) <∞
}
,
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and, for integer s ≥ 4,

V s([0, 2π]× [−h, 0]× [0,∞)) :=
{
w(x, y, t) ∈ L2([0, 2π]× [−h, 0]× [0,∞))

∣∣∣ |||w|||V s <∞}.
From this point we suppress the domain dependence unless there is danger of confusion.

Of fundamental importance to our proof are the following algebra properties which are

straightforward generalizations of Friedman and Reitich’s Theorem A.4 in (39).

Lemma 2.2.1. If s ≥ 4; f, g ∈ Xs; v, w ∈ V s; then there is a constant M > 0 such that

‖fg‖Xs ≤M ‖f‖Xs ‖g‖Xs , (2.2.1a)

|||fv|||V s ≤M ‖f‖Xs |||v|||V s , (2.2.1b)

|||vw|||V s ≤M |||v|||V s |||w|||V s . (2.2.1c)

Remark 2.2.2. While the lemma above is true for any real s ≥ 4 by interpolation (39), we

will only utilize (Equation 2.2.1b) and (Equation 2.2.1c) for integer s, and (Equation 2.2.1a)

for integer s or s = m+ 1/2 for m integer.

In addition, we require a temporal trace theorem due to Friedman and Reitich (39) (for the

proof, see Appendix A) suitably modified to our space Xs.

Lemma 2.2.3. If s ≥ 4 and σ(x, t) ∈ Xs then there exists a constant Ct > 0 such that

max {‖σ(x, 0)‖Hs−1 , ‖∂tσ(x, 0)‖Hs−3} ≤ Ct ‖σ‖Xs . (2.2.2)
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Finally, we recall two auxiliary lemmas from (81).

Lemma 2.2.4. If s ≥ 4 and w ∈ V s then there exists a constant Y = Y (s) such that

|||(y + h)w|||V s < Y |||w|||V s .

Lemma 2.2.5. There exists a universal constant Σ > 0 such that

max

{
N∑
m=0

(N + 1)2

(N −m+ 1)2(m+ 1)2
,

N∑
m=0

m∑
`=0

(N + 1)2

(N −m+ 1)2(m− `+ 1)2(`+ 1)2
,

N∑
m=0

m∑
`=0

∑̀
q=0

(N + 1)2

(N −m+ 1)2(m− `+ 1)2(`− q + 1)2(q + 1)2

 < Σ.

2.3 A Fundamental Lemma for the Elliptic Problem

To prove our well–posedness result, Theorem 2.7.1, we must establish the following elliptic

estimate which generalizes the results found in (79) to the spaces V s and Xs.

Theorem 2.3.1. Given an integer s ≥ 4, if F ∈ V s+1 and ψ ∈ Xs+5/2, then there exists a

unique solution of

∆w = F, − h < y < 0, (2.3.1a)

w(x, 0, t) = ψ(x, t), (2.3.1b)

∂yw(x,−h, t) = 0, (2.3.1c)
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in V s+3 satisfying

max {‖w(x, 0, t)‖Xs+5/2 , |||w|||V s+3} ≤ Ke {|||F |||V s+1 + ‖ψ‖Xs+5/2} , (2.3.2)

where Ke > 0 is a universal constant.

Proof. In a recent publication a similar result for the Helmholtz equation was shown and we

follow those developments here. To begin, we use the lateral periodicity of the solution to

express

{w(x, y, t), F (x, y, t), ψ(x, t)} =

∞∑
p=−∞

{
ŵp(y, t), F̂p(y, t), ψ̂p(t)

}
eipx,

and note that (Equation 2.3.1) then demands that

∂2
yŵp − |p|

2 ŵp = F̂p, − h < y < 0, (2.3.3a)

ŵp(0, t) = ψ̂p(t), (2.3.3b)

∂yŵp(−h, t) = 0. (2.3.3c)

Existence and Uniqueness: To show the existence and uniqueness of a solution we appeal

to the classical results of Keller (52), later extended in the “Integrated Solution Method” of
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Zhang (107; 108) (see also (21)). Using the notation of (21) we consider, after a trivial change

of variables y → y + h, the problem

u′(y) + M(y)u(y) = f(y), 0 < y < h,

A0u = r0, y = 0,

B1u = s1, y = h,

where

f(y) ∈ Cm, r0 ∈ Cm1 , s1 ∈ Cm2 ,

are vector fields (m = m1 +m2). Further,

M(y) ∈ Cm×m, A0 ∈ Cm1×m, B1 ∈ Cm2×m,

are full rank matrices. Let Φ(y) be the fundamental matrix solution of the system

Φ′(y) + M(y)Φ(y) = 0, Φ(0) = Im,

where Im is the m ×m identity matrix. Keller shows (52) that the two–point value problem

above has a unique solution if and only if

det

 A0

B1Φ(h)

 6= 0.
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In this instance we have m = 2, m1 = m2 = 1, and

u =

 ŵp

∂yŵp

 , M(y) =

 0 −1

− |p|2 0

 , f(y) =

 0

F̂p

 ,

A0 =

(
0 1

)
, B1 =

(
1 0

)
, r0 = 0, s1 = ψ̂p.

There are two cases of p to consider.

1. The case p = 0: Here we may show that

Φ(y) =

1 y

0 1

 ,

and

det

 A0

B1Φ(h)

 = det

0 1

1 h

 = −1 6= 0.

Thus, a unique solution exists in this case.

2. The case p 6= 0: Here one can see that

Φ(y) =

 cosh(|p| y) sinh(|p| y)/ |p|

|p| sinh(|p| y) cosh(|p| y)

 ,
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and

det

 A0

B1Φ(h)

 = det

 0 1

cosh(|p|h) sinh(|p|h)/ |p|

 = − cosh(|p|h) 6= 0.

Again, a unique solution exists in this case.

We note that existence and uniqueness of solutions can also be verified by simply (but less

elegantly) writing down the exact solution as in (79).

Estimates: In order to accommodate Sobolev spaces with very low smoothness, we consider

the slightly generalized form of (Equation 2.3.1)

∆w = ∂xF
(1) + ∂yF

(2) + F (3), − h < y < 0,

w(x, 0, t) = ψ(x, t),

∂yw(x,−h, t) = 0,

which, upon Fourier transform, becomes

∂2
yŵp − |p|

2 ŵp = (ip)F̂ (1)
p + ∂yF̂

(2)
p + F̂ (3)

p , − h < y < 0,

ŵp(0, t) = ψ̂p(t),

∂yŵp(−h, t) = 0.
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Following the developments of (79), we set

ŵp(y, t) = ŵ(0)
p (y, t) + ŵ(1)

p (y, t) + ŵ(2)
p (y, t) + ŵ(3)

p (y, t),

where, for j = 0, 1, 2, 3,

∂2
yŵ

(j)
p − |p|

2 ŵ(j)
p = δj,1(ip)F̂ (1)

p + δj,2∂yF̂
(2)
p + δj,3F̂

(3)
p , − h < y < 0, (2.3.4a)

ŵ(j)
p (0, t) = δj,0ψ̂p(t), (2.3.4b)

∂yŵ
(j)
p (−h, t) = 0. (2.3.4c)

It can be shown (see Lemma A.2 of (75)) from the solution formula for ŵp(y, t), that the

following volumetric estimates hold for the unique solution when ` = 0, 1,

∥∥∥∂`yŵ(0)
p (y, t)

∥∥∥2

L2(dy)
≤ Ke〈p〉−1+2`

∣∣∣ψ̂p(t)∣∣∣2 , (2.3.5a)∥∥∥∂`yŵ(1)
p (y, t)

∥∥∥2

L2(dy)
≤ Ke〈p〉−2+2`

∥∥∥F̂ (1)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.5b)∥∥∥∂`yŵ(2)

p (y, t)
∥∥∥2

L2(dy)
≤ Ke〈p〉−2+2`

∥∥∥F̂ (2)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.5c)∥∥∥∂`yŵ(3)

p (y, t)
∥∥∥2

L2(dy)
≤ Ke〈p〉−4+2`

∥∥∥F̂ (3)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.5d)
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for some Ke > 0. In addition, the subsequent boundary estimates hold for ` = 0, 1

∣∣∣∂`yŵ(0)
p (0, t)

∣∣∣2 ≤ Ke〈p〉2`
∣∣∣ψ̂p(t)∣∣∣2 , (2.3.6a)∣∣∣∂`yŵ(1)

p (0, t)
∣∣∣2 ≤ Ke〈p〉−1+2`

∥∥∥F̂ (1)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.6b)∣∣∣∂`yŵ(2)

p (0, t)
∣∣∣2 ≤ Ke〈p〉−1+2`

∥∥∥F̂ (2)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.6c)∣∣∣∂`yŵ(3)

p (0, t)
∣∣∣2 ≤ Ke〈p〉−3+2`

∥∥∥F̂ (3)
p (y, t)

∥∥∥2

L2(dy)
, (2.3.6d)

with Ke > 0 sufficiently large. Furthermore, as the governing equations (Equation 2.3.4) treat

time as a parameter, by simply applying time derivatives one can achieve the same estimates

with {ŵ(j)
p , F̂

(j)
p , ψ̂p} replaced by {∂tŵ(j)

p , ∂tF̂
(j)
p , ∂tψ̂p}, and {∂2

t ŵ
(j)
p , ∂2

t F̂
(j)
p , ∂2

t ψ̂p}.

Consider the H1–type norm of w

[
‖w‖2H1

]2

∞
=

∫ ∞
0

e2αu
1∑
`=0

∞∑
p=−∞

〈p〉2(1−`)
∥∥∥∂`yŵp(y, u)

∥∥∥2

L2(dy)
du,

and the H−1 analogue for F

[
‖F‖2H−1

]2

∞
=

∫ ∞
0

e2αu
∞∑

p=−∞

3∑
j=1

∥∥∥F̂ (j)
p (y, u)

∥∥∥2

L2(dy)
du, F = ∂xF

(1) + ∂yF
(2) + F (3),



25

for some F (j) ∈ L2([−h, 0]) (see Chapter 5 of Evans (32)). Using the estimates above (and

being a little wasteful in our estimate of F (3)) we have

[
‖w‖2H1

]2

∞
≤

3∑
j=0

[∥∥∥w(j)
∥∥∥2

H1

]2

∞

≤
∫ ∞

0
e2αu

1∑
`=0

∞∑
p=−∞

〈p〉2(1−`)Ke

{
〈p〉−1+2`

∣∣∣ψ̂p(u)
∣∣∣2

+

3∑
j=1

〈p〉−2+2`
∥∥∥F̂ (j)

p (y, u)
∥∥∥2

L2(dy)

 du.

