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λmin = 0.3, λmax = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

17 Final slices of Reflection Maps and Transmission Maps for a silver nanorod
shaped by the ellipsoidal profile, (Equation 4.10). . . . . . . . . . . . . . 80

18 Plot of the cross–section of a metallic nanorod (occupying Sw) shaped by
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SUMMARY

This thesis focuses on simulating scattering returns of electromagnetic radiation from bounded

obstacles and the Localized Surface Plasmon Resonances. We present High–Order Perturba-

tion of Surfaces algorithms for the simulation of such configurations, formulated with Dirichlet–

Neumann Operators and Impedance–Impedance Operators. With an implementation of these

approaches we demonstrate the stable, robust, and highly accurate properties of our algorithms.

We also demonstrate the validity and utility of our approaches with a sequence of numerical

experiments. Moreover, we show how our formulation delivers a straightforward proof of exis-

tence, uniqueness, and analyticity of solutions.
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CHAPTER 1

INTRODUCTION

Simulating scattering returns of electromagnetic radiation from bounded obstacles is impor-

tant to scientists and engineers. In the field of plasmonics (1; 2; 3; 4) such crucial applications

as surface enhanced Raman scattering biosensing (5), imaging (6), and cancer therapy (7) are

important examples. Due to the very strong plasmonic effect (the field enhancement can be

several orders of magnitude) and its quite sensitive nature (the enhancement is only seen over a

range of tens of nanometers in incident radiation for gold and silver particles), such simulations

must be very robust and of high accuracy for many applications of interest.

In this thesis we focus upon the Localized Surface Plasmon Resonances (LSPRs), which can

be induced in gold and silver nanorods with visible light, and how they change as the shapes

of these rods are varied analytically away from perfectly cylindrical.

All of the classical numerical algorithms have been utilized for the simulation of this problem,

for instance, Finite Difference Methods (8; 9), Finite Element Methods (10; 11), Discontinous

Galerkin Methods (12), Spectral Element Methods (13), and Spectral Methods (14; 15; 16), but

it can be argued (17; 18) that such volumetric approaches are greatly disadvantaged with an

unnecessarily large number of unknowns for these piecewise homogeneous problems. Interfacial

methods based upon Integral Equations (19) are a natural alternative, but these also face

difficulties. One challenge is that an Integral Equation solver will return the scattering returns

only for a specified geometric set-up. For instance, if this shape is changed then the solver must

1
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be run again. Another difficulty is the dense and non-symmetric positive definite systems of

linear equations which must be inverted with each simulation.

A “High Order Perturbation of Surfaces” (HOPS) approach (17; 18) can effectively address

these concerns. More specifically, we consider the Method of Field Expansions (FE), which

was introduced to calculate the solution to low-order by Rayleigh (20) and Rice (21). The

high-order version of FE was first investigated by Bruno and Reitich (22; 23; 24; 25) and

later enhanced and stabilized by the Nicholls and Reitich (26; 27), resulting in the Method of

Transformed Field Expansions (TFE). These formulations maintain the advantageous properties

of classical Integral Equation formulations (e.g., surface formulation and exact enforcement of

far–field conditions) while avoiding the shortcomings stated above. For a description of the

TFE approach to the bounded obstacle geometry see (28).

Our new approach is quite closely related to the work of Bruno and Reitich (25) who studied

the same problem in the three–dimensional context of nanospheres. The current contribution

differs in a number of ways beginning with its two–dimensional character which requires the

study of different Hankel functions. In addition we utilize a formulation in terms of either

Dirichlet–Neumann Operators (DNOs) first described in (29) or Impedance–Impedance Op-

erators (IIOs), which permits the immediate simulation by other classical HOPS methods,

(22; 23; 24; 25) or the stabilized TFE approach (27; 28; 30). The IIO formulation is considered

to avoid the “Dirichlet eigenvalues” as advocated by Gillman, Barnett, and Martinsson (31).

The rest of this thesis is organized as follows: in Chapter 1 we present the governing equa-

tions with transparent boundary conditions, in Chapter 2 we give two boundary formulations
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then present our HOPS algorithms, in Chapter 3 we prove the analyticity of Solutions in terms

of IIOs, in Chapter 4 we discuss numerical results and LSPR simulations. We end with con-

cluding remarks in Chapter 5.

1.1 Governing Equations

We consider a y–invariant obstacle of bounded cross–section as displayed in Figure 1. In this

thesis, we assume a dielectric material of refractive index nu (e.g., air or water) occupies the

unbounded exterior, and a metal of refractive index nw (e.g., gold or silver) fills the bounded

interior; however, our formulation can accommodate arbitrary materials in either domain. The

interface between these two domains is described in polar coordinates, {x = r cos(θ), z =

r sin(θ)}, by the graph r = ḡ + g(θ) so that the exterior domain is specified by

Su := {r > ḡ + g(θ)} ,

while the interior domain is given by

Sw := {r < ḡ + g(θ)} .

The superscripts are chosen to conform to the notation of previous work (18; 29; 32). Ob-

viously, the cylindrical geometry demands that the interface be 2π–periodic, g(θ + 2π) = g(θ).

The structure is illuminated by monochromatic plane-wave incident radiation of frequency ω
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(α,−γ
u)

Sw

Su

Figure 1. Plot of the cross–section of a metallic nanorod (occupying Sw) shaped by

r = ḡ + ε cos(4θ) (ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave

illumination with wavenumber (α,−γu).

and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light), aligned with the corrugations

of the obstacle. We consider the reduced incident fields of incidence angle φ, and

Einc = Aeiαx−iγ
uz = Aeir(α cos(θ)−iγu sin(θ)),

Hinc(x, z) = Beiαx−iγ
uz = Beir(α cos(θ)−iγu sin(θ)),

α = ku sin(φ), γu = ku cos(φ),
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where time dependence of the form exp(−iωt) has been factored out. The geometry demands

that the reduced electric and magnetic fields, {E,H}, be 2π–periodic in θ. To close the problem,

we specify that the scattered radiation is “outgoing” in Su and bounded in Sw.

It is well–known (see, e.g., (33)) that in this two–dimensional setting, the time–harmonic

Maxwell equations decouple into two scalar Helmholtz problems which govern the transverse

electric (TE) and transverse magnetic (TM) polarizations. We define the invariant (y) directions

of the scattered (electric or magnetic) fields by {u(r, θ), w(r, θ)} in Su and Sw, respectively, and

the incident radiation in the outer domain by uinc(r, θ).

All of these developments lead us to seek outgoing/bounded, 2π–periodic solutions of

∆u+ (ku)2u = 0, r > ḡ + g(θ), (1.1a)

∆w + (kw)2w = 0, r < ḡ + g(θ), (1.1b)

u− w = ζ, r = ḡ + g(θ), (1.1c)

∂Nu− τ2∂Nw = ψ, r = ḡ + g(θ), (1.1d)

where the Dirichlet and Neumann data are

ζ(θ) :=
[
−uinc

]
r=ḡ+g(θ)

= −eiku(ḡ+g(θ)) sin(φ−θ), (1.1e)

ψ(θ) :=
[
−∂Nuinc

]
r=ḡ+g(θ)

=

{
(ḡ + g(θ))iku sin(φ− θ) +

(
g′(θ)

ḡ + g(θ)

)
cos(φ− θ)

}
ξ(θ). (1.1f)
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In these

∂N = r̂(ḡ + g)∂r − θ̂
(

g′

ḡ + g

)
∂θ,

for unit vectors in the radial (r̂) and angular (θ̂) directions, and

τ2 =


1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where γw = kw cos(φ). The case of TM polarization is of extraordinary importance in the study

of SPRs (1) and thus we concentrate our attention on the TM case from here.

1.2 Transparent Boundary Conditions

Regarding the Outgoing Wave Condition (OWC), commonly known as the Sommerfeld

Radiation Condition (19), and Boundedness Boundary Condition (BBC), we introduce the

circles {r = Ro} and {r = Ri}, where

Ro > ḡ + |g|L∞ , 0 < Ri < ḡ − |g|L∞ ,

define the domains

So := {r > Ro}, Si := {r < Ri}.
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Figure 2. Plot of the domain with artificial boundaries

Note that we can find periodic solutions of the relevant Helmholtz problems on these domains

given generic Dirichlet data, say u(θ) and w(θ). For this we use the exact solutions (19)

u(r, θ) =

∞∑
p=−∞

ûp
Hp(k

ur)

Hp(kuRo)
eipθ, w(r, θ) =

∞∑
p=−∞

ŵp
Jp(k

wr)

Jp(kwRi)
eipθ, (1.2)

where, Jp is the p–th Bessel function and Hp is the p–th Hankel function of the first kind. We

note that

u(Ro, θ) =

∞∑
p=−∞

ûpe
ipθ, w(Ri, θ) =

∞∑
p=−∞

ŵpe
ipθ.
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With these formulas we can compute the outward–pointing Neumann data at the artificial

boundaries

−∂ru(Ro, θ) =

∞∑
p=−∞

−kuξ̂p
H ′p(k

uRo)

Hp(kuRo)
eipθ =: T (u) [u(θ)] ,

∂rw(Ri, θ) =
∞∑

p=−∞
kwµ̂p

J ′p(k
wRi)

Jp(kwRi)
eipθ =: T (w) [w(θ)] .

These define the order–one Fourier multipliers {T (u), T (w)}.

With the operator T (u) it is not difficult to see that periodic, outward propagating solutions

to the Helmholtz equation

∆u+ (ku)2 u = 0, r > ḡ + g(θ),

equivalently solve

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro, (1.3a)

∂ru+ Tu [u] = 0, r = Ro. (1.3b)

Similarly, one can show that periodic, bounded solutions to the Helmholtz equation

∆w + (kw)2w = 0, r < ḡ + g(θ),
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equivalently solve

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ), (1.4a)

∂rw − T (w) [w] = 0, r = Ri. (1.4b)

Now solving (Equation 1.1) is equivalent to seek outgoing/bounded, 2π–periodic solutions

of

∆u+ (ku)2u = 0, ḡ + g(θ) < r < Ro, (1.5a)

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ), (1.5b)

u− w = ζ, r = ḡ + g(θ), (1.5c)

∂Nu− τ2∂Nw = ψ, r = ḡ + g(θ), (1.5d)

∂ru+ T (u) [u] = 0, r = Ro, (1.5e)

∂rw − T (w) [w] = 0, r = Ri. (1.5f)

We will apply a Non–Overlapping Domain Decomposition Method (34; 35). That is the

domain {Ri < r < Ro} consists of an exterior domain, {ḡ + g(θ) < r < Ro}, and an interior

domain, {Ri < r < ḡ + g(θ)}. Next, the boundary conditions at the interface, (Equation 1.5c)

and (Equation 1.5d), should be specified for each domain.
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1.3 Boundary Formulations

We follow (29; 36; 37) to reduce the degrees of freedom to the surface unknowns. Define

the (outer and inner) Dirichlet traces

U(θ) := u(ḡ + g(θ), θ), W (θ) := w(ḡ + g(θ), θ),

and their exterior (outer and inner) Neumann counterparts

Ũ(θ) := −(∂Nu)(ḡ + g(θ), θ), W̃ (θ) := (∂Nw)(ḡ + g(θ), θ).

From these we could recover the scattered field at any point with a suitable integral formula

(38). Then, the governing equations reduce to the boundary conditions

U −W = ζ, −Ũ − τ2W̃ = ψ. (1.6)

Now we have two equations for four unknowns, however, the pairs {U, Ũ} and {W, W̃} are

clearly related, and we make this clear through the Dirichlet–Neumann operators (DNOs). For

this we make the following definitions.
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Definition 1.3.1 (Exterior Problem via DNO). Given a sufficiently smooth deformation g(θ),

the unique periodic solution of

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro, (1.7a)

u = U, r = ḡ + g(θ), (1.7b)

∂ru+ T (u) [u] = 0, r = Ro, (1.7c)

defines the Dirichlet–Neumann Operator

G(u) [U ] = G(u)(Ro, ḡ, g) [U ] := Ũ . (1.7d)

An analogous definition can be made on the interior domain, {Ri < r < ḡ+ g(θ)}, however,

care is required. It is well known (19) that the governing Helmholtz equation, (Equation 1.1b),

is not uniquely solvable at a “Dirichlet eigenvalue”. For example, in the case g ≡ 0 the exact

solution is given by (Equation 1.2) with Ri replaced by ḡ. It is easy to see that one will not

be able to uniquely solve the Dirichlet problem when Jp(k
wḡ) = 0 for any p ∈ Z . Such

configurations, and their generalizations to g 6≡ 0, are the Dirichlet eigenvalues we must avoid.

By contrast, the exterior problem has no such obstruction and can always be shown to be

uniquely solvable (19).
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Definition 1.3.2 (Interior Problem via DNO). Given a sufficiently smooth deformation g(θ),

if we are not at a Dirichlet eigenvalue of the Laplacian on {r < ḡ + g(θ)}, the unique periodic

solution of

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ), (1.8a)

w = W, r = ḡ + g(θ), (1.8b)

∂rw − T (w) [w] = 0, r = Ri, (1.8c)

defines the Dirichlet–Neumann Operator

G(w) [W ] = G(w)(Ri, ḡ, g) [W ] := W̃ . (1.8d)

In terms of these operators the boundary conditions, (Equation 1.6), become

U −W = ζ, −G(u)[U ]− τ2G(w)[W ] = ψ.

The first of these can be used to eliminate W ,

W = U − ζ,

so that the latter equation becomes

−G(u)[U ]− τ2G(w)[U − ζ] = ψ,
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or

(G(u) + τ2G(w))U = −ψ + τ2G(w)[ζ]. (1.9)

Next, we introduce the “Impedance–Impedance Operators (IIOs)” as advocated by Gillman,

Barnett, and Martinsson (31) which can be constructed to avoid the “Dirichlet eigenvalues” on

a given domain. For convenience, we rewrite (Equation 1.1d)

τu∂Nu− τw∂Nw = τuψ, (1.10)

where

τm =


1, TE,

1/ε(m), TM,

, m ∈ {u,w}.

To motivate our particular choices we focus upon the boundary conditions (Equation 1.1c)

and (Equation 1.1d) and operate upon this pair by the linear operator

P =

Y −I

Z −I

 ,
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where I is the identity, and Y and Z are unequal operators to be specified. In the work of

Despres (39; 40) these were chosen to be ±iη for a constant η ∈ R+, however, other choices are

also possible. The resulting boundary conditions are

[−τu∂Nu+ Y u] + [τw∂Nw − Y w] = [−τuψ + Y ζ] , (1.11a)

[−τu∂Nu+ Zu] + [τw∂Nw − Zw] = [−τuψ + Zζ] , (1.11b)

which inspire the following definitions for impedances

I(u) := [−τu∂Nu+ Y u]r=ḡ+g , I(w) := [τw∂Nw − Zw]r=ḡ+g ,

their “conjugates”

Ĩ(u) := [−τu∂Nu+ Zu]r=ḡ+g , Ĩ(w) := [τw∂Nw − Y w]r=ḡ+g ,

and the interfacial data

ξ := [−τuψ + Y ζ] , ν := [−τuψ + Zζ] . (1.12)

Through an integral formula these quantities can deliver the scattered field at any point (38; 41),

thus, the governing equations reduce to the boundary conditions

I(u) + Ĩ(w) = ξ, Ĩ(u) + I(w) = ν. (1.13)
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Again, we have two equations for four unknowns, however, the pairs {I(u), Ĩ(u)} and {I(w), Ĩ(w)}

are not independent and we make this explicit through the introduction of IIOs.

Definition 1.3.3 (Exterior Problem via IIO). Given a sufficiently smooth deformation g(θ),

the unique periodic solution of

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro, (1.14a)

− τu∂Nu+ Y u = I(u), r = ḡ + g(θ), (1.14b)

∂ru+ T (u) [u] = 0, r = Ro, (1.14c)

defines the Impedance–Impedance Operator

Q
[
I(u)

]
= Q(Ro, ḡ, g)

[
I(u)

]
:= Ĩ(u). (1.14d)

A similar definition will presently be made on the interior domain, {Ri < r < ḡ+g(θ)}, how-

ever, care is required. It is still an open question whether the Helmholtz equation, (Equation 1.1b),

subject to impedance boundary conditions is uniquely solvable. Obviously we avoid these con-

figurations and make an attempt in Appendix B to describe conditions on {ε(w), Ri, ḡ, Z} for

which a unique solution exists. By contrast, the exterior problem for a dielectric (so that

ε(u) ∈ R) has no such obstruction and can always be shown to be uniquely solvable (41).
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Definition 1.3.4 (Interior Problem via IIO). Given a sufficiently smooth deformation g(θ), if

it exists, the unique periodic solution of

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ), (1.15a)

τw∂Nw − Zw = I(w), r = ḡ + g(θ), (1.15b)

∂rw − T (w) [w] = 0, r = Ri, (1.15c)

defines the Impedance–Impedance Operator

S
[
I(w)

]
= S(Ri, ḡ, g)

[
I(w)

]
:= Ĩ(w). (1.15d)

In terms of these operators the boundary conditions, (Equation 1.13), become

I(u) + S[I(w)] = ξ, Q[I(u)] + I(w) = ν,

or  I S

Q I


I(u)

I(w)

 =

ξ
ν

 . (1.16)

For later use, we write this more compactly as

AV = R, (1.17)
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where

A =

 I S

Q I

 , V =

I(u)

I(w)

 , R =

ξ
ν

 . (1.18)



CHAPTER 2

HIGH–ORDER PERTURBATION OF SURFACES METHODS

Our approach to simulate solutions to (Equation 1.1) is perturbative in nature and based

upon the assumption that g(θ) = εf(θ). We first investigate the purely cylindrical configuration,

g ≡ 0, where if the “Fröhlich condition” is satisfied, an LSPR is excited.

2.1 The Trivial Configuration: LSPR Condition

In this section, we show how our formulation delivers the classical solution for plane wave

scattering by a cylindrical obstacle. This is the case g ≡ 0, and (Equation 1.9) becomes

(G
(u)
0 + τ2G

(w)
0 )[U ] = −ψ0 + τ2G

(w)
0 [ζ0]. (2.1)

In this trivial configuration, the solutions to (Equation 1.7) and (Equation 1.8) are,

u(r, θ) =

∞∑
p=−∞

Ûp
Hp(k

ur)

Hp(kuḡ)
eipθ, w(r, θ) =

∞∑
p=−∞

Ŵp
Jp(k

wr)

Jp(kwḡ)
eipθ, (2.2)

respectively. From these we find for (Equation 1.7d)

G
(u)
0 [U ] =

∞∑
p=−∞

Ûp(−kuḡ)
H ′p(k

uḡ)

Hp(kuḡ)
eipθ =: −(kuḡ)

H ′D(kuḡ)

HD(kuḡ)
U,

18
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and for (Equation 1.8d)

G
(w)
0 [W ] =

∞∑
p=−∞

Ŵp(k
wḡ)

J ′p(k
wḡ)

Jp(kwḡ)
eipθ =: (kwḡ)

J ′D(kwḡ)

JD(kwḡ)
W,

which define the order–one Fourier multipliers

G
(u)
0 = −(kuḡ)

H ′D(kuḡ)

HD(kuḡ)
, G

(w)
0 = (kwḡ)

J ′D(kwḡ)

JD(kwḡ)
,

respectively.

Returning to (Equation 2.1), using the solution (Equation 2.2), we find the coefficients at

each wavenumber

Ûp =
−(ψ̂0)p + τ2(kwḡ)

J ′p(kw ḡ)

Jp(kw ḡ)(ζ̂0)p

−(kuḡ)
H′p(kuḡ)

Hp(kuḡ) + τ2(kwḡ)
J ′p(kw ḡ)

Jp(kw ḡ)

=
Hp(k

uḡ)Jp(k
wḡ)(ψ̂0)p − τ2(kwḡ)Hp(k

uḡ)J ′p(k
wḡ)(ζ̂0)p

(kuḡ)Jp(kwḡ)H ′p(k
uḡ)− τ2(kwḡ)Hp(kuḡ)J ′p(k

wḡ)
.

It is clear that the solvability of this system depends on the denominator

∆̃p := −τ2(kwḡ)Hp(k
uḡ)J ′p(k

wḡ) + (kuḡ)H ′p(k
uḡ)Jp(k

wḡ). (2.3)
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We study this in the “small radius” (quasistatic) limit (2), |kuḡ| � 1 and |kwḡ| � 1. For a

positive integer p,

Jp(z) ∼
zp

2pp!
, z → 0,

Hp(z) ∼ iYp(z) ∼
i(p− 1)!

π

2p

zp
, z → 0,

J ′p(z) ∼
zp−1

2p(p− 1)!
, z → 0,

H ′p(z) ∼ iY ′p(z) ∼ − ip!
π

2p

zp+1
, z → 0,

so that

∆̃p ∼ −τ2kwḡ

(
i(p− 1)!

π

2p

(kuḡ)p

)(
(kwḡ)p−1

2p(p− 1)!

)
+ kuḡ

(
− ip!
π

2p

(kuḡ)p+1

)(
(kwḡ)p

2pp!

)
= − i

π
(τ2 + 1)

(
kw

ku

)p
.

This demonstrates that, in the small radius limit, ∆̃p ≈ 0 if τ2 = −1, or

ε(u) = −Re
{
ε(w)

}
− iIm

{
ε(w)

}
,

where we have used τ2 = ε(u)/ε(w). Since ε(u) is real this can never be exactly satisfied, however,

if the Fröhlich condition

ε(u) = −Re
{
ε(w)

}
, (2.4)

is verified then it can “almost” be true.
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We can repeat this calculation in terms of the IIO formulation in the following way. We

consider (Equation 1.16) in the case g ≡ 0

 I S0

Q0 I


I(u)

I(w)

 =

ξ0

ν0

 . (2.5)

In this trivial configuration, the solutions to (Equation 1.14) and (Equation 1.15) are,

u(r, θ) =
∞∑

p=−∞

(
Î(u)

)
p

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

Hp(k
ur)eipθ, (2.6a)

w(r, θ) =
∞∑

p=−∞

(
Î(w)

)
p

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

Jp(k
wr)eipθ, (2.6b)

respectively. From these we find for (Equation 1.14d)

Q0[I(u)] =
∞∑

p=−∞
(Q̂0)p

(
Î(u)

)
p
eipθ =

∞∑
p=−∞

(
−τu(kuḡ)H ′p(k

uḡ) + ẐpHp(k
uḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

)(
Î(u)

)
p
eipθ

=:

(
−τu(kuḡ)H ′D(kuḡ) + ZHD(kuḡ)

−τu(kuḡ)H ′D(kuḡ) + Y HD(kuḡ)

)
I(u),

and for (Equation 1.15d)

S0[I(w)] =

∞∑
p=−∞

(Ŝ0)p

(
Î(w)

)
p
eipθ =

∞∑
p=−∞

(
τw(kwḡ)J ′p(k

wḡ)− ŶpJp(kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

)(
Î(w)

)
p
eipθ

=:

(
τw(kwḡ)J ′D(kwḡ)− Y JD(kwḡ)

τw(kwḡ)J ′D(kwḡ)− ZJD(kwḡ)

)
I(w),



22

which define the order–one Fourier multipliers

Q0 =

(
−τu(kuḡ)H ′D(kuḡ) + ZHD(kuḡ)

−τu(kuḡ)H ′D(kuḡ) + Y HD(kuḡ)

)
, S0 =

(
τw(kwḡ)J ′D(kwḡ)− Y JD(kwḡ)

τw(kwḡ)J ′D(kwḡ)− ZJD(kwḡ)

)
, (2.7)

respectively.

Returning to (Equation 2.5) we find the solution at each wavenumber is given by


(
Î(u)

)
p(

Î(w)
)
p

 =
1

1− (̂S0)p(̂Q0)p

 1 −(̂S0)p

−(̂Q0)p 1


(̂ξ0)p

(̂ν0)p

 . (2.8)

It is clear that the solvability of this system hinges on

1− (̂S0)p(̂Q0)p,

which is equivalent to the ∆̃p in (Equation 2.3).

2.2 The Non–Trivial Configurations

The exact solution to the trivial configuration and its scientific applications have been

explored in depth. Our current interest is the non–trivial case where g 6≡ 0, and we use a

High–Order Perturbation of Surfaces (HOPS) scheme to simulate the scattering returns. In the

rest of this Chapter, we will present our algorithms via Impedance–Impedance operators. (See

Appendix A for DNOs.)
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Assume g(θ) = εf(θ). For ε sufficiently small and f sufficiently smooth the operators,

{Q,S}, and data, {ξ, ν}, as we will show in Chapter 3, are analytic in ε so that the following

Taylor series are strongly convergent

{Q,S, ξ, ν} = {Q,S, ξ, ν}(εf) =
∞∑
n=0

{Qn, Sn, ξn, νn}εn. (2.9)

Given formulas for {Qn, Sn} it is relatively easy to identify recursive formulas for the {I(u)
n , I

(w)
n }.

We write (Equation 1.16) as

 I
∑∞

n=0 Snε
n

∑∞
n=0Qnε

n I



∑∞

m=0 I
(u)
m εm∑∞

m=0 I
(w)
m εm

 =


∑∞

n=0 ξnε
n

∑∞
n=0 νnε

n

 ,

and equate at order O(εn),

 I S0

Q0 I


I

(u)
n

I
(w)
n

 =

ξn
νn

− n−1∑
m=0

 0 Sn−m

Qn−m 0


I

(u)
m

I
(w)
m

 . (2.10)

At order zero we recover the trivial shape calculation, (Equation 2.5), from the previous section.

The higher order corrections, {I(u)
n , I

(w)
n }, can be recovered from (Equation 2.10). At every

perturbation order we must invert the same linear operator,

 I S0

Q0 I

 ,
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which renders the algorithm extremely computationally efficient.

All that remains is to specify forms for the data, {ξn, νn}, and operators, {Qn, Sn}. The

date {ξn, νn} is related to the incident radiation, {ζ, ψ}, provided in (Equation 1.1e) and

(Equation 1.1f). It is easy to show that

ζn(θ) = −eḡ(iα cos θ−iγu sin θ)(iα cos θ − iγu sin θ)nFn,

ψn(θ) = ḡ(iα cos θ − iγu sin θ)ζn(θ)

+
[
f(iα cos θ − iγu sin θ)− (f ′)(−iα sin θ − iγu cos θ)

]
ζn−1(θ),

where

Fn = Fn(θ) :=
(f(θ))n

n!
.

Then the data (Equation 1.12) can be computed as

ξn = −τuψn + Y ζn, νn = −τuψn + Zζn.

Remark 2.2.1. We focus on linear operators Y and Z which are independent of ε thus the

perturbation order n.

For the operators, {Qn, Sn}, we appeal to the method of Field Expansions and the method

of Transformed Field Expansions (22; 23; 24; 26; 27) which we now present for completeness.
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2.3 The Method of Field Expansions

The method of Field Expansions begins with the supposition that the scattered fields, {u,w},

depend analytically upon ε. Focusing upon the Exterior Problem via IIO (Equation 1.14), for

the field u in the outer domain, {r > ḡ + εf(θ)}, this implies that

u = u(r, θ; ε) =

∞∑
n=0

un(r, θ)εn.