Rearranging this we find

[
‖w‖2H1

]2

∞
≤ Ke

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉1

∣∣∣ψ̂p(u)
∣∣∣2 du

+Ke

∫ ∞
0

e2αu
∞∑

p=−∞

3∑
j=1

∥∥∥F̂ (j)
p (y, u)

∥∥∥2

L2(dy)
du

≤ Ke

{
‖ψ‖2H1/2 + ‖F‖2H−1

}
.

Either by conducting the tedious manipulations to produce the higher–order analogues of

(Equation 2.3.5) and (Equation 2.3.6), or by proceeding as in Chapter 6 of Evans (32), we

can deduce [
‖w‖2Hs+3

]2

∞
≤ CKe

{[
‖F‖2Hs+1

]2

∞
+
[
‖ψ‖2Hs+5/2

]2

∞

}
.

Applying this estimate to ∂tw and ∂2
tw, and recalling that s ≥ 4, we discover

[
‖∂tw‖2Hs+1

]2

∞
≤ CKe

{[
‖∂tF‖2Hs−1

]2

∞
+
[
‖∂tψ‖2Hs+1/2

]2

∞

}
,
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and [∥∥∂2
tw
∥∥2

Hs−1

]2

∞
≤ CKe

{[∥∥∂2
t F
∥∥2

Hs−3

]2

∞
+
[∥∥∂2

t ψ
∥∥2

Hs−1/2

]2

∞

}
,

which, upon summation, delivers the conclusion of the theorem.

2.4 A Fundamental Lemma for the Parabolic Problem

To state our next result we recall the definition of an order–k Fourier multiplier.

Definition 2.4.1. Suppose that ψ ∈ L2([0, 2π]) then the equation

m(D)ψ(x) :=
∞∑

p=−∞
m(p)ψ̂pe

ipx,

defines the Fourier multiplier m(D). If, for some k ∈ R, we have for any s real

‖m(D)ψ‖Hs ≤ C ‖ψ‖Hs+k ,

then we say that m(D) is order–k.

Remark 2.4.2. The classical derivative, ∂x, is clearly an order–one Fourier multiplier with

symbol (iD). Of relevance to the current contribution are the order–one multiplier

G0 := |D| tanh(h |D|),
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which is the flat–interface DNO for Laplace’s equation on a strip (29; 28; 64), the order–three–

halves (iωD) operator

(iωD)ψ(x) =

∞∑
p=−∞

(iωp)ψ̂pe
iαpx :=

∞∑
p=−∞

i

√
(g + σ |p|2)

∣∣∣Ĝ0,p

∣∣∣ψ̂peiαpx,
which comes from the dispersion relation for water waves (55; 99; 1), and the order–two operator

(− |D|2) = ∂2
x.

We require the following parabolic estimate for our inductive proof to proceed.

Theorem 2.4.3. Given a real number s ≥ 4, if Q ∈ Xs+1, R ∈ Xs+1/2, η(0) ∈ Hs+2, and

ξ(0) ∈ Hs+3/2 then there exists a unique solution of

∂tη = G0[ξ] + 2µ∂2
xη +Q, η(x, 0) = η(0)(x), (2.4.1a)

∂tξ = −gη + σ∂2
xη − 2µ |D|2 ξ +R, ξ(x, 0) = ξ(0)(x), (2.4.1b)

satisfying

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2}

≤ Kp

{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)
∥∥∥
Hs+2

+
∥∥∥ξ(0)

∥∥∥
Hs+3/2

}
, (2.4.2)

where Kp > 0 is a universal constant.

To establish this we require the following result from Friedman and Reitich (42) (Lemma 7.1).
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Lemma 2.4.4. Consider the initial value problem

Ḃ(t) + (K + iM)B(t) = F (t), t > 0,

B(0) = B0,

where K,M ∈ R; K > 0; and F ∈ L2(0, T ) for any T > 0. If 0 < α < K then the following

inequalities hold

[B]2t ≤
2

(K − α)2
[F ]2t +

|B0|2

K − α
, (2.4.3a)[

Ḃ
]2

t
≤ 2

(
2K2

(K − α)2
+ 1

)
[F ]2t +

2K2

K − α
|B0|2 . (2.4.3b)

To prove Theorem 2.4.3 we establish a similar result for a decoupled version of (Equation 2.4.1).

Theorem 2.4.5. Given a real number s ≥ 4, if W ∈ Xs, f ∈ Hs+1 then there exists a unique

solution of

∂tU =
[
−2µ |D|2 ± (iωD)

]
U +W, U(x, 0) = f(x), (2.4.4)

satisfying

max {‖U‖Xs+2 , ‖∂tU‖Xs} ≤ K̃p {‖W‖Xs + ‖f‖Hs+1} , (2.4.5)

where K̃p > 0 is a universal constant.
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Proof. We focus on the case of (Equation 2.4.4) with the minus sign in front of (iωD); the other

case is handled similarly. We expand W and f in Fourier series

W (x, t) =

∞∑
p=−∞

Ŵp(t)e
ipx, f(x) =

∞∑
p=−∞

f̂pe
ipx,

where Ŵ0(t) ≡ 0 and f̂0 = 0 by the definitions of Xs and Hs, respectively, and seek a solution

U(x, t) =
∞∑

p=−∞
Ûp(t)e

ipx.

Inserting these into (Equation 2.4.4) we find

∂tÛp(t) = −Ω(p)Ûp(t) + Ŵp(t), (2.4.6a)

Ûp(0) = f̂p, (2.4.6b)

where

Ω(p) :=
(

2µ |p|2 + iωp

)
= O(p2), p→∞.

It is clear that Û0(t) ≡ 0 is the unique solution in the case p = 0 so we now concentrate on

p 6= 0. Using Lemma 2.4.4 we find

[
Ûp

]2

∞
≤ C0,W (p)

[
Ŵp

]2

∞
+ C0,f (p)

∣∣∣f̂p∣∣∣2 , (2.4.7a)[
∂tÛp

]2

∞
≤ C1,W (p)

[
Ŵp

]2

∞
+ C1,f (p)

∣∣∣f̂p∣∣∣2 , (2.4.7b)
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with, since p 6= 0,

K = Kp := 2µ |p|2 > 0, 0 < α < 2µ |1|2 ≤ min
p 6=0

Kp,

for some α. In these

C0,W (p) :=
2

(2µ |p|2 − α)2
= O(p−4), p→∞

C0,f (p) :=
1

(2µ |p|2 − α)
= O(p−2), p→∞

C1,W (p) := 2

[
2(2µ |p|2)2

(2µ |p|2 − α)2
+ 1

]
= O(1), p→∞

C1,f (p) :=
2(2µ |p|2)2

(2µ |p|2 − α)
= O(p2), p→∞.

Differentiating (Equation 2.4.6a) once with respect to t yields

∂t(∂tÛp)(t) = −Ω(p)(∂tÛp)(t) + ∂tŴp(t), (2.4.8a)

∂tÛp(0) = −Ω(p)f̂p + Ŵp(0), (2.4.8b)

where we have used (Equation 2.4.6a) and (Equation 2.4.6b) for the initial condition. Again,

appealing to Lemma 2.4.4 we find

[
∂tÛp

]2

∞
≤ C0,W (p)

[
∂tŴp

]2

∞
+ C0,f (p) |Ω(p)|2

∣∣∣f̂p∣∣∣2 + C0,f (p)
∣∣∣Ŵp(0)

∣∣∣2 , (2.4.9a)[
∂2
t Ûp

]2

∞
≤ C1,W (p)

[
∂tŴp

]2

∞
+ C1,f (p) |Ω(p)|2

∣∣∣f̂p∣∣∣2 + C1,f (p)
∣∣∣Ŵp(0)

∣∣∣2 . (2.4.9b)
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Differentiating (Equation 2.4.8a) once with respect to t yields

∂t(∂
2
t Ûp)(t) = −Ω(p)(∂2

t Ûp)(t) + ∂2
t Ŵp, (2.4.10a)

∂2
t Ûp(0) = Ω(p)2f̂p − Ω(p)Ŵp(0) + ∂tŴp(0), (2.4.10b)

where we have used (Equation 2.4.8a) and (Equation 2.4.8b) for the initial condition. Appealing

to Lemma 2.4.4 as before we find

[
∂2
t Ûp

]2

∞
≤ C0,W (p)

[
∂2
t Ŵp

]2

∞
+ C0,f (p) |Ω(p)|4

∣∣∣f̂p∣∣∣2
+ C0,f (p) |Ω(p)|2

∣∣∣Ŵp(0)
∣∣∣2 + C0,f (p)

∣∣∣∂tŴp(0)
∣∣∣2 , (2.4.11a)[

∂3
t Ûp

]2

∞
≤ C1,W (p)

[
∂2
t Ŵp

]2

∞
+ C1,f (p) |Ω(p)|4

∣∣∣f̂p∣∣∣2
+ C1,f (p) |Ω(p)|2

∣∣∣Ŵp(0)
∣∣∣2 + C1,f (p)

∣∣∣∂tŴp(0)
∣∣∣2 . (2.4.11b)

If we multiply (Equation 2.4.7a) by 〈p〉2s+4, (Equation 2.4.9a) by 〈p〉2s, and (Equation 2.4.11a)

by 〈p〉2s−4 and sum over p we find

‖U‖Xs+2 =

∞∑
p=−∞

[
〈p〉2s+4

[
Ûp

]2

∞
+ 〈p〉2s

[
∂tÛp

]2

∞
+ 〈p〉2s−4

[
∂2
t Ûp

]2

∞

]

≤
∞∑

p=−∞

[
C0,W (p)

{
〈p〉2s+4

[
Ŵp

]2

∞
+ 〈p〉2s

[
∂tŴp

]2

∞
+ 〈p〉2s−4

[
∂2
t Ŵp

]2

∞

}

+ C0,f (p)

{
〈p〉2s+4

∣∣∣f̂p∣∣∣2 + 〈p〉2s |Ω(p)|2
∣∣∣f̂p∣∣∣2 + 〈p〉2s

∣∣∣Ŵp(0)
∣∣∣2

+〈p〉2s−4 |Ω(p)|4
∣∣∣f̂p∣∣∣2 + 〈p〉2s−4 |Ω(p)|2

∣∣∣Ŵp(0)
∣∣∣2 + 〈p〉2s−4

∣∣∣∂tŴp(0)
∣∣∣2}] .
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From this we easily find that

‖U‖Xs+2 ≤ K0 [‖W‖Xs + ‖f‖Hs+1 + ‖W (·, 0)‖Hs−1 + ‖∂tW (·, 0)‖Hs−3 ] . (2.4.12)

In a similar way, if we multiply (Equation 2.4.7b) by 〈p〉2s, (Equation 2.4.9b) by 〈p〉2s−4, and

(Equation 2.4.11b) by 〈p〉2s−8 and sum over p we find

‖∂tU‖Xs ≤ K0 [‖W‖Xs + ‖f‖Hs+1 + ‖W (·, 0)‖Hs−1 + ‖∂tW (·, 0)‖Hs−3 ] . (2.4.13)

We now appeal to Lemma 2.2.3 (which requires s ≥ 4) and use this and estimate (Equation 2.4.12)

to deliver

‖U‖Xs+2 ≤ K̃p [‖W‖Xs + ‖f‖Hs+1 ] ,

and (Equation 2.4.13) to give

‖∂tU‖Xs ≤ K̃p [‖W‖Xs + ‖f‖Hs+1 ] ,

for some K̃p > 0 and we are done.