Upon insertion of this into (Equation 1.14) one finds that the un must be 2π–periodic, outward–

propagating solutions of the boundary value problem

∆un + (ku)2 un = 0, ḡ < r < Ro, (2.11a)

− τuḡ∂run + Y un = δn,0I
(u)
n + LFE,ex

n , r = ḡ, (2.11b)

∂run + T (u) [un] = 0, r = Ro, (2.11c)

where δn,` is the Kronecker delta function, and

LFE,ex
n =

f

ḡ
δn,1I

(u)
n−1 + τu

{
ḡ
n−1∑
m=0

∂n−m+1
r umFn−m + 2f

n−1∑
m=0

∂n−mr umFn−m−1

+
f2

ḡ

n−2∑
m=0

∂n−m−1
r umFn−m−2 −

f ′

ḡ

n−1∑
m=0

∂θ∂
n−m−1
r umFn−m−1

}

− Y
n−1∑
m=0

∂n−mr umFn−m −
f

ḡ
Y

n−1∑
m=0

∂n−m−1
r umFn−m−1.
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The exact solutions (Equation 2.6a) are

un(r, θ) =
∞∑

p=−∞

ûn,p

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

Hp(k
ur)eipθ,

and the ûn,p are determined recursively from the boundary conditions, (Equation 2.11b), be-

ginning, at order zero, with

û0,p =
(
Î(u)

)
p
.

From this the exterior IIO Q, (Equation 1.14d), can be computed from

Q[I(u)] = (−τu∂Nu+ (Zu)) (ḡ + g(θ), θ)

=

{
−τu

(
ḡ + εf,−εf ′

)
·
(
∂ru,

1

ḡ + εf
∂θu

)
+ Zu

}
(ḡ + εf(θ), θ)

= τu
∞∑
n=0

∞∑
p=−∞

{
−ku(ḡ + εf)

H ′p(k
u(ḡ + εf))

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

+
εf ′

(ḡ + εf)
(ip)

Hp(k
u(ḡ + εf))

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

}
ûn,pe

ipθεn

+
∞∑
n=0

∞∑
p=−∞

Ẑp
Hp(k

u(ḡ + εf))

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

ûn,pe
ipθεn.
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Expanding the Hankel functions H ′p(k
u(ḡ + εf)) and Hp(k

u(ḡ + εf)) in power series in ε, and

equating at like powers of ε, this results in

Qn(f)[I(u)] = −f
ḡ
Qn−1(f)[I(u)]

+ τu

(
−kuḡ

n∑
`=0

∞∑
p=−∞

û`,p
(kuf)n−`

(n− `)!
H

(n+1−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

eipθ

−2kuf

n−1∑
`=0

∞∑
p=−∞

û`,p
(kuf)n−1−`

(n− 1− `)!
H

(n−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

eipθ

−k
u

ḡ
f2

n−2∑
`=0

∞∑
p=−∞

û`,p
(kuf)n−2−`

(n− 2− `)!
H

(n−1−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

eipθ

+
f ′

ḡ

n−1∑
`=0

∞∑
p=−∞

û`,p
(kuf)n−1−`

(n− 1− `)!
H

(n−1−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

(ip)eipθ

)

+
n∑
`=0

∞∑
p=−∞

Ẑpû`,p
(kuf)n−`

(n− `)!
H

(n−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

eipθ

+
f

ḡ

n−1∑
`=0

∞∑
p=−∞

Ẑpû`,p
(kuf)n−1−`

(n− 1− `)!
H

(n−1−`)
p (kuḡ)

−τu(kuḡ)H ′p(k
uḡ) + ŶpHp(kuḡ)

eipθ,

where the superscript in parentheses denotes derivative.

Similar considerations hold for the IIO S. Focusing on the Interior Problem via IIO

(Equation 1.15), we write the field w in the inner domain, {r < ḡ + εf(θ)}, as

w = w(r, θ; ε) =
∞∑
n=0

wn(r, θ)εn.
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Inserting this into (Equation 1.15), the wn must be 2π–periodic, bounded solutions of the

boundary value problem

∆wn + (kw)2wn = 0, Ri < r < ḡ, (2.12a)

τwḡ∂rwn − Zwn = δn,0I
(w)
n + LFE,in

n , r = ḡ, (2.12b)

∂rwn − T (w) [wn] = 0, r = Ri, (2.12c)

and

LFE,in
n =

f

ḡ
δn,1I

(w)
n−1 − τ

w

{
ḡ
n−1∑
m=0

∂n−m+1
r wmFn−m + 2f

n−1∑
m=0

∂n−mr wmFn−m−1

+
f2

ḡ

n−2∑
m=0

∂n−m−1
r wmFn−m−2 −

f ′

ḡ

n−1∑
m=0

∂θ∂
n−m−1
r wmFn−m−1

}

+ Z
n−1∑
m=0

∂n−mr wmFn−m +
f

ḡ
Z

n−1∑
m=0

∂n−m−1
r wmFn−m−1.

The exact solutions (Equation 2.6b) are

wn(r, θ) =
∞∑

p=−∞

ŵn,p

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

Jp(k
wr)eipθ,

and the ŵn,p are determined recursively from the boundary conditions, (Equation 2.12b), be-

ginning, at order zero, with

ŵ0,p =
(
Î(w)

)
p
.
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From this the interior IIO S, (Equation 1.15d), can be computed from

S[I(w)] = (τu∂Nw − Y w) (ḡ + g(θ), θ)

=

{
τw
(
ḡ + εf,−εf ′

)
·
(
∂rw,

1

ḡ + εf
∂θw

)
− Y w

}
(ḡ + εf(θ), θ)

= τw
∞∑
n=0

∞∑
p=−∞

{
kw(ḡ + εf)

J ′p(k
w(ḡ + εf))

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

− εf ′

(ḡ + εf)
(ip)

Jp(k
w(ḡ + εf))

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

}
ŵn,pe

ipθεn

−
∞∑
n=0

∞∑
p=−∞

Ŷp
Jp(k

w(ḡ + εf))

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

ŵn,pe
ipθεn.

Expanding the Bessel functions J ′p(k
w(ḡ + εf)) and Jp(k

w(ḡ + εf)) in power series in ε, and

equating at like powers of ε, this results in

Sn(f)[I(w)] = −f
ḡ
Sn−1(f)[I(w)]

+ τw

(
kwḡ

n∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−`

(n− `)!
J

(n+1−`)
p (kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

eipθ

+2kwf
n−1∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−1−`

(n− 1− `)!
J

(n−`)
p (kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

eipθ

+
kw

ḡ
f2

n−2∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−2−`

(n− 2− `)!
J

(n−1−`)
p (kuḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

eipθ

−f
′

ḡ

n−1∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−1−`

(n− 1− `)!
J

(n−1−`)
p (kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

(ip)eipθ

)

−
n∑
`=0

∞∑
p=−∞

Ŷpŵ`,p
(kwf)n−`

(n− `)!
J

(n−`)
p (kuḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

eipθ

− f

ḡ

n−1∑
`=0

∞∑
p=−∞

Ŷpŵ`,p
(kwf)n−1−`

(n− 1− `)!
J

(n−1−`)
p (kwḡ)

τw(kwḡ)J ′p(k
wḡ)− ẐpJp(kwḡ)

eipθ.



30

2.4 The Method of Transformed Field Expansions

The method of Transformed Field Expansions (TFE) proceeds in much the same way as the

FE approach, with a domain–flattening change prior to perturbation expansion. For definiteness

we consider the TFE method applied to the exterior problem, (Equation 1.14), which we restate

here for convenience,

∆u+ (ku)2 u = 0, ḡ + g(θ) < r < Ro,

− τu∂Nu+ Y u = I(u), r = ḡ + g(θ),

∂ru+ T (u) [u] = 0, r = Ro.

The change of variables we use is

r′ =
(Ro − ḡ)r −Rog(θ)

Ro − ḡ + g(θ)
, θ′ = θ,

which maps the perturbed domain {ḡ+ g(θ) < r < Ro} to the separable one Ωḡ,Ro = {ḡ < r′ <

Ro}. This transformation changes the field u into

v(r′, θ′) := u

(
(Ro − ḡ + g(θ′))r′ +Rog(θ′)

Ro − ḡ
, θ′
)
,
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and modifies (Equation 1.14) to

∆v + (ku)2 v = F ex(r, θ; g), ḡ < r < Ro, (2.13a)

− τu∂Nv + Y v = I(u) + Lex(θ; g), r = ḡ, (2.13b)

∂rv + T (u) [v] = hex(θ; g), r = Ro, (2.13c)

where we have dropped the primed notation for clarity. After a precise calculation, it is not

difficult to see that

F ex = − 1

(Ro − ḡ)2

[
F ex,(0) + ∂rF

ex,(r) + ∂θF
ex,(θ)

]
,

F ex,(0) =− (Ro − ḡ)g(Ro − r)∂rv + (Ro − ḡ)gr∂rv + g2(Ro − r)∂rv + (Ro − ḡ)g′∂θv − gg′∂θv

− (g′)2(Ro − r)∂rv + g[−2(Ro − ḡ)r2 + 2(Ro − ḡ)(Ro − r)r](ku)2v

+ g2[r2 − 4(Ro − r)r + (Ro − r)2](ku)2v + g3 2(Ro − r)(2r −Ro)
(Ro − ḡ)

(ku)2v

+ g4 (Ro − r)2

(Ro − ḡ)2
(ku)2v,

F ex,(r) =2(Ro − ḡ)gr(Ro − r)∂rv + g2(Ro − r)2∂rv − (Ro − ḡ)g′(Ro − r)∂θv

+ gg′(Ro − r)∂θv + (g′)2(Ro − r)2∂rv,

F ex,(θ) =− 2(Ro − ḡ)g∂θv − (Ro − ḡ)g′(Ro − r)∂rv + g2∂θv + gg′(Ro − r)∂rv,
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and

ḡ(Ro − ḡ)Lex = τu
[
2(Ro − ḡ)ḡg∂rv + g2(Ro − ḡ)∂rv

+(g′)2(Ro − ḡ)∂rv − g′(Ro − ḡ)∂θv + g′g∂θv
]

− [(Ro − ḡ)g − ḡg − g2]Y v + [(Ro − ḡ)g − ḡg − g2]I(u),

and

hex =
g

Ro − ḡ
T (u) [v] .

Next, setting g = εf and expanding

v(r, θ, ε) =
∞∑
n=0

vn(r, θ)εn,

we show that

∆vn + (ku)2 vn = F ex
n , ḡ < r < Ro, (2.14a)

− τu∂Nvn + Y vn = δn,0I
(u) + Lex

n , r = ḡ, (2.14b)

∂rvn + T (u) [vn] = hex
n , r = Ro, (2.14c)
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where

F ex
n = − 1

(Ro − ḡ)2

[
F ex,(0)
n + ∂rF

ex,(r)
n + ∂θF

ex,(θ)
n

]
, (2.15)

F ex,(0)
n =− (Ro − ḡ)f(Ro − r)∂rvn−1 + (Ro − ḡ)fr∂rvn−1 + f2(Ro − r)∂rvn−2

+ (Ro − ḡ)f ′∂θvn−1 − ff ′∂θvn−2 − (f ′)2(Ro − r)∂rvn−2

+ f(Ro − ḡ)[2r2 + 2(Ro − r)r](ku)2vn−1 + f2[r2 − 4(Ro − r)r + (Ro − r)2](ku)2vn−2

+ f3 2(Ro − r)(2r −Ro)
(Ro − ḡ)

(ku)2vn−3 + f4 (Ro − r)2

(Ro − ḡ)2
(ku)2vn−4,

F ex,(r)
n =2(Ro − ḡ)fr(Ro − r)∂rvn−1 + f2(Ro − r)2∂rvn−2 − (Ro − ḡ)f ′(Ro − r)∂θvn−1

+ ff ′(Ro − r)∂θvn−2 + (f ′)2(Ro − r)2∂rvn−2,

F ex,(θ)
n =− 2(Ro − ḡ)f∂θvn−1 − (Ro − ḡ)f ′(Ro − r)∂rvn−1 + f2∂θvn−2 + ff ′(Ro − r)∂rvn−2,

and

ḡ(Ro − ḡ)Lex
n = −ḡfδn,1I(u) + (Ro − ḡ)fδn,1I

(u) − f2δn,2I
(u) + τu [2ḡ(Ro − ḡ)f∂rvn−1

+(Ro − ḡ)f2∂rvn−2 + (Ro − ḡ)(f ′)2∂rvn−2 − (Ro − ḡ)f ′∂θvn−1 + ff ′∂θvn−2

]
+ ḡfY vn−1 − (Ro − ḡ)fY vn−1 + f2Y vn−2, (2.16)

and

hex
n =

f

Ro − ḡ
T (u) [vn−1] .
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In addition, the IIO map, Q in (Equation 1.14d), is stated in transformed coordinates

Q[I(u)] = −τu
{

ḡ −Ri
ḡ −Ri + g

[
(ḡ + g) +

(g′)2

ḡ + g

]
∂rv −

g′

ḡ + g
∂θv

}
+ Zv,

and then expanded in a Taylor series, (Equation 2.9). The nth term in the expansion can be

expressed as

Qn[I(u)] = −f
(

1

ḡ
− 1

Ro − ḡ

)
Qn−1[I(u)] +

f2

ḡ(Ro − ḡ)
Qn−2[I(u)]

− τu
{
ḡ∂rvn + 2f∂rvn−1 +

f2 + (f ′)2

ḡ
∂rvn−2 −

f ′

ḡ
∂θvn−1 +

f(f ′)

ḡ(Ro − ḡ)
∂θvn−2

}
+ Zvn + f

(
1

ḡ
− 1

Ro − ḡ

)
Zvn−1 −

f2

ḡ(Ro − ḡ)
Zvn−2, (2.17)

so that, provided with the {vn}, we can estimate the terms, {Qn}.

Last, we consider the TFE method applied to the Interior Problem via IIO (Equation 1.15),

∆w + (kw)2w = 0, Ri < r < ḡ + g(θ),

τw∂Nw − Zw = I(w), r = ḡ + g(θ),

∂rw − T (w) [w] = 0, r = Ri.