Proof. (Theorem 2.4.3) To establish this result we express our initial value problem, (Equation 2.4.1),

on the Fourier side by using

η(x, t) =

∞∑
p=−∞

η̂p(t)e
ipx, ξ(x, t) =

∞∑
p=−∞

ξ̂p(t)e
ipx,
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which, upon insertion into (Equation 2.4.1), delivers

∂tη̂p = Ĝ0,pξ̂p − 2µ |p|2 η̂p + Q̂p, η̂p(0) = η̂(0)
p, (2.4.14a)

∂tξ̂p = −(g + σ |p|2)η̂p − 2µ |p|2 ξ̂p + R̂p, ξ̂p(0) = ξ̂(0)
p, (2.4.14b)

or

∂t

η̂p
ξ̂p

 =

 −2µ |p|2 Ĝ0,p

−(g + σ |p|2) −2µ |p|2


η̂p
ξ̂p

+

Q̂p
R̂p

 .

If we use ωp =
√

(g + σ |p|2)Ĝ0,p, define

P̂p :=

 −iωp iωp

g + σ |p|2 g + σ |p|2

 , P̂−1
p =

1

2

−1/(iωp) 1/(g + σ |p|2)

1/(iωp) 1/(g + σ |p|2)

 ,

and make the change of variables

 ζ̂p
χ̂p

 := P̂−1
p

η̂p
ξ̂p

 =
1

2

−η̂p/(iωp) + ξ̂p/(g + σ |p|2)

η̂p/(iωp) + ξ̂p/(g + σ |p|2)

 ,

we find

∂tζ̂p =
(
−2µ |p|2 + iωp

)
ζ̂p + V̂p

∂tχ̂p =
(
−2µ |p|2 − iωp

)
χ̂p + Ŵp,
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where  V̂p

Ŵp

 := P̂−1
p

Q̂p
R̂p

 =
1

2

−Q̂p/(iωp) + R̂p/(g + σ |p|2)

Q̂p/(iωp) + R̂p/(g + σ |p|2)

 .

We note that

η = −(iωD)ζ + (iωD)χ,

ξ = (g − σ∂2
x)ζ + (g − σ∂2

x)χ,

so

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2 , }

≤ C {‖ζ‖Xs+9/2 + ‖∂tζ‖Xs+5/2 + ‖χ‖Xs+9/2 + ‖∂tχ‖Xs+5/2} .

From Theorem 2.4.5 we have

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2}

≤ CK̃P

{
‖V ‖Xs+5/2 +

∥∥∥ζ(0)
∥∥∥
Hs+7/2

+ ‖W‖Xs+5/2 +
∥∥∥χ(0)

∥∥∥
Hs+7/2

}
.
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Now, since

V =
1

2

{
(iωD)−1Q+ (g − σ∂2

x)−1R
}
,

W =
1

2

{
(iωD)−1Q+ (g − σ∂2

x)−1R
}
,

ζ(0) =
1

2

{
(iωD)−1η(0) + (g − σ∂2

x)−1ξ(0)
}
,

χ(0) =
1

2

{
(iωD)−1η(0) + (g − σ∂2

x)−1ξ(0)
}
,

we have

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖ξ‖Xs+1/2}

≤ CK̃P C̃
{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)
∥∥∥
Hs+2

+
∥∥∥ξ(0)

∥∥∥
Hs+3/2

}
,

and we are done if we choose KP = CK̃P C̃.

2.5 A Fundamental Lemma for the Linearized Water Wave Problem with Viscosity

We require the following estimate of the linearization of water wave problem (Equation 1.2.1)

in order to proceed.
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Lemma 2.5.1. Given an integer s ≥ 4, if F ∈ V s+1, Q ∈ Xs+1, R ∈ Xs+1/2, η(0) ∈ Hs+2,

and ξ(0) ∈ Hs+3/2 then there exists a unique solution of

∆u = F, − h < y < 0, (2.5.1a)

∂yu = 0, y = −h, (2.5.1b)

∂tη = ∂yu+ 2µ∂2
xη +Q, y = 0, (2.5.1c)

∂tu = −gη + σ∂2
xη − 2µ∂2

yu+R, y = 0, (2.5.1d)

u(x, 0, 0) = ξ(0)(x), (2.5.1e)

η(x, 0) = η(0)(x), (2.5.1f)

satisfying

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖u(x, 0, t)‖Xs+5/2 , ‖∂tu(x, 0, t)‖Xs+1/2 , |||u|||V s+3}

≤ K
{
|||F |||V s+1 + ‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)
∥∥∥
Hs+2

+
∥∥∥ξ(0)

∥∥∥
Hs+3/2

}
, (2.5.2)

for a universal constant K > 0.
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Proof. Using the periodicity of solutions we write

{u, F} = {u, F}(x, y, t) =
∞∑

p=−∞
{ûp, F̂p}(y, t)eipx,

{η,Q,R} = {η,Q,R}(x, t) =
∞∑

p=−∞
{η̂p, Q̂p, R̂p}(t)eipx,

{η(0), ξ(0)} = {η(0), ξ(0)}(x) =
∞∑

p=−∞
{η̂(0)

p, ξ̂
(0)

p}eipx,

which transforms (Equation 2.5.1) into

∂2
y ûp − |p|

2 ûp = F̂p, − h < y < 0, (2.5.3a)

∂yûp = 0, y = −h, (2.5.3b)

∂tη̂p = ∂yûp − 2µ |p|2 η̂p + Q̂p, y = 0, (2.5.3c)

∂tûp = −gη̂p − σ |p|2 η̂p − 2µ∂2
y ûp + R̂p, y = 0, (2.5.3d)

ûp(0, 0) = ξ̂(0)
p, (2.5.3e)

η̂p(0) = η̂(0)
p. (2.5.3f)

We now decompose the solution into two parts

{ûp, η̂p} = {UP , HP }+ {UE , HE},
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which essentially solve the parabolic (§ 2.4) and elliptic (§ 2.3) problems respectively, and we

have suppressed the p subscript for clarity. More specifically, {UP , HP } solves (Equation 2.5.3)

in the case F̂p ≡ 0,

∂2
yU

P − |p|2 UP = 0, − h < y < 0, (2.5.4a)

∂yU
P = 0, y = −h, (2.5.4b)

∂tH
P = ∂yU

P − 2µ |p|2HP + Q̂p, y = 0, (2.5.4c)

∂tU
P = −gHP − σ |p|2HP − 2µ∂2

yU
P + R̂p, y = 0, (2.5.4d)

UP (0, 0) = ξ̂(0)
p, (2.5.4e)

HP (0) = η̂(0)
p, (2.5.4f)

while {UE , HE} solves (Equation 2.5.3) where Q̂p ≡ R̂p ≡ ξ̂(0)
p ≡ η̂(0)

p ≡ 0,

∂2
yU

E − |p|2 UE = F̂p, − h < y < 0, (2.5.5a)

∂yU
E = 0, y = −h, (2.5.5b)

∂tH
E = ∂yU

E − 2µ |p|2HE , y = 0, (2.5.5c)

∂tU
E = −gHE − σ |p|2HE − 2µ∂2

yU
E , y = 0, (2.5.5d)

UE(0, 0) = 0, (2.5.5e)

HE(0) = 0. (2.5.5f)
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It is not difficult to show that the solution of (Equation 2.5.4a) and (Equation 2.5.4b) is

UP (y, t) = UP (0, t)
cosh(|p| (y + h))

cosh(|p|h)
.

Upon insertion of this form into (Equation 2.5.4c)–(Equation 2.5.4f) we find

∂tH
P = |p| tanh(h |p|)UP − 2µ |p|2HP + Q̂p, y = 0,

∂tU
P = −(g + σ |p|2)HP − 2µ |p|2 UP + R̂p, y = 0,

UP (0, 0) = ξ̂(0)
p,

HP (0) = η̂(0)
p.

Upon inverse Fourier transform we find that this equation is identical to that appearing in

Theorem 2.4.3 with ξ̂p(t) = UP (0, t). From this we learn that

max
{∥∥HP

∥∥
Xs+3 ,

∥∥∂tHP
∥∥
Xs+1 ,

∥∥UP (x, 0, t)
∥∥
Xs+5/2 ,

∥∥∂tUP (x, 0, t)
∥∥
Xs+1/2

}
≤ Kp

{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)
∥∥∥
Hs+2

+
∥∥∥ξ(0)

∥∥∥
Hs+3/2

}
. (2.5.6)

Turning to (Equation 2.5.5) it is easy to see that (Equation 2.5.5c)–(Equation 2.5.5f) de-

mand that

UE(0, t) ≡ HE(t) ≡ 0,



40

so that we are left to solve

∂2
yU

E − |p|2 UE = F̂p, − h < y < 0,

∂yU
E = 0, y = −h,

UE = 0, y = 0.

However, upon inverse Fourier transform, we realize that this is simply the system of equations

in Theorem 2.3.1 with ψ ≡ 0. Thus, we conclude that

max
{∥∥UE(x, 0, t)

∥∥
Xs+5/2 ,

∣∣∣∣∣∣UE∣∣∣∣∣∣
V s+3

}
≤ Ke |||F |||V s+1 . (2.5.7)

Combining (Equation 2.5.6) and (Equation 2.5.7) to estimate η̂p = HP +HE and ûp = UP +UE

we realize (Equation 2.5.2) for some K > 0.

2.6 An Inductive Lemma

To complete the proof of our theorem we require the following recursive estimates.

Lemma 2.6.1. For an integer s ≥ 4, suppose for some C,B > 0 we have

max {‖ηn‖Xs+3 , ‖∂tηn‖Xs+1 , ‖un(x, 0, t)‖Xs+5/2 , ‖∂tun(x, 0, t)‖Xs+1/2 , |||un|||V s+3}

≤ C Bn−1

(n+ 1)2
, ∀n < N,
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then the functions FN , QN and RN satisfy

max {|||FN |||V s+1 , ‖QN‖Xs+1 , ‖RN‖Xs+1/2} ≤ CiC
{

BN−2

(N + 1)2
+

BN−3

(N + 1)2
+

BN−4

(N + 1)2

}
,

for a universal constant Ci > 0.

Proof. To begin, we consider (Equation 1.2.4a) and estimate

h2 |||FN |||V s+1 ≤ 2h |||Jη∂xuKN |||V s+2 + hY
∣∣∣∣∣∣J(∂xη)∂yuKN

∣∣∣∣∣∣
V s+2

+ hY |||J(∂xη)∂xuKN |||V s+2 +
∣∣∣∣∣∣qη2∂xu

y
N

∣∣∣∣∣∣
V s+2

+ Y
∣∣∣∣∣∣Jη(∂xη)∂yuKN

∣∣∣∣∣∣
V s+2 + Y |||Jη(∂xη)∂xuKN |||V s+2

+ Y 2
∣∣∣∣∣∣q(∂xη)2∂yu

y
N

∣∣∣∣∣∣
V s+2 + h |||J(∂xη)∂xuKN |||V s+1

+ |||Jη(∂xη)∂xuKN |||V s+1 + Y
∣∣∣∣∣∣q(∂xη)2∂yu

y
N

∣∣∣∣∣∣
V s+1 .

From Theorem B.0.1 we find, since s+ 2, s+ 1 ≥ 4,

h2 |||FN |||V s+1 ≤ {2hC[η, ∂xu] + hY C[∂xη, ∂yu]

+hY C[∂xη, ∂xu] + hC[∂xη, ∂xu]} BN−2

(N + 1)2

+ {C[η, η, ∂xu] + Y C[η, ∂xη, ∂yu] + Y C[η, ∂xη, ∂xu]

+Y 2C[∂xη, ∂xη, ∂yu] + C[η, ∂xη, ∂xu] + Y C[∂xη, ∂xη, ∂yu]
} BN−3

(N + 1)2
,
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where we have used η ∈ Xs+3 and u ∈ V s+3. Since we have chosen the same constant C for

the estimates above we find

h2 |||FN |||V s+1 ≤ (3h+ 2hY )C2MΣ
BN−2

(N + 1)2

+ (2 + 3Y + Y 2)C3M2Σ
BN−3

(N + 1)2
,

and we are done provided

Ci >
1

h2
max{(3h+ 2hY )CMΣ, (2 + 3Y + Y 2)C2M2Σ}.

We continue by considering (Equation 1.2.4b) and estimate

h ‖QN‖Xs+1 ≤ ‖Jη(∂tη)KN‖Xs+1 + 2µ
∥∥qη(∂2

xη)
y
N

∥∥
Xs+1 + h ‖J(∂xη)∂xuKN‖Xs+1

+ ‖Jη(∂xη)∂xuKN‖Xs+1 + h
∥∥q(∂xη)2∂yu

y
N

∥∥
Xs+1 ,

From Theorem B.0.1 we find, since s+ 1 ≥ 4,

h ‖QN‖Xs+1 ≤
{
C[η, ∂tη] + 2µC[η, ∂2

xη] + hC[∂xη, ∂xu]
} BN−2

(N + 1)2

+ {C[η, ∂xη, ∂xu] + hC[∂xη, ∂xη, ∂yu]} BN−3

(N + 1)2
,
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where we have used ηn ∈ Xs+3, ∂tηn ∈ Xs+1, and un(x, 0, t) ∈ Xs+5/2. Again, as we have

chosen the same constant C for the estimates above, we find

h ‖QN‖Xs+1 ≤ (1 + 2µ+ h)C2MΣ
BN−2

(N + 1)2
+ (1 + h)C3M2Σ

BN−3

(N + 1)2
,

and we are done provided

Ci >
1

h
max{(1 + 2µ+ h)CMΣ, (1 + h)C2M2Σ}.

Finally, we considerRN and for this we require the following estimate onHN from (Equation 1.2.6).

If

‖ηn‖Xs+3 ≤ C
Bn−1

(n+ 1)2
, ∀n < N,

then

‖HN‖Xs+2 ≤ CiC
BN−2

(N + 1)2
.
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This can be established either by an argument analogous to the one given here for {FN , QN , RN},

or by simply appealing to the fact that the composition of two analytic functions is analytic.

With this fact we return to (Equation 1.2.4c) and estimate

h2 ‖RN‖Xs+1/2 ≤ 2h ‖Jη∂tuKN‖Xs+1/2 +
∥∥qη2∂tu

y
N

∥∥
Xs+1/2 + h2

∥∥J(∂tη)∂yuKN
∥∥
Xs+1/2

+ h
∥∥Jη(∂tη)∂yuKN

∥∥
Xs+1/2 + 2gh

∥∥qη2
y
N

∥∥
Xs+1/2 + g

∥∥qη3
y
N

∥∥
Xs+1/2

+ 2σh
∥∥qη(∂2

xη)
y
N

∥∥
Xs+1/2 + σ

∥∥qη2(∂2
xη)

y
N

∥∥
Xs+1/2

+ σh2 ‖J∂x [(∂xη)H(∂xη)]KN‖Xs+1/2 + 2σh ‖Jη∂x [(∂xη)H(∂xη)]KN‖Xs+1/2

+ σ
∥∥qη2∂x [(∂xη)H(∂xη)]

y
N

∥∥
Xs+1/2

+
1

2

{
h2
∥∥q(∂xu)2

y
N

∥∥
Xs+1/2 + 2h

∥∥qη(∂xu)2
y
N

∥∥
Xs+1/2

+
∥∥qη2(∂xu)2

y
N

∥∥
Xs+1/2 + 2h

∥∥J(∂xη)(∂xu)∂yuKN
∥∥
Xs+1/2

+2h
∥∥Jη(∂xη)(∂xu)∂yuKN

∥∥
Xs+1/2 + h2

∥∥q(∂xη)2(∂yu)2
y
N

∥∥
Xs+1/2

}
+

1

2
h2
∥∥q(∂yu)2

y
N

∥∥
Xs+1/2 .
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Once again using Theorem B.0.1 we find, since s+ 1/2 ≥ 4,

h2 ‖RN‖Xs+1/2 ≤
{

2hC[η, ∂tu] + h2C[∂tη, ∂yu] + 2ghC[η, η] + 2σhC[η, ∂2
xη]

+σh2C[∂xη,H] +
h2

2
C[∂xu, ∂xu] +

h2

2
C[∂yu, ∂yu]

}
BN−2

(N + 1)2

+
{
C[η, η, ∂tu] + hC[η, ∂tη, ∂yu] + gC[η, η, η] + σC[η, η, ∂2

xη]

+2σhC[η, ∂xη,H] + hC[η, ∂xu, ∂xu] + hC[∂xη, ∂xu, ∂yu]} BN−3

(N + 1)2

+

{
σC[η, η, ∂xη,H] +

1

2
C[η, η, ∂xu, ∂xu] + hC[η, ∂xη, ∂xu, ∂yu]

+
h2

2
C[∂xη, ∂xη, ∂yu, ∂yu]

}
BN−4

(N + 1)2
,

where we have used ηn ∈ Xs+3, ∂tηn ∈ Xs+1, un(x, 0, t) ∈ Xs+5/2, and ∂tun(x, 0, t) ∈ Xs+1/2.

Finally, as above, since we have chosen the same constant C for the estimates above we find

h2 ‖RN‖Xs+1/2 ≤
(
2(1 + g + σ)h+ (2 + σ)h2

) BN−2

(N + 1)2
+ (1 + 3h+ σ + g + 2σh)

BN−3

(N + 1)2

+

(
σ +

1

2
+ h+

h2

2

)
BN−4

(N + 1)2
,

and we are done provided

Ci >
1

h2
max

{(
2(1 + g + σ)h+ (2 + σ)h2

)
CMΣ, (1 + 3h+ σ + g + 2σh)C2M2Σ,(

σ +
1

2
+ h+

h2

2

)
C3M3Σ

}
.
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2.7 Well–Posedness Proof

At last we are in a position to establish our main result.

Theorem 2.7.1. Given an integer s ≥ 4, if η(0) ∈ Hs+2 and ξ(0) ∈ Hs+3/2 then there exists a

unique solution, of (Equation 1.2.1) of the form (Equation 1.2.2) satisfying

max {‖ηn‖Xs+3 , ‖∂tηn‖Xs+1 , ‖un(x, 0, t)‖Xs+5/2 , ‖∂tun(x, 0, t)‖Xs+1/2 , |||un|||V s+3}

≤ C Bn−1

(n+ 1)2
, ∀n > 0, (2.7.1)

for universal constants C,B > 0.

Proof. We work by induction on n and begin at order n = 1 where (Equation 1.2.3) gives us

∆u1 = 0, − h < y < 0,

∂yu1 = 0, y = −h,

∂tη1 = ∂yu1 + 2µ∂2
xη1, y = 0,

∂tu1 = −gη1 + σ∂2
xη1 − 2µ∂2

yu1, y = 0,

u1(x, 0, 0) = ξ(0)(x),

η1(x, 0) = η(0)(x).
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This can be solved explicitly and we set

C := max {‖η1‖Xs+3 , ‖∂tη1‖Xs+1 , ‖u1(x, 0, t)‖Xs+5/2 , ‖∂tu1(x, 0, t)‖Xs+1/2 , |||u1|||V s+3} ,

which, of course, depends upon
∥∥η(0)

∥∥
Hs+2 and

∥∥ξ(0)
∥∥
Hs+3/2 . We now assume estimate (Equation 2.7.1)

for all n < N , and apply Lemma 2.5.1 to (Equation 1.2.3) at order N to realize

max {‖ηN‖Xs+3 , ‖∂tηN‖Xs+1 , ‖uN (x, 0, t)‖Xs+5/2 , ‖∂tuN (x, 0, t)‖Xs+1/2 , |||uN |||V s+3}

≤ K {‖QN‖Xs+1 + ‖RN‖Xs+1/2 + |||FN |||V s+1} ,

where we have used that η(0) ≡ ξ(0) ≡ 0 for n > 1. From Lemma 2.6.1 we have

max {‖ηN‖Xs+3 , ‖∂tηN‖Xs+1 , ‖uN (x, 0, t)‖Xs+5/2 , ‖∂tuN (x, 0, t)‖Xs+1/2 , |||uN |||V s+3}

≤ KCiC
{

BN−2

(N + 1)2
+

BN−3

(N + 1)2
+

BN−4

(N + 1)2

}
,

and we are done if we choose B > max{KCi, 1}/3.