The relevant change of variables is

r′ =
(ḡ −Ri)r +Rig(θ)

ḡ + g(θ)−Ri
, θ′ = θ,
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which maps the perturbed domain {Ri < r < ḡ + g(θ)} to the separable one ΩRi,ḡ = {Ri <

r′ < ḡ}. This transformation changes the field w into

v(r′, θ′) := w

(
(ḡ + g(θ′)−Ri)r′ −Rig(θ′)

ḡ −Ri
, θ′
)
,

and modifies (Equation 1.15) to

∆v + (kw)2 v = F in(r, θ; g), Ri < r < ḡ, (2.18a)

τw∂Nv − Zv = I(w) + Lin(θ; g), r = ḡ, (2.18b)

∂rv − T (w) [v] = hin(θ; g), r = Ri, (2.18c)
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with

F in = − 1

(ḡ −Ri)2

[
F in,(0) + ∂rF

in,(r) + ∂θF
in,(θ)

]
, (2.19)

F in,(0) =− (ḡ −Ri)g(r −Ri)∂rv − (ḡ −Ri)gr∂rv − g2(r −Ri)∂rv − (ḡ −Ri)g′∂θv − gg′∂θv

+ (g′)2(r −Ri)∂rv + g[2(ḡ −Ri)r2 + 2(ḡ −Ri)(r −Ri)r](kw)2v

+ g2[r2 + 4(r −Ri)r + (r −Ri)2](kw)2v + g3 2(r −Ri)(2r −Ri)
(ḡ −Ri)

(kw)2v (2.20)

+ g4 (r −Ri)2

(ḡ −Ri)2
(kw)2v,

F in,(r) =2(ḡ −Ri)gr(r −Ri)∂rv + g2(r −Ri)2∂rv − (ḡ −Ri)g′(r −Ri)∂θv

− gg′(r −Ri)∂θv + (g′)2(r −Ri)2∂rv,

F in,(θ) =2(ḡ −Ri)g∂θv − (ḡ −Ri)g′(r −Ri)∂rv + g2∂θv − gg′(r −Ri)∂rv,

and

ḡ(ḡ −Ri)Lin = −τw
[
2(ḡ −Ri)ḡg∂rv + g2(ḡ −Ri)∂rv

−(g′)2(ḡ −Ri)∂rv − g′(ḡ −Ri)∂θv − g′g∂θv
]

+ [(ḡ −Ri)g + ḡg + g2]Zv + [(ḡ −Ri)g + ḡg + g2]W,

and

hin =
g

ḡ −Ri
T (w) [v] , (2.21)
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where we have dropped the primed notation for clarity. Next we set g = εf and expand v in ε

v(r, θ, ε) =
∞∑
n=0

vn(r, θ)εn, (2.22)

then we get

∆vn + (kw)2 vn = F in
n , Ri < r < ḡ, (2.23a)

τwḡ∂rvn − Zvn = δn,0I
(w) + Lin

n , r = ḡ, (2.23b)

∂rvn − T (w) [vn] = hin
n , r = Ri, (2.23c)

where

F in
n =− 1

(ḡ −Ri)2

[
F in,(0)
n + ∂rF

in,(r)
n + ∂θF

in,(θ)
n

]
, (2.24)

F in,(0)
n =− (ḡ −Ri)f(r −Ri)∂rvn−1 − (ḡ −Ri)fr∂rvn−1 − f2(r −Ri)∂rvn−2

− (ḡ −Ri)f ′∂θvn−1 − ff ′∂θvn−2 + (f ′)2(r −Ri)∂rvn−2

+ f(ḡ −Ri)[2r2 + 2(r −Ri)r](kw)2vn−1 + f2[r2 + 4(r −Ri)r + (r −Ri)2](kw)2vn−2

+ f3 2(r −Ri)(2r −Ri)
(ḡ −Ri)

(kw)2vn−3 + f4 (r −Ri)2

(ḡ −Ri)2
(kw)2vn−4,

F in,(r)
n =2(ḡ −Ri)fr(r −Ri)∂rvn−1 + f2(r −Ri)2∂rvn−2 − (ḡ −Ri)f ′(r −Ri)∂θvn−1

− ff ′(r −Ri)∂θvn−2 + (f ′)2(r −Ri)2∂rvn−2,

F in,(θ)
n =2(ḡ −Ri)f∂θvn−1 − (ḡ −Ri)f ′(r −Ri)∂rvn−1 + f2∂θvn−2 − ff ′(r −Ri)∂rvn−2,
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and

ḡ(ḡ −Ri)Lin
n = ḡfδn,1I

(w) + (ḡ −Ri)fδn,1I(w) + f2δn,2I
(w) − τw [2ḡ(ḡ −Ri)f∂rvn−1

+(ḡ −Ri)f2∂rvn−2 + (ḡ −Ri)(f ′)2∂rvn−2 − (ḡ −Ri)f ′∂θvn−1 − ff ′∂θvn−2

]
+ ḡfZvn−1 + (ḡ −Ri)fZvn−1 + f2Zvn−2, (2.25)

and

hin
n =

f

ḡ −Ri
T (w) [vn−1] . (2.26)

In addition we can recover that the IIO, S in (Equation 1.15d), changes to

S[I(w)] = τw
{

ḡ −Ri
ḡ −Ri + g

[
(ḡ + g) +

(g′)2

ḡ + g

]
∂rv −

g′

ḡ + g
∂θv

}
− Y v,

and

Sn[I(w)] = −f
(

1

ḡ
+

1

ḡ −Ri

)
Sn−1[I(w)]− f2

ḡ(ḡ −Ri)
Sn−2[I(w)]

+ τw
{
ḡ∂rvn + 2f∂rvn−1 +

f2 + (f ′)2

ḡ
∂rvn−2 −

f ′

ḡ
∂θvn−1 −

f(f ′)

ḡ(ḡ −Ri)
∂θvn−2

}
− Y vn − f

(
1

ḡ
+

1

ḡ −Ri

)
Y vn−1 −

f2

ḡ(ḡ −Ri)
Y vn−2. (2.27)

Again, provided with the {vn}, we can readily approximate the terms, Sn, in the Taylor series

expansion (Equation 2.9) of S.



CHAPTER 3

ANALYTICITY OF SOLUTIONS

Our approach to simulate solutions to (Equation 1.9) or (Equation 1.16) is based upon the

assumption that g(θ) = εf(θ) where ε is sufficiently small. As we shall show in this chapter,

provided that f is sufficiently smooth, then the IIOs, Q and S, are analytic in the perturbation

parameter ε so that the following expansions are strongly convergent in an appropriate Sobolev

space

Q(εf) =
∞∑
n=0

Qn(f)εn, (3.1a)

S(εf) =
∞∑
n=0

Sn(f)εn. (3.1b)

Clearly, if this is the case then the operator A will also be analytic, as will R so that

{A(εf),R(εf)} =

∞∑
n=0

{An(f),Rn(f)}εn. (3.2)

We will shortly show that, under certain circumstances, there will be a unique solution, V, of

(Equation 1.17) which is also analytic in ε

V(εf) =
∞∑
n=0

Vn(f)εn. (3.3)

39
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Furthermore, it is clear that the Vn must satisfy

Vn = A−1
0

{
Rn −

n−1∑
`=0

An−`V`

}
, (3.4)

and one key in the analysis is the invertibility of the operator A0 which we now investigate.

3.1 Interfacial Function Spaces

Before describing these rigorous results we specify the interfacial function spaces we require.

For any real s ≥ 0 the classical, periodic, L2–based Sobolev norm (42) is

‖U‖2Hs :=

∞∑
p=−∞

〈p〉2s
∣∣∣Ûp∣∣∣2 , 〈p〉2 := 1 + |p|2 , Ûp :=

1

2π

∫ 2π

0
U(θ)eiαpx dθ, (3.5)

which gives rise to the periodic Sobolev space (42)

Hs([0, 2π]) :=
{
U(x) ∈ L2([0, 2π]) | ‖U‖Hs <∞

}
.

We also require the dual space of Hs([0, 2π]), which is characterized by Theorem 8.10 of (42),

that is typically denoted H−s([0, 2π]). If U ′ ∈ (Hs)′ = H−s then ‖U ′‖H−s is defined by

(Equation 3.5) where Û ′p = U ′(Ûp).

With this definition we state the following Lemma.

Lemma 3.1.1. For any s ∈ R there exist constants CQ, CS > 0 such that

∥∥∥Q0I
(u)
∥∥∥
Hs
≤ CQ

∥∥∥I(u)
∥∥∥
Hs
,
∥∥∥S0I

(w)
∥∥∥
Hs
≤ CS

∥∥∥I(w)
∥∥∥
Hs
,
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for any I(u), I(w) ∈ Hs.

We also recall, for any integer s ≥ 0, the space of s–times continuously differentiable func-

tions with the Hölder norm

|f |Cs = max
0≤`≤s

∣∣∣∂`xf ∣∣∣
L∞

.

For later reference we recall the classical result.

Lemma 3.1.2. For any integer s ≥ 0, any δ > 0, and any set Ω ⊂ Rm, if f, u, g, µ : Ω → C,

f ∈ Cs(Ω), u ∈ Hs(Ω), g ∈ Cs+1/2+δ(Ω), µ ∈ Hs+1/2(Ω), then

‖fu‖Hs ≤ M̃(m, s,Ω) |f |Cs ‖u‖Hs . ‖gµ‖Hs+1/2 ≤ M̃(m, s,Ω) |g|Cs+1/2+δ ‖µ‖Hs+1/2 ,

for some constant M̃ .

In addition, we require the analogous result valid for any real value of s (43; 44).

Lemma 3.1.3. For any s ∈ R and any set Ω ⊂ Rm, if ϕ,ψ : Ω → C, ϕ ∈ H |s|+m+2(Ω) and

ψ ∈ Hs(Ω), then

‖ϕψ‖Hs ≤M(m, s,Ω) ‖ϕ‖H|s|+m+2 ‖ψ‖Hs .

for some constant M .

Remark 3.1.4. Later in this chapter, we will be required to estimate terms of the form

‖(∂θf)u‖L2(Ω) = ‖(∂θf)u‖H0(Ω) , ‖(∂θf)µ‖H−1/2([0,2π]) ,
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where Ω ⊂ R2, which feature Sobolev norms too weak for the standard algebra estimate,

Lemma 3.1.2. For this reason we have introduced Lemma 3.1.3 which allows us to compute, for

m = 2,

‖(∂θf)u‖L2(Ω) = ‖(∂θf)u‖H0(Ω)

≤M ‖(∂θf)‖H|0|+2+2([0,2π]) ‖u‖H0(Ω)

≤M ‖f‖H5([0,2π]) ‖u‖H0(Ω) ,

while, for m = 1,

‖(∂θf)µ‖H−1/2([0,2π]) ≤M ‖(∂θf)‖H|−1/2|+1+2([0,2π]) ‖µ‖H−1/2([0,2π])

≤M ‖f‖H4+1/2([0,2π]) ‖µ‖H−1/2([0,2π]) .

In this way, if we require f ∈ H5([0, 2π]) then we can use the algebra property of Lemma 3.1.3

throughout our developments. We note that, by Sobolev embedding, if f ∈ H5([0, 2π]) then

f ∈ C4([0, 2π]), and if f ∈ C5([0, 2π]) then f ∈ H5([0, 2π]).

3.2 Main Theorem: Analyticity of Solutions

We can now state the rigorous analysis of (Equation 3.3) for which we utilize the general

theory of analyticity of solutions of linear systems of equations. We follow the developments

found in (36) for the solution of (Equation 1.17). Given the expansions (Equation 3.2) we seek
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the solution of the form (Equation 3.3) which satisfies (Equation 3.4). We restate the main

result here.

Theorem 3.2.1 (Nicholls (36)). Given two Banach spaces X and Y , suppose that:

(H1) Rn ∈ Y for all n ≥ 0, and there exist constants CR > 0, BR > 0 such that

‖Rn‖Y ≤ CRB
n
R, n ≥ 0.

(H2) An : X → Y for all n ≥ 0, and there exists constants CA > 0, BA > 0 such that

‖An‖X→Y ≤ CAB
n
A, n ≥ 0.

(H3) A−1
0 : Y → X, and there exists a constant Ce > 0 such that

∥∥A−1
0

∥∥
Y→X ≤ Ce.

Then the equation (Equation 1.17) has a unique solution (Equation 3.3), and there exist con-

stants CV > 0 and BV > 0 such that

‖Vn‖X ≤ CVB
n
V , n ≥ 0,

for any

CV ≥ 2CeCR, BV ≥ max {BR, 2BA, 4CeCABA} ,
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which implies that, for any 0 ≤ ρ < 1, (Equation 3.3) converges for all ε such that BV ε < ρ,

i.e., ε < ρ/BV .

All that remains is to find the forms (Equation 3.2), and establish Hypotheses (H1), (H2),

and (H3). For the latter it is quite clear that

A0 =

 I S0

Q0 I

 , An =

 0 Sn

Qn 0

 , n ≥ 1; Vn =

I
(u)
n

I
(w)
n

 , Rn =

ξn
νn

 .

For the spaces X and Y , the natural choices for the weak formulation we pursue here are

X = Y = H−1/2 ×H−1/2,

so that ∥∥∥∥∥∥∥∥
I(u)

I(w)


∥∥∥∥∥∥∥∥

2

X

=
∥∥∥I(u)

∥∥∥2

H−1/2
+
∥∥∥I(w)

∥∥∥2

H−1/2
.

Hypothesis (H1): We begin by noting that

ξn = −τuψn + Y ζn, νn = −τuψn + Zζn,

where

ζn = −eikuḡ sin(φ−θ) [(iku) sin(φ− θ)]n Fn, Fn :=
fn

n!
,
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and

ψn = ḡ [(iku) sin(φ− θ)] ζn + (iku) [f sin(φ− θ) + (∂θf) cos(φ− θ)] ζn−1.

Now, if Y : H1/2 → H−1/2 and Z : H1/2 → H−1/2, then

‖Rn‖2Y = ‖ξn‖2H−1/2 + ‖νn‖2H−1/2 = ‖−τuψn + Y ζn‖2H−1/2 + ‖−τuψn + Zζn‖2H−1/2

≤ 2 |τu|2 ‖νn‖2H−1/2 + (CY + CZ) ‖ξn‖2H1/2 .