Remark 2.7.2. Before closing, we remark on a limitation of our method of proof. There is

clearly a very specific choice of function spaces for the unknowns: ηn ∈ Xs+3, ξn ∈ Xs+5/2,

un ∈ V s+3. One can wonder if these can be changed. However, we believe that these choices

are fixed for the following reasons:
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1. Since un represents the field in the solution of an elliptic equation and ξn is its trace, it

must be the case that

un ∈ V t ⇐⇒ ξn ∈ Xt−1/2.

2. Our change of variables induces a relationship between the field and the surface de-

formation, namely, since ∆un = Fn and Fn involves the second derivative of ηn, c.f.

(Equation 1.2.4a), it appears that

un ∈ V t ⇐⇒ ηn ∈ Xt.

3. Finally, the parabolic estimate with capillarity features the balance

ηn ∈ Xt ⇐⇒ ξn ∈ Xt−1/2.

So, if we select t = s+ 3 we can satisfy all three demands. However, if we drop the capillarity

term the final balance in Point 3 becomes

ηn ∈ Xt ⇐⇒ ξn ∈ Xt+1/2,

and our argument falls apart. However, it is quite possible that a different change of variables

or a more subtle analysis could “improve” the relationship in Point 2 and allow us to consider

pure gravity waves.
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Remark 2.7.3. We mentioned that another motivation for this work is the goal of modeling the

Faraday wave experiment. We believe that the viscous water waves problem presented here will

be a reasonable model of this physical problem provided that a periodically modulated gravity

is introduced, e.g., g replaced by g+gφ(t), φ(t+Ω) = φ(t). If the forcing is small, e.g. φ = O(ε),

then our new theorem can be used to establish existence and uniqueness of solutions; a couple

of additional terms appear in the definition of Rn which are readily estimated. However, this

is not completely satisfying as our results conclude that solutions decay exponentially as time

evolves which is not the interesting regime of the Faraday wave experiment. To address the

situation where φ = O(1) requires an analysis of a new linearized parabolic problem which has

the character of a Mathieu equation. We save such considerations for a future publication.

2.8 Conclusions

In this chapter we have established the existence and uniqueness of solutions to the capillary–

gravity water wave problem supplemented with physically motivated viscosity. Our method of

proof follows that of Friedman and Reitich in the contexts of the classical Stefan problem (39)

and the capillary drop problem (42) which produces somewhat different results than those which

can be attained by more standard techniques. It should be noted that due to the nature of the

function spaces, the conclusion of the theorem is not only the well–posedness of our model, but

also the stability of our solutions. More specifically, we discover exponential decay in time with

the rate determined by the value of the viscosity. Thus, not only do unique solutions exist, they

persist globally in time and decay exponentially fast to zero.



CHAPTER 3

NUMERICAL SIMULATIONS

3.1 Introduction

In this chapter, we present our numerical results. First, we are going to rewrite our equa-

tions using the Zakharov, Craig and Sulem ((29), (106)) surface formulation and give a formal

definition of the Dirichlet-Neumann Operator (DNO). We then use Field Expansions ((74)) to

compute the DNO and a fourth order Runge-Kutta time stepping method to solve the equa-

tions. We validate our code by comparing the solutions we obtain to the ones that can be

derived in the case of traveling waves solutions. Finally, we use our solver to perform a study

on the Faraday Wave experiment.

3.2 The Surface formulation of Zakharov, Craig and Sulem

We restate our problem in terms of Zakharov’s canonical conjugate variables

η(x, t), ξ(x, t) := ϕ(x, η(x, t), t),

with the use of the Dirichlet-Neumann operator

G : ξ → [∂yϕ− (∂xη)∂xϕ](x, η(x, t), t),

50
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which maps Dirichlet data to its Neumann counterpart. In terms of these, (Equation 1.1.1c-

Equation 1.1.1f) can be written as

∂tη = G0[ξ] + 2µ∂2
xη +Q(x, t) (3.2.1a)

∂tξ = −gη + σ∂2
xη + 2µ∂2

xξ +R(x, t) (3.2.1b)

ξ(x, η, 0) = ξ(0)(x), (3.2.1c)

η(x, 0) = η(0)(x), (3.2.1d)

where we have used the fact that, by continuity ∆ϕ = 0 is true at the fluid air interface which

means that ∂2
yϕ = −∂2

xϕ = −∂2
xξ. Q and R are redefined from Chapter 1 to be

Q = G(η)[ξ]−G0[ξ],

R = A(η)(∂xξ)
2 − (G(η)[ξ])2 − 2(∂xξ)(∂xη)G(η)[ξ] + σ∂x [(∂xη)H(∂xη)]

and

A = A(η) :=
1

2(1 + (∂xη)2)
. (3.2.3a)

Here, G0 expresses the lowest order behavior of the DNO

G0[ξ] =
∞∑

p=−∞
Ĝ0ξ̂pe

i( 2π
d

)px =
∞∑

p=−∞
|p| tanh(h|p|)ξ̂pei(

2π
d

)px,
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where ξ̂p is the p-th Fourier coefficient of ξ(x). To simplify the computations, we suppose

2pi
d = 1 in the rest of this chapter.

3.3 2D Traveling Water Waves

We seek to test our codes which simulate the evolution of water waves in the Faraday wave

experiment. For this, we use the traveling wave solutions in the absence of viscosity, surface

tension and forcing to verify the accuracy of our code. We note that these can be computed

to very high accuracy by the method outlined below. Traveling waves play an important role

in applications like the propagation of tsunamis or the transport of pollutants. M. Kakleas

and D. Nicholls (51) have simulated traveling waves solutions in the case of infinite depth for a

weakly nonlinear version of the model, where only linear and quadratic terms were considered.

Here, we present solutions to the full model for water with depth h using our Field Expansions

method to compute the Dirichlet-Neumann operator and a Runge-Kutta 4 scheme to derive

the solution.

3.3.1 Derivation of the exact solutions

With the viscosity µ = 0 and the surface tension σ = 0, (Equation 3.2.1) become:

∂tη = G0[ξ] +Q, η(x, 0) = η(0)(x), (3.3.1a)

∂tξ = −gη +R, ξ(x, 0) = ξ(0)(x). (3.3.1b)
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To get traveling waves, we seek solutions of the form

u =

η
ξ

 = f(x+ ct),

where c is the speed of the wave. The above equation becomes:

c∂xη −G0ξ = Q, y = 0, (3.3.2a)

c∂xξ + gη = R, y = 0. (3.3.2b)

We then use Taylor expansions and seek solutions of the form:

u =
∞∑
n=1

un(x)εn, c = c0 +
∞∑
n=1

cnε
n,

where

un =

ηn
ξn

 .

1 At order 1, (Equation 3.3.2) becomes


c0∂xη1 −G0ξ1 = 0,

c0∂xξ1 + gη1 = 0,
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or written in matrix form,

c0∂x −G0

g c0∂x


η1

ξ1

 =

0

0

 .

Using bifurcation theory, we seek c0 such that

B0 =

c0∂x −G0

g c0∂x

 ,

has a non-trivial null space (otherwise, the equations only have trivial solutions).

As the solutions are spatially periodic, we apply Fourier transformations to η1 and ξ1 and

obtain

η1

ξ1

 =
∞∑

p=−∞

η̂1,p

ξ̂1,p

 eipx,
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which gives

B̂0,p =

ipc0 −|p| tanh(h|p|)

g ipc0

 .

Since we are looking for nontrivial solutions, we consider parameter values where the

determinant function

∆p = −p2c2
0 + g|p| tanh(h|p|), (3.3.4)

is equal to zero. For any p̃ ∈ Z\{0}, we can choose c0 =
√

g tanh(h|p̃|)
|p̃| so that ∆p̃ = 0.

Then, we pick for ρ ∈ R

η̂1,p̃

ξ̂1,p̃

 = ρ

|p̃| tanh(h|p̃|)

ip̃c0

 ,

η̂1,−p̃

ξ̂1,−p̃

 =

¯̂η1,p̃

¯̂
ξ1,p̃

 ,
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η̂1,p

ξ̂1,p

 =

0

0

 , for p 6= ±p̃.

2 For orders n > 1, (Equation 3.3.2) gives us the equations

c0∂xηn +

n−1∑
k=1

ck∂xηn−k − |D| tanh(h|D|)ξn = Qn, (3.3.5a)

c0∂xξn +
n−1∑
k=1

ck∂xξn−k + gηn = Rn, (3.3.5b)

where, Q1 ≡ R1 ≡ 0 and, for n ≥ 2 we have

Qn = Gn,

Rn =
n∑

m=1

m−1∑
l=1

An−m(∂xξm−l)(∂xξl)−
n∑

m=1

m∑
l=0

An−m(∂xξm−l)(∂xξl)

− 2
n∑

m=1

m−1∑
l=1

l−1∑
q=0

An−m(∂xξm−l)(∂xηl−q)(Gq)

and

A(η) =

∞∑
n=0

Anε
n, G(η)[ξ] =

∞∑
n=0

Gnε
n.

Remark 3.3.1. From the definition (Equation 3.2.3a) of A, we get

2A+ 2(∂xη)2A = 1,
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Figure 1: Numerical approximation of a two-dimensional traveling wave solu-

tion for ε = 1
100 at t = 0, t = T

2 , t = T using N = 8 Taylor orders in the approxima-

tion of the DNO.
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which gives A0 = 1
2 , A1 = 0, and, for n ≥ 2,

An = −
n−1∑
m=1

m−1∑
l=0

(∂xηn−m)(∂xηm−l)Al.