An induction is needed, while from the explanation given in Remark 3.1.4, this is bounded

provided that f ∈ H5([0, 2π]).

Hypothesis (H2): The analyticity estimates for the IIOs Q, Theorem 3.3.6, and S, Theo-

rem 3.3.1, show rather directly that Hypothesis (H2) is verified provided that our configuration

is δ–permissible, i.e.,

(ku, ḡ, Ro, Y/(τuḡ),−T (u)) ∈ Cδ(ku, ḡ, Ro, Y/(τuḡ),−T (u)), (3.6a)

(0, ḡ, Ro, Y/(τuḡ),−T (u)) ∈ Cδ(0, ḡ, Ro, Y/(τuḡ),−T (u)), (3.6b)

(kw, Ri, ḡ, T
(w), Z/(τwḡ)) ∈ Cδ(kw, Ri, ḡ, T (w), Z/(τwḡ)), (3.6c)

(0, Ri, ḡ, T
(w), Z/(τwḡ)) ∈ Cδ(0, Ri, ḡ, T (w), Z/(τwḡ)), (3.6d)

see Appendix B for details. Indeed, as we have

∥∥∥Qn[I(u)]
∥∥∥
H−1/2

≤ CQBn
Q,

∥∥∥Sn[I(w)]
∥∥∥
H−1/2

≤ CSBn
S ,
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it is a straightforward matter to show that

‖An‖X→Y ≤ CAB
n
A,

for CA = max{CQ, CS} and BA = max{BQ, BS}.

Hypothesis (H3): We now address the existence and invertibility properties of the linearized

operator A0 in the following Lemma.

Lemma 3.2.2. If ξ, ν ∈ H−1/2([0, 2π]) then there exists a unique solution of

 I S0

Q0 I


I(u)

I(w)

 =

ξ
ν

 ,

c.f. (Equation 2.5), satisfying

∥∥∥I(u)
∥∥∥
H−1/2

≤ Ce {‖ξ‖H−1/2 + ‖ν‖H−1/2} ,∥∥∥I(w)
∥∥∥
H−1/2

≤ Ce {‖ξ‖H−1/2 + ‖ν‖H−1/2} ,

for some universal constant Ce > 0.

Proof. If we expand

ξ(θ) =

∞∑
p=−∞

ξ̂pe
ipθ, ν(θ) =

∞∑
p=−∞

ν̂pe
ipθ,
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then we can find solutions of (Equation 2.5)

I(u)(θ) =
∞∑

p=−∞

(
Î(u)

)
p
eipθ, I(w)(θ) =

∞∑
p=−∞

(
Î(w)

)
p
eipθ,

where 
(
Î(u)

)
p(

Î(w)
)
p

 =
1

1− (̂S0)p(̂Q0)p

 1 −(̂S0)p

−(̂Q0)p 1


(̂ξ0)p

(̂ν0)p

 ,

c.f. (Equation 2.8). The key is the analysis of the operators (̂S0)p, (̂Q0)p, and the determinant

function

∆p = 1− (̂S0)p(̂Q0)p,

which is equivalent to ∆̃p in (Equation 2.3). From their asymptotic properties, there exist

constants K̃Q, K̃S , K̃∆ > 0 such that

∣∣∣(̂Q0)p

∣∣∣ < K̃Q,
∣∣∣(̂S0)p

∣∣∣ < K̃S ,
1

|∆p|
< K̃∆.

With this we can estimate

∥∥∥I(u)
∥∥∥2

H−1/2
=

∞∑
p=−∞

〈p〉−1

∣∣∣∣(Î(u)
)
p

∣∣∣∣2
<

∞∑
p=−∞

〈p〉−1K̃2
∆

(∣∣∣ξ̂p∣∣∣2 + K̃2
S |ν̂p|

2

)

= K̃
(
‖ξ‖2H−1/2 + ‖ν‖2H−1/2

)
,
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for some K̃ > 0. Proceeding similarly for W we complete the proof.

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 3.2.1 to dis-

cover our final result.

Theorem 3.2.3. If f ∈ H5([0, 2π]) and the configuration is δ–permissible there exists a unique

solution pair, (Equation 3.3), of the problem, (Equation 1.17), satisfying

∥∥∥I(u)
n

∥∥∥
H−1/2

≤ CUDn,
∥∥∥I(w)
n

∥∥∥
H−1/2

≤ CWDn, ∀n ≥ 0,

for any D > ‖f‖H5 where CU and CW are universal constants.

3.3 Analyticity of the Impedance–Impedance Operators

At this point, the only remaining task is to establish the analyticity of the IIOs, Q and

S. This has been accomplished for the DNO G(u) in (44) so we consider the operator S on

the interior domain. We focus on the dielectric case ε(w) ∈ R so that kw ∈ R. Given this

assumption we prove the following result.

Theorem 3.3.1. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (Equation 3.6), and

I(w) ∈ H−1/2([0, 2π]) then the series (Equation 3.1b) converges strongly as an operator from

H−1/2([0, 2π]) to H−1/2([0, 2π]). In other words there exist constants KS > 0 and BS > 0 such

that ∥∥∥Sn(f)[I(w)]
∥∥∥
H−1/2

≤ KSB
n
S . (3.7)



49

We present this result with the method of Transformed Field Expansions (TFE) (45; 46; 47)

which has proven quite successful in establishing analyticity of the DNOs (28; 44). We establish

analyticity of the field, then the IIO, S. We rewrite the (Equation 2.14) as

∆vn + (kw)2 vn = F in
n , Ri < r < ḡ, (3.8a)

∂rvn −
Z

τwḡ
vn =

δn,0I
(w)

τwḡ
+
Lin
n

τwḡ
, r = ḡ, (3.8b)

∂rvn − T (w) [vn] = hin
n , r = Ri. (3.8c)

Our main result is the following analyticity theorem

Theorem 3.3.2. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (Equation 3.6), and

I(w) ∈ H−1/2([0, 2π]) then the series (Equation 2.22) converges strongly. In other words there

exsit constants Kv > 0 and BS > 0 such that

‖vn‖H1(ΩRi,ḡ) ≤ KvB
n
S . (3.9)

The proof of Theorem 3.3.2 proceeds by applying an elliptic estimate Lemma (Lemma 3.3.3)

to (Equation 3.8) and then a recursive Lemma (Lemma 3.3.5).
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Lemma 3.3.3. Suppose the configuration is δ–permissible, (Equation 3.6), F in
n ∈ (H1(ΩRi,ḡ))

′,

I(w) ∈ H−1/2([0, 2π]), Lin
n ∈ H−1/2([0, 2π]), and hinn ∈ H−1/2([0, 2π]). Then there is a unique

solution of (Equation 3.8) satisfying

‖vn‖H1 ≤ Ce
{∥∥F in

n

∥∥
(H1)′

+ δn,0

∥∥∥I(w)
∥∥∥
H−1/2

+
∥∥Lin

n

∥∥
H−1/2 +

∥∥hinn ∥∥H−1/2

}
, (3.10)

for some universal constant Ce.

Proof. We apply the elliptic estimate Theorem B.3.1 and for this we only need to show

Re

{(
T̂ (w)

)
p

}
≥ 0, Re

{
Ẑp
τwḡ

}
≤ 0,

∣∣∣∣Im{(T̂ (w)
)
p

}∣∣∣∣ <∞,
∣∣∣∣∣Im

{
Ẑp
τwḡ

}∣∣∣∣∣ <∞, (3.11)

for p 6= 0. Note that Z is free to be chosen, and in the work of Despres (39; 40) it was

selected to be −iη for a constant η ∈ R+. With this choice the second and fourth conditions in

(Equation 3.11) are automatically satisfied if we assume kw (and thus τw) is real and positive.

Recall that (
T̂ (w)

)
p

= kw
J ′p(k

wRi)

Jp(kwRi)
.

The identity J−n(z) = (−1)nJn(z) implies that

(
T̂ (w)

)
−p

= kw
J ′−p(k

wRi)

J−p(kwRi)
= kw

(−1)pJ ′p(k
wRi)

(−1)pJp(kwRi)
=
(
T̂ (w)

)
p
,
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hence it suffices to consider
(
T̂ (w)

)
p

with p > 0. We notice that both Jp(k
wRi) and J ′p(k

wRi)

are real-valued for real arguments kwRi, which shows that

∣∣∣∣Im{(T̂ (w)
)
p

}∣∣∣∣ =

∣∣∣∣Im{kw J ′p(kwRi)Jp(kwRi)

}∣∣∣∣ = 0 <∞.

Let {jp}∞p=1 = {j1, j2, . . . } be the first (smallest) zero of Bessel’s function of order p, {Jp(z)},

and {j′p}∞p=1 = {j′1, j′2, . . . } be the first (smallest) zero of the first order derivative of Bessel’s

function of order p, {J ′p(z)}. From (48, Eq. 10.21.3 and Eq. 10.14.2), we have

p ≤ jp, and Jp(p) > 0, ∀p ≥ 1.

Additionally, we notice that Jp(0) = 0,∀p ≥ 1. Thus, for a fixed p, Jp(z) is positive over the

interval (0, jp) which contains (0, p).

Next we apply the Mean Value Theorem over the interval (0, p): There exists an x in (0, p)

such that

J ′p(x) =
Jp(p)− Jp(0)

p− 0
=
Jp(p)

p
> 0.

From (48, Eq. 10.21.3) we have p ≤ j′p and J ′p(0) = 0 for all p ≥ 1, thus we can conclude that

J ′p(z) is positive over the interval (0, j′p) which contains (0, p).
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We finish the proof by taking the interval (0, 1), which is contained in the interval (0, p) for

all p ≥ 1, and choosing Ri such that 0 < kwRi < 1. Then we have

Re

{(
T̂ (w)

)
p

}
=
(
T̂ (w)

)
p

= kw
J ′p(k

wRi)

Jp(kwRi)
≥ 0.

Remark 3.3.4. We note that the first condition in (Equation 3.11) is false at p = 0 as J ′0(z) =

−J1(z) which necessitates the condition p 6= 0.

To control the right-hand side of (Equation 3.8) we prove the following.

Lemma 3.3.5. Suppose f ∈ H5([0, 2π]) and the configuration is δ–permissible, (Equation 3.6).

Assume that

‖vn‖H1(ΩRi,ḡ) ≤ KvB
n
S , ∀n < N, (3.12)

for constants Kv > 0 and BS > 0, then there exists a constant Cv > 0 such that

∥∥F in
N

∥∥
(H1(ΩRi,ḡ))′

≤ Kv ‖f‖H5 CvB
N−1
S ,

∥∥hinN∥∥H−1/2([0,2π])
≤ Kv ‖f‖H5 CvB

N−1
S ,

∥∥Lin
N

∥∥
H−1/2([0,2π])

≤ Kv ‖f‖H5 CvB
N−1
S .

Proof. Note that from (Equation 2.24) and Appendix B.1

∥∥F in
N

∥∥
(H1)′

≤
∥∥∥F in,(0)

n

∥∥∥
L2

+
∥∥∥F in,(r)

n

∥∥∥
L2

+
∥∥∥F in,(θ)

n

∥∥∥
L2
,
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and, for conciseness, we consider the third term only; the other cases follow in an identical

manner. For this estimate, using the Lemma 3.1.3

∥∥∥F in,(θ)
n

∥∥∥
L2
≤ ‖2(ḡ −Ri)f∂θvN−1‖L2 +

∥∥(ḡ −Ri)f ′(r −Ri)∂rvN−1

∥∥
L2

+
∥∥f2∂θvN−2

∥∥
L2 +

∥∥ff ′(r −Ri)∂rvN−2

∥∥
L2

≤ 2(ḡ −Ri)M ‖f‖H4 ‖vN−1‖H1 + (ḡ −Ri)M ‖f‖H5 R‖vN−1‖H1

+M2 ‖f‖2H4 ‖vN−2‖H1 +M2 ‖f‖H4 ‖f‖H5 R‖vN−2‖H1

≤ Kv ‖f‖H5 (Cv/3)BN−1
S ,

where R is defined by

‖(r −Ri)v‖H0 ≤ R‖v‖H0 ,

and we are done if Cv is chosen appropriately and BS > ‖f‖H5 .

For hin
N (Equation 2.26) we conduct the following sequence of steps

∥∥hin
N

∥∥
H−1/2 ≤

∥∥∥∥ f

ḡ −Ri
T (w) [vN−1]

∥∥∥∥
H−1/2

≤ M

ḡ −Ri
‖f‖H4+1/2

∥∥∥T (w)vN−1

∥∥∥
H−1/2

≤ M

ḡ −Ri
‖f‖H5 CT (w) ‖vN−1‖H1/2

≤ MCT (w)

ḡ −Ri
‖f‖H5 Ct ‖vN−1‖H1(ΩRi,ḡ) ≤

MCT (w)

ḡ −Ri
‖f‖H5 CtKvB

N−1
S ,
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where CT (w) is the bounding constant for the operator T (w), and Ct is the bounding constant

for the trace operator

‖v‖Hs+1/2([0,2π]) ≤ Ct ‖v‖Hs+1(ΩRi,ḡ) .

We are done if we select Cv large enough.

Regarding the terms Lin
N (Equation 2.25) we focus on a single term

L :=
1

ḡ(ḡ −Ri)(τwḡ)

{
−τw(ḡ −Ri)(f ′)2∂rvN−2

}
= − 1

ḡ2
(f ′)2∂rvN−2,

and make the estimate

‖L‖H−1/2 =

∥∥∥∥− 1

ḡ2
(f ′)2∂rvN−2

∥∥∥∥
H−1/2

≤ M2

ḡ2
‖f‖2H4+1/2 ‖∂rvN−2‖H−1/2

≤ M2

ḡ2
‖f‖2H4+1/2 Ct ‖vN−2‖H1

≤ M2Ct
ḡ2

‖f‖2H5 KvB
N−2
S ,

and we are done if Cv is chosen well and BS > ‖f‖H5 .

We can now present the proof of Theorem 3.3.2
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Proof. (Theorem 3.3.2). We work by induction and begin with n = 0. The estimate on v0 follows

directly from Lemma 3.3.3 with F and L identically zero. We new assume that (Equation 3.9)

holds for all n < N and apply Lemma 3.3.3 which implies that

‖vN‖H1 ≤ Ce
{∥∥F in

N

∥∥
(H1)′

+
∥∥Lin

N

∥∥
H−1/2 +

∥∥hin
N

∥∥
H−1/2

}
.

Using Lemma 3.3.5 we have

‖vN‖H1 ≤ Ce3KvCv ‖f‖H5 B
N−1
S ≤ KvB

N
S ,

provided that we choose

3CeCv ‖f‖H5 < BS .

Finally, we establish Theorem 3.3.1.
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Proof. (Theorem 3.3.1). From (Equation 2.27) and applying Lemma 3.3.2, it is straightforward

to demonstrate that

∥∥∥S0(f)[I(w)]
∥∥∥
H−1/2

≤ ‖τwḡ∂rv0 − Y v0‖Hs−1/2 ≤ ‖τwḡ∂rv0‖H−1/2 + ‖Y v0‖H−1/2

≤ |τw|ḡ ‖v0‖H1/2 + CY ‖v0‖H1/2

≤ (|τw|ḡ + CY )Ct ‖v0‖H1

≤ (|τw|ḡ + CY )CtKv ≤ KS ,

if KS > 0 is chosen appropriately.

Assuming that (Equation 3.7) holds for all n < N we now investigate an estimate of SN .

For simplicity we consider consider the single term

S := τw
(
−f(f ′)

ḡ(ḡ −Ri)

)
∂θvN−2,

and we measure

‖S‖H−1/2

∥∥∥∥τw ( −f(f ′)

ḡ(ḡ −Ri)

)
∂θvN−2

∥∥∥∥
H−1/2

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H4+1/2 ‖vN−2‖H−1/2

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H5 Ct ‖vN−2‖H1

≤ |τw| M2

ḡ(ḡ −Ri)
‖f‖2H5 CtKvB

N−2
S .
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We are done provided that

KS > |τw|
M2

ḡ(ḡ −Ri)
CtKv, BS > ‖f‖H5 .

In an analogous manner, the analyticity of Q is stated in the following theorem.

Theorem 3.3.6. If f ∈ H5([0, 2π]), the configuration is δ–permissible, (Equation 3.6), and

I(u) ∈ H−1/2([0, 2π]) then the series (Equation 3.1a) converges strongly as an operator from

H−1/2([0, 2π]) to H−1/2([0, 2π]). In other words there exist constants KQ > 0 and BQ > 0 such

that ∥∥∥Qn(f)[I(u)]
∥∥∥
H−1/2

≤ KQB
n
Q.

The proof proceeds in a similar fashion to that of Theorem 3.3.1. The crucial difference lies

in the elliptic estimate, c.f. Lemma 3.3.3, which in this case requires

Re

{
Ŷp
τuḡ

}
≥ 0, Re

{(
−T̂ (u)

)
p

}
≤ 0,

∣∣∣∣∣Im
{
Ŷp
τuḡ

}∣∣∣∣∣ <∞,
∣∣∣∣Im{(−T̂ (u)

)
p

}∣∣∣∣ <∞.
As before, the operator Y is free to be chosen and we again follow Despres (39; 40) who selected

iη for a constant η ∈ R+. As ku, and therefore τu, are real and positive, the first and third

conditions are satisfied. For the other conditions we note that

(
T̂ (u)

)
p

= −ku
H ′p(k

uRo)

Hp(kuRo)
,
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and recall that Shen and Wang (49) established

0 < Im

{
H ′p(k

uRo)

Hp(kuRo)

}
< 1, p 6= 0,

c.f. (2.34a) and (2.34c) in (49). So for a fixed Ro we have

∣∣∣∣Im{(−T̂ (u)
)
p

}∣∣∣∣ <∞, ∀p,

while (2.34b) of (49) delivers

p

Ro
≥ Re

{
−ku

H ′p(k
uRo)

Hp(kuRo)

}
≥ 1

2Ro
> 0, p 6= 0.

Therefore

Re

{(
−T̂ (u)

)
p

}
≤ 0, p 6= 0.



CHAPTER 4

NUMERICAL SIMULATIONS

In this chapter, we present results of simulations of our implementations of the algorithms

stated above. The schemes are essentially High–Order Spectral (HOS) approaches (14; 15; 13)

with products approximated by convolutions implemented by the Fast Fourier Transform.

4.1 Implementation Details

The numerical approaches we describe in this chapter utilize either the Dirichlet–Neumann

operator (DNO) formulation of the problem (Equation 1.7 and Equation 1.8) or the Impedance–

Impedance operator (IIO) formulation (Equation 1.14 and Equation 1.15). To simulate these

DNO and IIO we use either the FE method § 2.3 or the TFE method § 2.4 which are Fourier

collocation/Taylor methods (46; 27) enhanced by Padé summation (50). In more detail we

approximate {U,W} by

UNθ,N (r, θ) :=
N∑
n=0

Nθ/2−1∑
p=−Nθ/2

Ûn,pe
ipθεn, WNθ,N (r, θ) :=

N∑
n=0

Nθ/2−1∑
p=−Nθ/2

Ŵn,pe
ipθεn,

and {I(u), I(w)} by

{
I(u), I(w)

}
≈
{[
I(u)

]
Nθ,N

,
[
I(w)

]
Nθ,N

}
:=

N∑
n=0

Nθ/2−1∑
p=−Nθ/2

{(
Î(u)

)
n,p
,
(
Î(w)

)
n,p

}
eipθεn.

59
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The TFE approach requires an additional discretization in the radial direction which we achieve

by a Chebyshev collocation scheme. An important consideration is how the series in ε are

summed. The classical numerical analytic continuation technique of Padé approximation (50)

has been successfully brought to bear upon HOPS methods in the past (see, e.g., (23; 47)), and

we will use it here.

4.2 The Method of Manufactured Solutions

Before proceeding to our numerically simulations, we validate our code using the Method of

Manufactured Solutions (MMS) (51; 52; 53). To summarize the MMS, when solving a system

of partial differential equations subject to boundary conditions for an unknown, v, say

Pv = 0, in Ω, (4.1a)

Bv = 0, at ∂Ω, (4.1b)

it is typically just as easy to implement an algorithm to solve the “inhomogenous” versions of

the above,

Pv = F , in Ω, (4.2a)

Bv = J , at ∂Ω. (4.2b)

In order to test an implementation, one begins with the “manufactured solution”, ṽ, and sets

Fṽ := P ṽ, Jṽ := Bṽ.
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Now, given this pair {Fṽ,Jṽ} we have an exact solution to (Equation 4.2) against which we

can compare our numerically simulated solution. While this provides no guarantee of a correct

implementation, with a careful choice of ṽ, e.g. one which displays the same qualitative behavior

as solutions of (Equation 4.1), the approach can give great confidence in the accuracy of a

scheme.

For the implementation in question we consider the 2π–periodic, outgoing solutions of the

Helmholtz equation, (Equation 1.1a),

uq(r, θ) = AquHq(k
ur)eiqθ, q ∈ Z, Aqu ∈ C,

and the bounded counterpart for (Equation 1.1b)

wq(r, θ) = AqwJq(k
wr)eiqθ, q ∈ Z, Aqw ∈ C.

The parameters, q, Aqu, and Aqw are all arbitrary. For any choice of the radius of the interface

ḡ, we define the Dirichlet and Neumann traces

U exact(θ) := uq(ḡ + g(θ), θ), Ũ exact(θ) := (−∂Nuq)(ḡ + g(θ), θ),

and

W exact(θ) := wq(ḡ + g(θ), θ), W̃ exact(θ) := (∂Nw
q)(ḡ + g(θ), θ).
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From these we define, for any real η > 0 with Y = iη and Z = −iη, the impedances

I(u),exact(θ) := τuŨ exact + iηU exact, Ĩ(u),exact(θ) := τuŨ exact − iηU exact,

and

I(w),exact(θ) := τwW̃ exact + iηW exact, Ĩ(w),exact(θ) := τwW̃ exact − iηW exact.

4.3 Convergence Study

For our convergence study we select the 2π–periodic and analytic profile

f(θ) = ecos(θ), (4.3)

see Figure 3, and with this we first compute the exact surface current, Ũ exact. We make the

physical parameter choices

q = 2, Aqu = 2, Aqw = 1, ḡ = 0.025, ε = 0.002, (4.4a)

and numerical parameter choices

Nθ = 64, N = 16, (4.4b)
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Figure 3. Plot of the cross–section of a dielectric nanorod (occupying Sw) shaped by

r = ḡ + ε exp(cos(θ)) (ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave

illumination with wavenumber (α,−γu). The dash–dot blue line depicts the unperturbed

geometry, the circle r = ḡ.

and compute approximations to Ũ exact by the FE algorithm delivering ŨFE and the TFE algo-

rithm delivering ŨTFE. We measure the relative errors by

ErrorFE
DNO =

∣∣∣Ũ exact − ŨFE
Nθ,N

∣∣∣
L∞∣∣∣Ũ exact

∣∣∣
L∞

, ErrorTFE
DNO =

∣∣∣Ũ exact − ŨTFE
Nθ,Nr,N

∣∣∣
L∞∣∣∣Ũ exact

∣∣∣
L∞

. (4.5)

We display results of the convergence study in Figure 4 using Taylor and Padé summation,

respectively. In these we see not only the reliability and robustness of our approach, but also

the extremely rapid, spectral, accuracy of our simulations. Notice that the method using Padé
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summation converges faster than Taylor summation. We take the Padé summation results for

the rest of our calculations and simulations.
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Figure 4. Relative error (Equation 4.5) versus perturbation order for configuration

(Equation 4.4a); FE with Taylor and Padé summation .

Next, we reprise the calculation with larger choices of the perturbation parameter, ε = 0.02

and ε = 0.05. We use both the FE and TFE algorithms with the same choice of f(θ),

(Equation 4.3), physical parameters, (Equation 4.4a), and numerical parameters, (Equation 4.4b),

supplemented with

Ri = ḡ/10, Ro = 10ḡ, Nr = 64, N = 24.
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We compute approximations {ŨFE, ŨTFE} and report results in Figure 5, for ε = 0.02 and

ε = 0.05, respectively. Again, the fidelity and utility of both approaches is clearly visible in

each, but we note the added accuracy and stability which TFE can provide.
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Figure 5. Relative error (Equation 4.5) versus perturbation order; FE and TFE with Padé

summation, ε = 0.02 and ε = 0.05.

4.4 Robust Comparison: DNOs versus IIOs

In this section, we demonstrate and compare the behaviors of IIOs and DNOs at, and near,

their Dirichlet eigenvalues. We select the following physical parameters

q = 2, Aqu = 2, Aqw = 1, η = 3.4, ku = 13.9626, kw = 5.13562230, (4.6)
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and numerical parameter choices

Nθ = 64, N = 16, Nr = 32. (4.7)

We supply the data {U exact,W exact} to our TFE algorithm to simulate DNOs producing,

W̃Nθ,Nr,N , and {I(u),exact, I(w),exact} to simulate IIOs producing, Ĩ
(w)
Nθ,Nr,N

. Here we also compute

the relative error

ErrorDNO =

∣∣∣W̃ exact − W̃Nθ,Nr,N

∣∣∣
L∞∣∣∣W̃ exact

∣∣∣
L∞

, ErrorIIO =

∣∣∣Ĩ(w),exact − Ĩ(w)
Nθ,Nr,N

∣∣∣
L∞∣∣∣Ĩ(w),exact

∣∣∣
L∞

.

To begin our study, we choose ḡ = 0.5, carried out the MMS simulations with our IIO

method, (Equation 1.16), and display our results in Figures 6(a) and 6(b). We repeat this with

our DNO approach and report the outcomes in Figures 7(a) and 7(b). We see in this generic,

non-resonant, configuration that both algorithms display a spectral rate of convergence as N is

refined (up to the conditioning of the algorithm) which improves as ε is decreased.

Before proceeding, we note that the choice of radius

ḡ = 1,
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(b) Error versus perturbation sizer, ε.

Figure 6. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a

non-resonant configuration using the IIO formulation.

induces a singularity in the interior DNO resulting in a lack of uniqueness. To test the perfor-

mance of our methods near this scenario, we first take

ḡ = 1− 10−12.

With the same choice of physical, (Equation 4.6), and numerical, (Equation 4.7), parameters as

before, we conduct simulations with the IIO method, (Equation 1.16), and display our results

in Figures 8(a) and 8(b). We revisit these computations with our DNO approach and show our

results in Figures 9(a) and 9(b). We see in this nearly resonant configuration, that while the

IIO methodology continues to display a spectral rate of convergence as N is refined (improving

as ε is decreased), the DNO approach does not provide results of the same quality.
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Figure 7. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a

non-resonant configuration using the DNO formulation.

To close this section, we choose

ḡ = 1− 10−16.

The simulation with the IIO method is displayed in Figures 10(a) and 10(b), while the DNO

approach are shown in Figures 11(a) and 11(b). We see in this resonant (to machine precision)

configuration, the IIO again displays a spectral rate of convergence as N is refined (improving

as ε is decreased), while the DNO approach delivers completely unacceptable results.

4.5 Simulation of Nanorods

We return to the problem of scattering of plane–wave incident radiation uinc = exp(iαx −

iγuz) by a nanorod which demands the Dirichlet and Neumann conditions, (Equation 1.1c)
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Figure 8. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a nearly

resonant configuration using the IIO formulation.

and (Equation 1.1d) respectively. More specifically, we consider metallic nanorods housed in a

dielectric with outer interface shaped by

r = ḡ + g(θ) = ḡ + εf(θ).