Upon going to the Fourier side,

B̂0,p

η̂n,p
ξ̂n,p

 =

Q̂n,p −
∑k=n−1

k=1 ipckη̂n−k,p

R̂n,p −
∑k=n−1

k=1 ipckξ̂n−k,p

 =


˜̂
Qn,p − ipcn−1η̂1,p

˜̂
Rn,p − ipcn−1ξ̂1,p

 .

We now consider three cases of p ∈ Z:

a. If p 6= 0,±p̃, then B̂0,p is invertible and the solution is easily derived.

b. If p = 0, then we obtain gη̂n,p = R̂n,p which is easily solved. We then set ξ̂n,p = 0

since the velocity potential is only meaningful up to a constant.

c. If p = ±p̃, for example, if p = p̃, the matrix B̂0,p̃ is singular but, using Gaussian

elimination, the equation is solvable if

cn−1 =
g

˜̂
Qn,p̃ − (ic0p̃)

˜̂
Rn,p̃

g(ip̃)η̂1,p̃ − (ic0p̃)ip̃ξ̂1,p̃

.
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We then follow the approach of Stokes (100) to get the uniqueness of the solution by

taking ηn orthogonal to η1 in L2. Since η1 is only supported by wavenumbers p = ±p̃,

this is obtained by setting η̂n,±p̃ = 0. We then obtain

ξ̂n,p̃ =
˜̂
Rn,p̃ − cn−1(ip̃)ξ̂1,p̃

ic0p̃
, ξ̂n,−p̃ =

¯̂
ξn,p̃.

With these, we find approximations of the traveling wave solutions with the truncated series

uN (x) =

N∑
n=0

un(x)εn.

3.3.2 Solving the Water Wave Equations

We now describe our procedure for solving (Equation 3.3.2). Following Trefethen (101), we

utilize a Fourier collocation approach where we assume

{η, ξ}(x, t) =

Nx
2
−1∑

p=−Nx
2

{η̂p(t), ξ̂p(t)}eipx

and demand that (Equation 3.3.5)be true at the equally-spaced gridpoints {xj}Nx−1
j=0 , xj = 2πj

Nx
.

The only novelty of our approach is the treatment of the DNO that we approximate using Field

Expansions (74).
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Then, we use a fourth order Runge-Kutta method to approximate the solution to (Equa-

tion 3.3.2). Runge-Kutta methods are a family of iterative methods used to approximate

solutions of ordinary differential equations of the form

∂ty = f(y(t), t), y(t0) = y0.

For a step size h, the fourth order Runge-Kutta method is based on the following iterations

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4,

where

k1 = hf(yn, tn),

k2 = hf(yn +
k1

2
, tn +

h

2
),

k3 = hf(yn +
k2

2
, tn +

h

2
),

k4 = hf(yn + k3, tn + h).

3.3.3 Simulation of two-dimensional traveling waves

In figure (1), we show the solutions at different times t with initial conditions given by the

traveling wave solution at t = 0. As expected, the solution comes back to its initial position at

the final time T which corresponds to one full period.
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3.4 3D Traveling Water Waves

3.4.1 Derivation of the exact solutions

We now simulate 3D traveling waves solutions. Here x = (x1, x2) and we derivate the exact

solution by following Nicholls and Reitich (85). As before, we are looking for solutions of the

form

u =

∞∑
n=1

un(x)εn,

where

un =

ηn
ξn

 .

We seek traveling waves with speed c = (cx1 , cx2) =
∑∞

n=0(cx1n , c
x2
n )εn such that

u(x1, x2, t) = f(x1 + c1t, x2 + c2t).

Upon going on the Fourier side to get

ηn
ξn

 =

∞∑
p=−∞

∞∑
q=−∞

η̂n,p,q
ξ̂n,p,q

 eipx1+iqx2 .

We now have
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B̂0,p,q =

i(cx10 p+ cx20 q) −
√
p2 + q2 tanh(h

√
p2 + q2)

g i(cx10 p+ cx20 q)

 ,

and ∆p,q = −(cx10 p+ cx20 q)
2 + g ∗

√
p2 + q2 tanh(h

√
p2 + q2). We show below the procedure to

compute a 3D traveling wave solution:

1 At order 1 For (p, q) 6= (0, 0), if we reason as in the 2D case, we will pick (p̃, q̃) such that

∆p̃,q̃ = 0. From that, we would get for ρ ∈ R,

η̂1,p̃,q̃

ξ̂1,p̃,q̃

 = ρ


√
p̃2 + q̃2 tanh(h

√
p̃2 + q̃2)

i(cx10 p̃+ cx20 q̃)

 ,

η̂1,−p̃,−q̃

ξ̂1,−p̃,−q̃

 =

¯̂η1,p̃,q̃

¯̂
ξ1,p̃,q̃

 ,

η̂1,p,q

ξ̂1,p,q

 =

0

0

 , for (p, q) 6= (p̃, q̃).

However, as noted in (85), these solutions are two dimensional waveforms in a rotated set

of coordinates (see figure(2)) .

To get true three-dimensional solutions, we follow (85) and begin by selecting two lineary

independant wavenumbers k1 = (p̃, q̃) and k2 = (q̃,−p̃). We then solve ∆kj = 0, j = 1, 2

to obtain

cx10 =
−(p̃+ q̃)

√
gĜ0, ˜p,q̃

−(p̃2 + q̃2)
, cx10 =

(p̃− q̃)
√
gĜ0, ˜p,q̃

−(p̃2 + q̃2)
.
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Figure 2: Illustration of a nontruly 3D traveling wave solution for (p̃, q̃) = (1, 1)

Then, we pick, for ρ1, ρ2 ∈ R

η̂1,p̃,q̃

ξ̂1,p̃,q̃

 = ρ1


√
p̃2 + q̃2 tanh(h

√
p̃2 + q̃2)

i(cx10 p̃+ cx20 q̃)

 ,

η̂1,−p̃,−q̃

ξ̂1,−p̃,−q̃

 =

¯̂η1,p̃,q̃

¯̂
ξ1,p̃,q̃

 ,

η̂1,q̃,−p̃

ξ̂1,q̃,−p̃

 = ρ2


√
p̃2 + q̃2 tanh(h

√
p̃2 + q̃2)

i(cx10 q̃ − c
x2
0 p̃)

 ,

η̂1,−q̃,p̃

ξ̂1,−q̃,p̃

 =

¯̂η1,q̃,−p̃

¯̂
ξ1,q̃,−p̃

 ,

η̂1,p,q

ξ̂1,p,q

 =

0

0

 , for (p, q) 6= (p̃, q̃), (p, q) 6= (q̃,−p̃).

2 For orders n > 1, we have the equations
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B̂0,p,q

η̂n,p,q
ξ̂n,p,q

 =


˜̂
Qp,q − i(cx1n−1p+ cx2n−1q)η̂1,p,q

˜̂
Rp,q − i(cx1n−1p+ cx2n−1q)ξ̂1,p,q

 .

a. If (p, q) 6= (0, 0) then B̂0,p,q is invertible and the solution is easily derived

b. If (p, q) = (0, 0) then we obtain gη̂n,p,q =
˜̂
Qp,q which is easily solved. We then set

ξ̂n,p,q = 0.

c. If (p, q) = ±(p̃, q̃) or ±(q̃,−p̃), then, as for the 2D case, we use Gaussian elimination

to get

p̃cx1n−1 + q̃cx2n−1 =
g

˜̂
Qn,p̃,q̃ − i(cx10 p̃+ cx20 q̃)

˜̂
Rn,p̃,q̃

g(iη̂1,p̃,q̃ − (i(cx10 p̃+ cx20 q̃))(i(p̃+ q̃))ξ̂1,p̃,q̃

= rhs1,

q̃cx1n−1 − p̃c
x2
n−1 =

g
˜̂
Qn,q̃,−p̃ − i(cx10 q̃ − c

x2
0 p̃)

˜̂
Rn,q̃,−p̃

g(iη̂1,q̃,−p̃ − (i(cx10 q̃ − c
x2
0 p̃))(i(q̃ − p̃))ξ̂1,q̃,−p̃

= rhs2,

Which, upon solving gives us

cx1n−1 =
−rhs1 × p̃− rhs2 × q̃

−(p̃2 + q̃2)
,

cx2n−1 =
rhs2 × p̃− rhs1 × q̃
−(p̃2 + q̃2)

.
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Then, following Stokes again, set η̂n,p̃,q̃ = η̂n,−p̃,−q̃ = η̂n,q̃,−p̃ = η̂n,−q̃,p̃ = 0 and obtain

ξ̂n,p̃,q̃ =

˜̂
Rn,p̃,q̃ − i(cx1n−1p̃+ cx2n−1q̃)ξ̂1,p̃,q̃

i(cx10 p̃+ cx20 q̃)
, ξ̂n,−p̃,−q̃ =

¯̂
ξn,p̃,q̃

ξ̂n,q̃,−p̃ =

˜̂
Rn,q̃,−p̃ − i(cx1n−1q̃ − c

x2
n−1p̃)ξ̂1,q̃,−p̃

i(cx10 q̃ − c
x2
0 p̃)

, ξ̂n,−q̃,p̃ =
¯̂
ξn,q̃,−p̃.

In the same spirit as before, we now approximate the exact traveling wave solutions with the

truncated series

uN (x1, x2) =

N∑
n=0

un(x1, x2)εn.

3.4.2 Simulation of three-dimensional traveling waves

Here we adapt the scheme given above to approximate a two-dimensional traveling wave to

the three- dimensional case. We assume that un(x1, x2) is approximated with

un(x1, x2, t) =

Nx
2
−1∑

p=−Nx
2

Ny
2
−1∑

q=−Ny
2

ûn,p,qe
i(px1+qx2

and demand that (Equation 3.3.2) be true at the equally-spaced gridpoints

(
{x1j}Nx−1

j=0 , {x2j}
Ny−1
j=0

)
, (x1j , x2j) =

(
2πj

Nx
,
2πj

Ny

)
.

We make sure to pick (p̃, q̃) such that (q̃,−p̃) is in the truncated wavenumbers domain. As in

the two-dimensional case, we approximate the DNO using Field Expansions and use a Runge-
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Figure 3: Numerical approximation of a 3D traveling wave solution for ε = 1
100

at t = 0, t = 3T
4 , t = T using N = 4 Taylor orders in the approximation of the

DNO and (p̃, q̃) = (1, 1)



67

Kutta method to approximate the solutions of (Equation 3.3.2).