We illuminate this structure over a range of incident wavelengths λmin ≤ λ ≤ λmax and per-

turbation sizes εmin ≤ ε ≤ εmax, and compute the magnitudes of the reflected and transmitted

surface currents, Ũ and W̃ . These we term the “Reflection Map” (RM) and “Transmission

Map” (TM) in analogy with similar quantities of interest in the study of metallic gratings

(1; 2; 3; 4). Our study of the Fröhlich condition, (Equation 2.4), indicates that there should be

a sizable enhancement in each at an LSPR. In the case of a nanorod with a perfectly circular
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Figure 9. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a nearly

resonant configuration using the DNO formulation.

cross–section we computed the value as the λC satisfying (Equation 2.4), and in subsequent

plots this is depicted with a dashed red line.

4.5.1 An Analytic Deformation

Using the FE approach to compute the DNOs, we begin our study with the 2π–periodic

and analytic profile (Equation 4.3) from § 4.3

f(θ) = ecos(θ),
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Figure 10. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a

resonant configuration using the IIO formulation.

see Figure 3. With this we consider the following physical configuration

ḡ = 0.025, nu = 1, nw = nAg,

λmin = 0.300, λmax = 0.800, εmin = 0, εmax = ḡ/10, (4.8)

so that a silver (Ag) nanorod sits in vacuum, with numerical parameters

Nλ = 201, Nε = 201, Nθ = 64, N = 16. (4.9)
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Figure 11. Plot of relative error with ε = 0.005, 0.01, 0.05, 0.1 and N = 0, 4, 8, 12, 16 for a

resonant configuration using the DNO formulation.

To compute the RM and TM we measure the magnitudes by

|Ũ |2 =
∥∥∥ŨNθ,N∥∥∥

2
, |W̃ |2 =

∥∥∥W̃Nθ,N

∥∥∥
2
.

Plots of the RM and TM are displayed in Figure 12. In Figure 13 we show the final slice at

ε = εmax, together with the Fröhlich value of the LSPR, (Equation 2.4), as a dashed red line.

We see how even a relatively moderate value of the deformation parameter ε (one tenth of the

rod radius) can produce a sizable shift in the LSPR location.

We revisit these calculations with two fundamental changes to the configuration (Equation 4.8):

(1) boundary perturbation of twice the size (εmax = ḡ/5), (2) water as the host dielectric

(nu = nwater). To summarize the effects of these changes, we present a collection of the final
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Figure 12. Reflection Map and Transmission Map for a silver nanorod shaped by the analytic

profile, (Equation 4.3), in vacuum. εmax = ḡ/10, ḡ = 0.025, λmin = 0.300, and λmax = 0.800.

slices of RM and TM at ε = εmax in Figure 14. Not only does an increase in the deformation

size move the LSPR further away from the Fröhlich value, but also placing the nanorod in

water spreads out the LSPR response in a significant way. Importantly, these results are easily

generated with our method and show how useful our approach can be in the evaluation and

design of nanorod structures.

4.5.2 A Low–Frequency Cosine Deformation

Continuing with the FE recursions, we consider the 2π–periodic, low–frequency ellipsoidal

profile

f(θ) = cos(2θ), (4.10)
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Figure 13. Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod

shaped by the analytic profile, (Equation 4.3), in vacuum.

see Figure 15. Again we consider the physical configuration (Equation 4.8) with numerical

parameters (Equation 4.9).

Plots of the RM and TM are displayed in Figure 16. In Figure 17, we show the final slice

at ε = εmax, with two perturbation sizes, εmax = ḡ/10 and εmax = ḡ/5, and two dielectrics,

vacuum and water. The Fröhlich value of the LSPR, (Equation 2.4), is plotted as a dashed red

line. As before, even a small perturbation in the deformation can move the LSPR shift in a

noticeable way. Not only does an increase in the deformation size move the LSPR further away

from the Fröhlich value, but also placing the nanorod in water spreads out the LSPR response.
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Note that the LSPR response rises to a “double–peak” in water, though not as severely as for

the analytic profile.

4.5.3 A Higher–Frequency Cosine Deformation

Once again with the FE approach, we conclude with clover shaped cross–sections of the

form

f(θ) = cos(4θ), (4.11)

see Figure 18. Once again we consider the physical configuration (Equation 4.8) with numerical

parameters (Equation 4.9). Plots of the RM and TM are displayed in Figure 19. In Figure 20,

we show the final slice at ε = εmax, with two perturbation sizes, εmax = ḡ/10, ḡ/5, and two

dielectrics, vacuum and water. Again, the Fröhlich value of the LSPR, (Equation 2.4), is plotted

as a dashed red line.

Unsurprisingly, we notice how even a moderate value of the deformation parameter delivers

a sizable shift in the LSPR location. In this case we see that an increase in the deformation

size moves the LSPR further away from the Fröhlich value, and placing the nanorod in water

not only spreads out the LSPR response, but also creates a “bifurcation” in the response.

4.5.4 A TFE approach with IIOs

We close by studing the clover shaped profile, (Equation 4.11), using the TFE approach

with IIOs. We compute the magnitudes of the reflected and transmitted surface currents, Ĩ(u)

and Ĩ(w),

|Ĩ(u)|2 =
∥∥∥Ĩ(u)
Nθ,Nr,N

∥∥∥
2
, |Ĩ(w)|2 =

∥∥∥Ĩ(w)
Nθ,Nr,N

∥∥∥
2
,
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which should also be enhanced at an LSPR. We consider the following physical configuration

ḡ = 0.025, nu = 1, nw = nAg,

λmin = 0.300, λmax = 0.800, εmin = 0, εmax = ḡ/5,

so that a silver (Ag) nanorod sits in vacuum, with numerical parameters

Nλ = 201, Nε = 201, Nθ = 32, Nr = 16, N = 8.

Plots of the RM and TM are displayed in Figure 21. In Figure 22 we show the final slice

(ε = εmax) of each of these, together with the Fröhlich value of the LSPR, (Equation 2.4), as

a dashed red line. Here we draw the same conclusion that a relatively moderate value of the

deformation parameter (one fifth of the rod radius) can produce a sizable shift in the LSPR

location which our novel approach can accurately capture.
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(b) ε = ḡ/5 in vacuum.
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(c) ε = ḡ/10 in water.

0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) ε = ḡ/5 in water.

Figure 14. Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped

by the analytic profile, (Equation 4.3).
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Figure 15. Plot of the cross–section of a metallic nanorod (occupying Sw) shaped by

r = ḡ + ε cos(2θ) (ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave

illumination with wavenumber (α,−γu). The dash–dot blue line depicts the unperturbed

geometry, the circle r = ḡ.
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Figure 16. Reflection Map and Transmission Map for a silver nanorod shaped by an ellipsoidal

profile, (Equation 4.10), in vacuum. εmax = ḡ/10, ḡ = 0.025, λmin = 0.3, λmax = 0.8.
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(a) ε = ḡ/10 in vacuum.
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(b) ε = ḡ/5 in vacuum.
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(c) ε = ḡ/10 in water.
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(d) ε = ḡ/5 in water.

Figure 17. Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped

by the ellipsoidal profile, (Equation 4.10).
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Figure 18. Plot of the cross–section of a metallic nanorod (occupying Sw) shaped by

r = ḡ + ε cos(4θ) (ε = ḡ/5) housed in a dielectric (occupying Su) under plane–wave

illumination with wavenumber (α,−γu). The dash–dot blue line depicts the unperturbed

geometry, the circle r = ḡ.
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Figure 19. Reflection Map and Transmission Map for a silver nanorod shaped by a clover

shaped profile, (Equation 4.11), in vacuum. εmax = ḡ/10, ḡ = 0.025, λmin = 0.3, λmax = 0.8.
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(b) ε = ḡ/5 in vacuum.
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(c) ε = ḡ/10 in water.

0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

(d) ε = ḡ/5 in water.

Figure 20. Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped

by the clover shaped profile, (Equation 4.11).
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Figure 21. Reflection Map and Transmission Map for a silver nanorod shaped by the the

clover shaped profile, (Equation 4.11), in vacuum, using IIO and TFE. εmax = ḡ/5, ḡ = 0.025,

λmin = 0.3, λmax = 0.8.
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Figure 22. Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod

shaped by the clover shaped profile, (Equation 4.11), in vacuum, using IIO and TFE.



CHAPTER 5

CONCLUSION

In this thesis we have investigated High–Order Perturbation of Surfaces (HOPS) algorithms

for the numerical simulation of the problem of scattering of linear waves by a nanorod in

terms of Dirichlet–Neumann Operators (DNO) and Impedance–Impedance Operator (IIO). We

have also studied the Localized Surface Plasmon Resonances (LSPRs) which can be induced in

silver nanorods with visible light, and how they change as the shapes of these rods are varied

analytically away from perfectly cylindrical.

We build the Double–Layered Penetrable obstacle scattering problem based upon the work in

(28; 44). In the contribution we provide HOPS algorithms with boundary formulation not only

in terms of the Dirichlet–Neumann Operator, but also the Impedance–Impedance Operator,

which does not suffer from the artificial “Dirichlet eigenvalues” issue. In addition, we establish

and prove the analyticity of solutions to the problem via IIO formulation. The numerical

experiments and simulations demonstrate the remarkable efficiency, fidelity, and high–order

accuracy of our algorithms.
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Appendix A

DIRICHLET–NEUMANN OPERATORS FORMULATION

A.1 The Non–Trivial Configurations

For ε sufficiently small and f sufficiently smooth, the operators, {G(u), G(w)}, and data,

{ζ, ψ}, can be shown to be analytic in ε so that the following Taylor series are strongly conver-

gent

{G(u), G(w), ζ, ψ} = {G(u), G(w), ζ, ψ}(εf) =
∞∑
n=0

{G(u)
n , G(w)

n , ζn, ψn}εn,

as well as the resulting scattered fields

U = U(εf) =
∞∑
n=0

Unε
n, W = W (εf) =

∞∑
n=0

Wnε
n.

Furthermore, it is straightforward to identify a recursive formula for Un. Using Wn = Un − ζn

we can write (Equation 1.9) as

( ∞∑
n=0

(
G(u)
n + τ2G(w)

n

)
εn

)[ ∞∑
m=0

Umε
m

]
= −

∞∑
n=0

ψnε
n + τ2

( ∞∑
n=0

G(w)
n εn

)[ ∞∑
m=0

ζmε
m

]
,

then equating at order O(εn), we find

(G
(u)
0 + τ2G

(w)
0 )Un = −ψn +

n∑
m=0

G
(w)
n−m [ζm]−

n−1∑
m=0

(G
(u)
n−m + τ2G

(w)
n−m) [Um] . (A.1)
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Appendix A (Continued)

At order zero we recover the trivial configuration calculation, (Equation 2.1), in Chapter 2. The

higher order corrections are recovered from (Equation A.1). The forms of the data, {ζn, ψn}, are

also stated in Section 2.1. All that remains is to specify expressions for operators, {G(u)
n , G

(w)
n }.

Detailed calculations for the operator G
(u)
n was presented in (28; 44). Here we apply FE and

TFE methods to approximate the DNO G
(w)
n .

A.2 The Method of Field Expansions

Focusing upon the Interior Problem via DNO (Equation 1.8), the field w in the inner domain,

{r < ḡ + εf(θ)}, is written as

w = w(r, θ; ε) =

∞∑
n=0

wn(r, θ)εn.

Upon insertion of this into (Equation 1.8) we find that the wn must be solutions of the boundary

value problem

∆wn + (ku)2wn = 0, Ri < r < ḡ, (A.2a)

wn(ḡ, θ) = δn,0W −
n−1∑
m=0

fn−m

(n−m)!
∂n−mr wm(ḡ, θ), r = ḡ, (A.2b)

∂rwn − T (w) [wn] = 0, r = Ri. (A.2c)

The exact solutions (Equation 2.2) are

wn(r, θ) =
∞∑

p=−∞
ŵn,p

Jp(k
wr)

Jp(kwḡ)
eipθ,
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Appendix A (Continued)

and the ŵn,p are determined recursively from the boundary conditions, (Equation A.2b), be-

ginning, at order zero, with

ŵ0,p = Ŵp.

From this the DNO, (Equation 1.8d), can be computed from

G(w)[W ] = (∂Nw)(ḡ + g(θ), θ)

=
∞∑
n=0

∞∑
p=−∞

{
kw(ḡ + εf)

J ′p(k
w(ḡ + εf))

Jp(kwḡ)

− εf ′

(ḡ + εf)
(ip)

Jp(k
w(ḡ + εf))

Jp(kwḡ)

}
ŵn,pe

ipθεn,

expanding the Bessel functions J ′p(k
w(ḡ + εf)) and Jp(k

w(ḡ + εf)) in power series in ε, and

equating like powers of ε. This results in

G(w)
n (f)[W ] = −f

ḡ
G

(w)
n−1(f)[W ]kwḡ +

n∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−`

(n− `)!
J

(n+1−`)
p (kwḡ)

Jp(kwḡ)
eipθ

+ 2kwf
n−1∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−1−`

(n− 1− `)!
J

(n−`)
p (kwḡ)

Jp(kwḡ)
eipθ

+
kw

ḡ
f2

n−2∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−2−`

(n− 2− `)!
J

(n−1−`)
p (kwḡ)

Jp(kwḡ)
eipθ

− 1

ḡ
(f ′)

n−1∑
`=0

∞∑
p=−∞

ŵ`,p
(kwf)n−1−`

(n− 1− `)!
J

(n−1−`)
p (kwḡ)

Jp(kwḡ)
(ip)eipθ.
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A.3 The Method of Transformed Field Expansions

As always, the TFE method begins with a change of variables which is the same as the one

for the interior problem

r′ =
(ḡ −Ri)r +Rig(θ)

ḡ + g(θ)−Ri
, θ′ = θ,

which maps the perturbed domain {Ri < r < ḡ + g(θ)} to the separable one {Ri < r′ < ḡ}.