Figure (3) shows the solutions obtained by our method and those obtained by truncating the

exact solutions for (p̃, q̃) = (1, 1). The figure shows that our method fits the truncated exact

solution satisfactorily. Also, as expected, the solution come back to its initial position at the

final time T which corresponds to one full period. Figure (4) shows an approximated traveling

wave solution at different times for (p̃, q̃) = (2, 2).

Given the satisfactory results we obtain in the case of traveling wave solutions, we feel

justified in beginning our study of the Faraday Wave Experiment.

3.5 The Faraday Wave Experiment

Faraday waves are obtained when a vessel containing two immiscible fluids is vertically

forced into motion. The shaking induces a pattern of standing waves at the interface of the

two fluids. They were first noticed by Faraday in 1831, and Miles and Henderson provided

an extensive review on Faraday waves in 1990. The patterns can have differents shapes from

simple squares to eight-fold patterns (Christiansen, Alstrom and Levinsen (1992)), twelve-fold

quasipatterns (Edwards and Fauve, 1994), triangles (Muller, 1993), and even spatiotemporal

chaos (Kudrolli and Gollub, 1996). Benjamin and Ursell (14) studied the stability of the free

surface between inviscid fluids theoretically by showing that the equations of the system are

equivalent to a Mathieu equation. However, they observed large discrepancies between their

results in the case of ideal fluids and the experimental results for viscous fluids. For this reason,
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Figure 4: Numerical approximation of a 3D traveling wave solution for ε = 1
100

at t = 0, t = 2T
3 , t = T using N = 4 Taylor orders in the approximation of the

DNO and (p̃, q̃) = (2, 2)
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Tuckerman and Kumar (102) extended the work of Benjamin and Ursell to viscous fluids in

1994.

Here we consider a vessel containing a layer of (viscous) water of height h and air above,

and are interested in the stability of the free surface of the water. We simulate the Faraday

wave experiment (35) by supplementing our equations with a periodically varying gravity in

the form of a single frequency sinusoid so that Equation 3.2.1 become:

∂tη = G0ξ + 2µ∂2
xη +Q, (3.5.1a)

∂tξ = −g(1− 2F cos(Ωt))η + σ∂2
xη + 2µ∂2

xξ +R, (3.5.1b)

where G0 = |D| tanh(h|D|).

First we derive a Mathieu equation and compare its solutions to the one obtained by using our

algorithm to validate it. Then, we use our solver to derive stability results similar to the ones

obtained by Tuckermann and Kumar.

3.5.1 Derivation of a Mathieu type Equation

Following Benjamin and Ursell, we linearize (Equation 3.5.1) and show how a Mathieu

equation can be obtained. First, we make the change of variables

Ωt = 2τ =⇒ τ =
Ω

2
t,
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which transforms (Equation 3.5.1) into

∂τη =
2

Ω
G0ξ +

4µ

Ω
∂2
xη +

2

Ω
Q, (3.5.2a)

∂tξ = −g 2

Ω
(1− 2F cos(Ωt))η +

2σ

Ω
∂2
xη +

4µ

Ω
∂2
xξ +

2

Ω
R. (3.5.2b)

3.5.1.1 Linear Solutions and Spatial Periodicity

If we consider {η, ξ} = O(ε), then, at leading order, the governing equations (Equation 3.5.2)

become (recall that Q and R contain the nonlinear terms)

∂τη =
2

Ω
G0ξ +

4µ

Ω
∂2
xη, (3.5.3a)

∂tξ = −g 2

Ω
(1− 2F cos(Ωt))η +

2σ

Ω
∂2
xη +

4µ

Ω
∂2
xξ. (3.5.3b)

We seek spatially d-periodic solutions. Defining the spatial frequency κ := 2π
d we have

{η(x, τ), ξ(x, τ)} =

∞∑
p=−∞

{η̂(x, τ), ξ̂(x, τ)}eiκpx,

and find

∂τ

η̂p
ξ̂p

 =

 −4µ
Ω |p|

2 2
ΩĜ0,p

−2g
Ω [1− 2F cos(2τ)]− σ|p|2 −4µ

Ω |p|
2


η̂p
ξ̂p

 .
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To simplify things, we factor out the time-decay with the change of variables

u(x, τ) = e2ατη(x, τ), v(x, τ) = e2ατξ(x, τ), α :=
2µ|p|2

Ω
,

resulting in

∂τ

ûp
v̂p

 =

 0 2
ΩĜ0,p

−2g
Ω [1− 2F cos(2τ)]− σ|p|2 0


ûp
v̂p

 .

Taking the time derivative of the first equation and using the second equation, we find

∂2
τ ûp +

(
2

Ω

)2

gĜ0,p

(
1− σΩ|p|2

2
− 2F cos(2τ)

)
ûp = 0,

or defining

ω2
0 = ω2

0(p; g, h, κ) := gĜ0,p,

this becomes

∂2
τ ûp +

(
2ω0

Ω

)2(
1− σΩ|p|2

2
− 2F cos(2τ)

)
ûp = 0. (3.5.4)

Upon defining

a =

(
2ω0

Ω

)2(
1− σΩ|p|2

2

)
, q = aF,
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Figure 5: A comparision between the solutions obtained by solving a Mathieu

equation and the solutions obtained using our algorithm for N = 16 Taylor

orders, Nx = 16 Fourier terms, ε = 1
100 and F = 0.

we discover that (Equation 3.5.4) is the canonical Mathieu equation

∂2
τ ûp + (a− 2q cos(2τ))ûp = 0. (3.5.5)
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Figure 6: A comparision between the solutions obtained by solving a Mathieu

equation and the solutions obtained using our algorithm for N = 16 Taylor

orders, Nx = 16 Fourier terms, ε = 1
100 and F = 0.23.
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Figure 7: A comparision between the solutions obtained by solving a Mathieu

equation and the solutions obtained using our algorithm for N = 16 Taylor

orders, Nx = 16 Fourier terms, ε = 1
100 and F = 0.39.

3.5.1.2 Comparison with HOPS methods

We compare the solutions obtained by solving the above Mathieu equation to the one obtain

by using Field Expansions to simulate the DNO and a fourth order Runge-Kutta method. The

following figures (5, 6, 7, 8) show the two solutions at the final time T of our experiment which

corresponds to one full period.

Our method replicates the behavior of the solution obtained by solving the Mathieu equa-

tion. One advantage of our method is that it is faster and more flexible than the one proposed

by Tuckermann et al. In fact, in the literature, people have used Floquet analysis to obtain a
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Figure 8: A comparision between the solutions obtained by solving a Mathieu

equation and the solutions obtained using our algorithm for N = 16 Taylor

orders, Nx = 16 Fourier terms, ε = 1
100 and F = 1.30
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Figure 9: Relative error between the Mathieu equation solution and our al-

gorithm solution for different Nx Fourier terms, N = 16 Taylor orders, ε = 1
100

and F = 1.30

very computationally expensive eigenvalue problem that they then solved to derive the solutions

to their equations (102).

In figure (9), we show the log10 of the relative errors (using the supremum norm) with respect

to the number of Fourier terms (Nx). As expected, the errors decrease when Nx increases except

at a few isolated values of Nx where the error slightly goes up.
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F Error in η Error in ξ

0 2.94e−5 9.53e−5

0.23 2.82e−3 1.54e−3

0.39 7.96e−3 4.90e−3

1.30 3.11e−3 2.80e−3

TABLE I: Relative Errors for different values of the Amplitude F of the forc-

ing for N = 16 Taylor Orders, Nx = 16 Fourier terms and ε = 1
100
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Figure 10: Stability tongues for water and air, F is the amplitude of the ver-

tical forcing and k is the wavenumber.

3.5.2 Numerical Stability

In this section, we reproduce in figure (10) the tongue-like stability zones obtained by Tuck-

ermann and Kumar (1994) by using our algorithm as opposed to solving a Mathieu equation.

We consider a vessel containing water at 20 degres Celsius up to a height h = 29mm and the

rest of the vessel is filled with air. The frequency of the forcing is 100Hz.

Inside the tongues (yellow) the solutions are unstable (growing or blowing up) and they sta-

ble outside of them (blue). The amplitude of the forcing at the interface of these regions is

called the critical forcing. This is consistent with the stability tongues obtained by Tuckermann

et al. We can see that the equations are stable for small forcing amplitude regardless of the
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wavenumber k. As in Tuckermann et al., we also see that the critical forcing increases with the

wavenumber k which is expected since the viscous dissipation increases with k.

As it is usual when studying the Faraday wave experiment, we have produced an instability

diagram with respect to the parameters of the model. Our method is not a standard one as we

use Field Expansions to compute the DNO and a fourth order Runge-Kutta method to study

the stability of our model instead of solving a Mathieu like equation. In the future, we would

like to numerically simulate patterns at the water/air interface.



CHAPTER 4

CONCLUSION

In this thesis, we have provided a novel approach to prove the well-posedness of a water

wave equation with viscosity and surface tension. Our goal was to extend this proof to the case

of the Faraday wave experiment where the liquid is subject to a vertical forcing. We were able

to do so in the case of small forcing but not in the case of large forcing which we expect to

achieve in the future.

We then solved the equations numerically by using Field Expansions and a fourth order

Runge-Kutta method. First we studied traveling waves solutions when the viscosity and the

surface tension are set to zero. In this case, we can derive the exact solutions by hand. We built

a model for the full problem and provided satisfactory approximations to the exact solutions in

the two dimensional and the three dimensional cases. Finally, we looked at the Faraday wave

experiment by adding vertical forcing to our equations. First, we transformed our equations

into the traditional Mathieu equation which allowed us to use classical methods to solve this

equation. We used the solutions obtained from the Mathieu equation and compared them to

the ones obtained using our new method. We then computed an instability diagram for the

equations with respect to the parameters F (forcing) and k (wavenumber). This is important

as it tells us how to pick our parameters when we perform the Faraday wave experiment which

is a goal for us.

80



APPENDICES

81



82

Appendix A

PROOF OF THE TRACE INEQUALITY

(Previously published as Ngom, M. and Nicholls, D. P.: Well-posedness and analyticity of solutions to a water wave

problem with viscosity. J. Differential Equations, 265:5031-5075, 2018.)

The goal in this appendix is the proof of Lemma 2.2.3.

Proof. [Lemma 2.2.3] We begin by showing that

‖σ(x, 0)‖Hs−1 ≤ Ct ‖σ‖Xs . (A.0.1)

Following (39) we specify a function ρ(x, t), defined for 0 ≤ x ≤ 2π and −∞ < t < ∞, which

agrees with σ for 0 ≤ t ≤ 1 and vanishes for t ≤ −1 and t ≥ 2, such that

M2 :=

∫ 2

−1

∞∑
p=−∞

[
〈p〉2s |ρ̂p(u)|2 + 〈p〉2s−4 |∂tρ̂p(u)|2 + 〈p〉2s−8

∣∣∂2
t ρ̂p(u)

∣∣2] du
=

∫ ∞
−∞

∞∑
p=−∞

[
〈p〉2s |ρ̂p(u)|2 + 〈p〉2s−4 |∂tρ̂p(u)|2 + 〈p〉2s−8

∣∣∂2
t ρ̂p(u)

∣∣2] du
=

∫ ∞
−∞

∞∑
p=−∞

{
〈p〉2s + 〈τ〉2〈p〉2s−4 + 〈τ〉4〈p〉2s−8

}
|ρ̃p(τ)|2 dτ

≤ C ‖σ‖2Xs ,
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Appendix A (Continued)

where ρ̃p(τ) is the space–time Fourier transform of ρ, and the penultimate equality comes from

Parseval’s relation. Since ‖σ(x, 0)‖Hs−1 = ‖ρ(x, 0)‖Hs−1 , to prove (Equation A.0.1) it suffices

to show that

‖ρ(x, 0)‖Hs−1 ≤ CtM.

Now, by interpolation (2), we have

‖ρ(x, 0)‖2Hs−1 ≤ C
{
‖ρ(x, 0)‖2L2 +

∥∥∂s−1
x ρ(x, 0)

∥∥2

L2

}
,

and, from the classical trace theorem (2), we can bound the right hand side to deliver

‖ρ(x, 0)‖2Hs−1 ≤ C
{
‖ρ‖2H1/2(dx,dt) +

∥∥∂s−1
x ρ

∥∥2

H1/2(dx,dt)

}
≤ C

∫ ∞
−∞

∞∑
p=−∞

(
1 + |p|2 + |τ |2

)1/2 (
1 + |p|2(s−1)

)
|ρ̃p(τ)|2 dτ, (A.0.2)

Next, since
√

1 + x2 ≤ 1 + x for any x > 0, we have

[
1 + |p|2 + |τ |2

]1/2
≤ 1 +

[
|p|2 + |τ |2

]1/2
= 1 + |p|

[
1 +

(
|τ |
|p|

)2
]1/2

≤ 1 + |p|
[
1 +
|τ |
|p|

]
= 1 + |p|+ |τ | .



84

Appendix A (Continued)

Thus we can conclude that

‖ρ(x, 0)‖2Hs−1 ≤ C
∫ ∞
−∞

∞∑
p=−∞

(1 + |p|+ |τ |)
(

1 + |p|2(s−1)
)
|ρ̃p(τ)|2 dτ

= C

∫ ∞
−∞

∞∑
p=−∞

(
1 + |p|2s−2 + |p|+ |p|2s−1 + |τ |+ |τ | |p|2s−2

)
|ρ̃p(τ)|2 dτ.

Now, all of the terms on the right hand side will be bounded by M2 provided, for |p| , |τ | > 1,

1 ≤ C |p|2s requires s ≥ 0

|p|2s−2 ≤ C |p|2s requires s ≥ 0

|p| ≤ C |p|2s requires s ≥ 1/2

|p|2s−1 ≤ C |p|2s requires s ≥ 0

|τ | ≤ C |τ |2 |p|2s−4 requires s ≥ 2,

and

|τ | |p|2s−2 ≤ C |τ |2 |p|2s−4 ,

which requires more analysis. We note that

|τ | |p|2s−2 = |τ | |p|a |p|b ≤ 1

2

(
|τ |2 |p|2a + |p|2b

)
,
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Appendix A (Continued)

where a+ b = 2s− 2. For our estimate we set 2a = 2s− 4 which demands that b = 2s− 2−a =

2s− 2− 2s+ 4 = 2. In light of this we have the estimate

|τ | |p|2s−2 ≤ 1

2

(
|τ |2 |p|2s−4 + |p|4

)
,

and we are done provided that 2s ≥ 4, or s ≥ 2.

We now move to establishing

‖∂tσ(x, 0)‖Hs−3 ≤ Ct ‖σ‖Xs . (A.0.3)

The proof is identical to that presented above save that we must bound

(
1 + |p|2 + |τ |2

)1/2 (
1 + |p|2(s−3)

)
|τ |2 ,

c.f., (Equation A.0.2). All of the terms on the right hand side will be bounded by M provided

|τ |2 ≤ C |τ |2 |p|2s−4 requires s ≥ 2

|τ |2 |p|2s−6 ≤ C |τ |2 |p|2s−4 requires s ≥ 0

|τ |2 |p| ≤ C |τ |2 |p|2s−4 requires s ≥ 5/2

|τ |2 |p|2s−5 ≤ Cτ2 |p|2s−4 requires s ≥ 0

|τ |3 ≤ C |τ |4 |p|2s−8 requires s ≥ 4,



86

Appendix A (Continued)

and

|τ |3 |p|2s−6 ≤ C |τ |4 |p|2s−8 ,

which requires more analysis. We note that, from Hölder’s Inequality,

|τ |3 |p|2s−6 = |τ |3 |p|a |p|b ≤ 3

4

(
|τ |3 |p|a

)4/3
+

1

4

(
|p|b
)4

=
3

4
|τ |4 |p|4a/3 +

1

4
|p|4b

where a+ b = 2s− 6. For our estimate we set 4a/3 = 2s− 8, or a = (3/2)s− 6, which demands

that b = 2s − 6 − a = 2s − 6 − (3/2)s + 6 = (1/2)s, or 4b = 2s. In light of this we have the

estimate

|τ |3 |p|2s−6 ≤ 3

4
|τ |4 |p|2s−8 +

1

4
|p|2s

and we are done provided that s ≥ 4.
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Appendix B

PRODUCTS OF ANALYTIC FUNCTIONS

(Previously published as Ngom, M. and Nicholls, D. P.: Well-posedness and analyticity of solutions to a water wave

problem with viscosity. J. Differential Equations, 265:5031-5075, 2018.)

In this section we collect some identities involving the products of analytic functions in terms

of their Taylor series. To begin let suppose that A,B,C,D are analytic functions of ε so that

the following Taylor series are convergent

D = D(ε) =

∞∑
n=1

Dnε
n, E = E(ε) =

∞∑
n=1

Enε
n, (B.0.1a)

F = F (ε) =

∞∑
n=1

Fnε
n, G = G(ε) =

∞∑
n=1

Gnε
n. (B.0.1b)

It is not difficult to see that

D(ε)E(ε) =
∞∑
n=2

JDEKn ε
n, JDEKn :=

n−1∑
m=1

Dn−mEm, (B.0.2a)

and

D(ε)E(ε)F (ε) =

∞∑
n=3

JDEF Kn ε
n, JDEF Kn :=

n−1∑
m=2

m−1∑
`=1

Dn−mEm−`F`, (B.0.2b)
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Appendix B (Continued)

and

D(ε)E(ε)F (ε)G(ε) =
∞∑
n=4

JDEFGKn ε
n, JDEFGKn :=

n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

Dn−mEm−`F`−qGq.

(B.0.2c)

For the results above to be true, the quantities {D,E, F,G} need not be scalars and may

be members of any normed linear space, Z. From these expansions we can prove the following

fundamental result provided that the norm, ‖·‖Z , satisfies the algebra property

‖DE‖Z ≤M ‖D‖Z ‖E‖Z , (B.0.3)

for some M > 0, e.g., the spaces Hs, Xs, and V s provided that s is large large enough (s ≥ 4

is certainly sufficient), c.f. Lemma 2.2.1.

Theorem B.0.1. Suppose that D,E, F,G ∈ Z, a normed linear space with norm satisfying

the algebra property (Equation B.0.3). If D,E, F,G are all analytic in ε with Taylor series

expansions (Equation B.0.1) such that

‖Dn‖Z < CD
Bn−1

(n+ 1)2
, ‖En‖Z < CE

Bn−1

(n+ 1)2
,

‖Fn‖Z < CF
Bn−1

(n+ 1)2
, ‖Gn‖Z < CG

Bn−1

(n+ 1)2
,



89

Appendix B (Continued)

for constants CD, CE , CF , CG, B > 0. Then DE,DEF,DEFG ∈ Z are all analytic in ε as

well, satisfying

‖JDEKn‖Z < C[D,E]
Bn−2

(n+ 1)2
, ‖JDEF Kn‖Z < C[D,E, F ]

Bn−3

(n+ 1)2
, (B.0.4a)

‖JDEFGKn‖Z < C[D,E, F,G]
Bn−4

(n+ 1)2
, (B.0.4b)

where

C[D,E] = CDCEMΣ, C[D,E, F ] = CDCECFM
2Σ,

C[D,E, F,G] = CDCECFCGM
3Σ,

c.f. Lemma 2.2.5.
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Proof. The proof is straightforward and we only present it for the final estimate (Equation B.0.4b).

From (Equation B.0.2c) we have

‖JDEFGKn‖Z ≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

‖Dn−mEm−`F`−qGq‖Z

≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

M3 ‖Dn−m‖Z ‖Em−`‖Z ‖F`−q‖Z ‖Gq‖Z

≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

M3CD
Bn−m−1

(n−m+ 1)2
CE

Bm−`−1

(m− `+ 1)2

× CF
B`−q−1

(`− q + 1)2
CG

Bq−1

(q + 1)2

≤ CDCECFCGM3 Bn−4

(n+ 1)2

×
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

(n+ 1)2

(n−m+ 1)2(m− `+ 1)2(`− q + 1)2(q + 1)2

≤ CDCECFCGM3Σ
Bn−4

(n+ 1)2
,

from Lemma 2.2.5. The estimates (Equation B.0.4) can readily used in an inductive proof of

the analyticity of all of the products DE, DEF , and DEFG.
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PERMISSIONS FOR THE INCLUSION OF PUBLISHED WORKS

The paper used in Chapters 1 and 2 of this thesis was published by Elsevier, which allows

authors to use their articles in their thesis. Their policy states “Authors can include their articles

in full or in part in a thesis or dissertation for non-commercial purposes.” and is available at

https://www.elsevier.com/about/policies/copyright/permissions.

https://www.elsevier.com/about/policies/copyright/permissions
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