The field w is changed into

v(r′, θ′) = w

(
(ḡ + g(θ′)−Ri)r′ −Rig(θ′)

ḡ −Ri
, θ′
)
,

and modifies (Equation 1.8) to

∆v + (kw)2 v = F in(r, θ; g), Ri < r < ḡ, (A.3a)

v = W, r = ḡ, (A.3b)

∂rv − T (w) [v] = hin(θ; g), r = Ri, (A.3c)

where F in is presented in (Equation 2.19) and hin in (Equation 2.21). In addition, the (Equation 1.8d)

changes to

G(w)[W ] =
ḡ −Ri

ḡ −Ri + g

[
(ḡ + g) +

(g′)2

ḡ + g

]
∂rv −

g′

ḡ + g
∂θv.
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Upon setting g = εf and expanding

v(r, θ, ε) =
∞∑
n=0

vn(r, θ)εn,

we can show that

∆vn + (kw)2 vn = F in
n , Ri < r < ḡ, (A.4a)

vn = δn,0W, r = ḡ, (A.4b)

∂rvn − T (w) [vn] = hin
n , r = Ri, (A.4c)

where F in
n is presented in (Equation 2.24) and hin

n in (Equation 2.26). Then it is not difficult

to see that

G(w)
n [W ] =− f

(
1

ḡ
+

1

ḡ −Ri

)
G

(w)
n−1[W ]− f2

ḡ(ḡ −Ri)
G

(w)
n−2[W ] + ḡ∂rvn

+ 2f∂rvn−1 +
f2 + (f ′)2

ḡ
∂rvn−2 −

f ′

ḡ
∂θvn−1 −

f(f ′)

ḡ(ḡ −Ri)
∂θvn−2.

Provided with the {vn}, we can readily approximate the terms, G
(w)
n , in the Taylor series

expansion of G(w).
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THE ELLIPTIC ESTIMATE

B.1 Volumetric Function Spaces

With the goal of establishing analyticity results, we discuss necessary volumetric function

spaces in addition to the interfacial spaces we described above. For this we consider the domain

Ωa,b := {a < r < b} with inner and outer boundaries Γa := {r = a} and Γb := {r = b},

respectively. For clarity of presentation we use the following notation for the classical θ–periodic

volumetric and surface Sobolev spaces

H1(Ωa,b), H1/2(Γa), H1/2(Γb).

The precise nature of the spaces H1/2(Γa) and H1/2(Γb) has already been made precise, and the

details of the space H1(Ωa,b) can be made clear by the following considerations. If v ∈ H1(Ωa,b)

then

v(r, θ) =
∞∑

p=−∞
v̂p(r)e

ipθ, v̂p(r) =
1

2π

∫ 2π

0
v(r, θ)e−ipθ dθ,

and ‖v‖H1(Ωa,b)
<∞ where

‖v‖2H1(Ωa,b)
:=

∞∑
p=−∞

(
〈p〉2 ‖v̂p‖2L2(dr) + ‖∂rv̂p‖2L2(dr)

)
, ‖v̂p‖2L2(dr) :=

∫ b

a
|v̂p(r)|2 r dr.
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The existence, uniqueness, and elliptic regularity results demand an understanding of the

duals of H1(Ωa,b), H
1/2(Γa) and H1/2(Γb). As we have seen, the latter are simply the spaces

H−1/2(Γa) and H−1/2(Γb). However, the former require a little more work to characterize.

Following Evans (38) (Section 5.9.1) we use the Riesz Representation Theorem to identify any

F ∈ (H1(Ωa,b))
′ with an element uF ∈ H1(Ωa,b) such that

〈F, v〉 = (uF , v)H1(Ωa,b), ∀v ∈ H1(Ωa,b),

where 〈·, ·〉 is the duality pairing between H1(Ωa,b) and (H1(Ωa,b))
′, and (·, ·)H1(Ωa,b) is the

H1(Ωa,b) inner product

(u, v)H1(Ωa,b) =

∫
Ωa,b

∇u · ∇v + uv dV.

As uF ∈ H1(Ωa,b) we can identify F 0, F r, F θ ∈ L2(Ωa,b) such that, in the weak sense

F = F 0 + (∂rF
r)r̂ +

(∂θF
θ)

r
θ̂,

and

‖F‖2(H1(Ωa,b)′
=
∥∥F 0

∥∥2

L2(Ωa,b)
+ ‖F r‖2L2(Ωa,b)

+

∥∥∥∥F θr
∥∥∥∥2

L2(Ωa,b)

gives the norm of (H1(Ωa,b))
′. We note that since 0 < a < b <∞ this is equivalent to

∥∥F 0
∥∥2

L2(Ωa,b)
+ ‖F r‖2L2(Ωa,b)

+
∥∥∥F θ∥∥∥2

L2(Ωa,b)
.
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Remark B.1.1. We note, for later use, the important fact that H1(Ωa,b) embeds compactly

into L2(Ωa,b) while H1/2(Γa) embed compactly into L2(Γa) and H1/2(Γb) embed compactly into

L2(Γb) (54).

B.2 Uniqueness

We now present the fundamental result which enables the proof of our analyticity theorems.

For this we consider the generic Helmholtz problem

∆v + k2v = F, in Ωa,b, (B.1a)

∂rv −Av = K, at Γa, (B.1b)

∂rv −Bv = L, at Γb, (B.1c)

where A and B can be order–one Fourier multipliers

A : H1/2(Γa)→ H−1/2(Γa), B : H1/2(Γb)→ H−1/2(Γb),

though they can also be constants, e.g., the choice of Despres (39; 40) A = iηa, B = iηb, where

ηa, ηb ∈ R.
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We can decide decisively upon uniqueness of solutions to (Equation B.1) by considering this

problem with F ≡ K ≡ L ≡ 0 and writing the exact solution via separation of variables. The

solution of (Equation B.1a) with F ≡ 0 is

v(r, θ) =
∞∑

p=−∞
{cpJp(kr) + dpYp(kr)} eipθ, (B.2)

with derivative

∂rv(r, θ) =

∞∑
p=−∞

{
cpkJ

′
p(kr) + dpkY

′
p(kr)

}
eipθ, (B.3)

while the boundary conditions, (Equation B.1b)–(Equation B.1c), in the case K ≡ L ≡ 0

deliver kJ ′p(ka)− ÂpJp(ka) kY ′p(ka)− ÂpYp(ka)

kJ ′p(kb)− B̂pJp(kb) kY ′p(kb)− B̂pYp(kb)


cp
dp

 =

0

0

 . (B.4)

Clearly, this has only the zero solution provided that the determinant function is non–zero

Λp(k, a, b, Âp, B̂p) :=
(
kJ ′p(ka)− ÂpJp(ka)

)(
kY ′p(kb)− B̂pYp(kb)

)
−
(
kY ′p(ka)− ÂpYp(ka)

)(
kJ ′p(kb)− B̂pJp(kb)

)
.

If we define a “configuration” (k, a, b, A,B) then we can specify a δ–permissible configuration

set

Cδ(k, a, b, A,B) :=

{
(k, a, b, A,B) |

∣∣∣Λp(k, a, b, Âp, B̂p)∣∣∣2 > δ2, ∀p ∈ Z

}
, (B.5)

for some δ > 0.
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For later reference we explicitly mention the case k = 0 which corresponds to Laplace’s

equation. We consider the problem

∆v = F, in Ωa,b, (B.6a)

∂rv −Av = K, at Γa, (B.6b)

∂rv −Bv = L, at Γb. (B.6c)

The exact solution of (Equation B.6a) is, in the case F ≡ 0,

v(r, θ) = c0 log(r) + d0 +
∞∑
|p|=1

{
cp

(r
b

)|p|
+ dp

(r
a

)−|p|}
eipθ, (B.7)

with derivative

∂rv(r, θ) =
c0

r
+

∞∑
|p|=1

|p|
{
cp
b

(r
b

)|p|−1
− dp

a

(r
a

)−|p|−1
}
eipθ. (B.8)

The boundary conditions (Equation B.6b)–(Equation B.6c), for K ≡ L ≡ 0, demand, for p 6= 0,

q|p|
(
|p| /(bq)− Âp

) (
− |p| /a− Âp

)
(
|p| /b− B̂p

)
q|p|
(
−(|p| q)/a− B̂p

)

cp
dp

 =

0

0

 , (B.9)
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where q := a/b (note that 0 < q < 1), and, for p = 0,

1/a− Â0 log(a) −Â0

1/b− B̂0 log(b) −B̂0


c0

d0

 =

0

0

 . (B.10)

Once again, the uniqueness of solutions to this problem is determined by the vanishing of the

determinant function

Λp(0, a, b, Âp, B̂p) =

(
|p|
a

+ Âp

)(
|p|
b
− B̂p

)
− q2|p|

(
|p|
bq
− Âp

)(
|p| q
a

+ B̂p

)
, (B.11)

for p 6= 0, and

Λ0(0, a, b, Â0, B̂0) =
aÂ0 − bB̂0

ab
+ Â0B̂0 log(q), (B.12)

for p = 0. Again, we specify a δ–permissible configuration set

Cδ(0, a, b, A,B) :=

{
(0, a, b, A,B) |

∣∣∣Λp(0, a, b, Âp, B̂p)∣∣∣2 > δ2, ∀p ∈ Z

}
, (B.13)

for some δ > 0.

Remark B.2.1. Regarding the possibility of Λp being zero, general statements are more diffi-

cult to make. However, if we make the choice of Despres (39; 40), Âp = B̂p = iη, then

Λp =
(

1− q2|p|
)(
|p|2 + η2

)
+ i |p| q2|p|η (q − 1/q) = O(p2),

and both the real and imaginary parts of Λp are non–zero.
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B.3 Existence

We now establish existence and estimates for permissible configurations satisfying (Equation B.5)

and (Equation B.13).

Theorem B.3.1. If F ∈ (H1(Ωa,b))
′, K ∈ H−1/2(Γa), L ∈ H−1/2(Γb), the configurations

satisfy

{k, a, b, A,B} ∈ Cδ(k, a, b, A,B), {0, a, b, A,B} ∈ Cδ(0, a, b, A,B)

for some δ > 0, and the Fourier multiplier operators satisfy the conditions

Re
{
Âp

}
≥ 0, Re

{
B̂p

}
≤ 0,

∣∣∣Im{Âp}∣∣∣ <∞, ∣∣∣Im{B̂p}∣∣∣ <∞, (B.14)

then there exists a unique solution of the Helmholtz problem, (Equation B.1), which satisfies

the estimate

‖v‖H1(Ωa,b)
≤ Ce

{
‖F‖(H1(Ωa,b))′

+ ‖K‖H−1/2(Γa) + ‖L‖H−1/2(Γb)

}
, (B.15)

for some universal constant Ce > 0.
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Proof. To establish this result we write the solution v = v0 +v1 where the first function satisfies

(Equation B.1) with homogeneous boundary conditions and slightly modified inhomogeneity

∆v0 + k2v0 = G, in Ωa,b, (B.16a)

∂rv0 −Av0 = 0, at Γa, (B.16b)

∂rv0 −Bv0 = 0, at Γb, (B.16c)

and the second resolves a harmonic equation with boundary conditions

∆v1 = 0, in Ωa,b, (B.17a)

∂rv1 −Av1 = K, at Γa, (B.17b)

∂rv1 −Bv1 = L, at Γb. (B.17c)

Since the configuration is in the set Cδ(k, a, b, A,B), we will show in Theorem B.3.2 that

(Equation B.16) has a unique solution satisfying the estimate

‖v0‖H1(Ωa,b)
≤ C0 ‖G‖(H1(Ωa,b))′

, (B.18)

and, since the configuration is in the set Cδ(0, a, b, A,B), we will show in Theorem B.3.3 that

(Equation B.17) has a unique solution such that

‖v1‖H1(Ωa,b)
≤ C1

{
‖K‖H−1/2(Γa) + ‖L‖H−1/2(Γb)

}
. (B.19)
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Inserting v = v0 + v1 into (Equation B.1) we find that v0 satisfies (Equation B.16) with G =

F − k2v1 so that

‖v‖H1(Ωa,b)
≤ ‖v0‖H1(Ωa,b)

+ ‖v1‖H1(Ωa,b)

≤ C0

∥∥F − k2v1

∥∥
(H1(Ωa,b))′

+ ‖v1‖H1(Ωa,b)

≤ C0

{
‖F‖(H1(Ωa,b))′

+ k2 ‖v1‖(H1(Ωa,b))′

}
+ ‖v1‖H1(Ωa,b)

≤ C0

{
‖F‖(H1(Ωa,b))′

+ k2 ‖v1‖H1(Ωa,b)

}
+ ‖v1‖H1(Ωa,b)

≤ C0 ‖F‖(H1(Ωa,b))′
+ (C0k

2 + 1)C1

{
‖K‖H−1/2(Γa) + ‖L‖H−1/2(Γb)

}
,

and we are done provided

Ce = max
{

2C0, 2C1(C0k
2 + 1)

}
.

The next theorem states the estimate for v0.

Theorem B.3.2. If G ∈ (H1(Ωa,b))
′, the configuration {k, a, b, A,B} ∈ Cδ for some δ > 0,

and the Fourier multiplier operators satisfy the conditions (Equation B.14), then there ex-

ists a unique solution of the Helmholtz problem, (Equation B.16), which satisfies the estimate

(Equation B.18) for some universal constant C0 > 0.

Proof. We follow very closely the work of Harari and Hughes (55) and Demkowicz and Ihlenburg

(56), which was later enhanced (44) for use on domains with perturbed interface shape. Here

we modify this approach to address a related but significantly different problem.
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We define the zero–mode Fourier multiplier operators A0 and B0 by

A0[ψ(θ)] :=
∞∑

p=−∞
Â0pψ̂pε

ipθδp,0 = Â0ψ̂0, B0[ψ(θ)] :=
∞∑

p=−∞
B̂0pψ̂pε

ipθδp,0 = B̂0ψ̂0.

It is easy to show that A0 and B0 each map L2 to L2. A weak formulation of (Equation B.16)

is:

Find v0 ∈ H1(Ωa,b) such that A(v0, φ) +D1(v0, φ) +D2(v0, φ) = L(φ), ∀φ ∈ H1(Ωa,b),

where

A(v, φ) :=

∫
Ωa,b

∇v · ∇φ dV +

∫
Ωa,b

vφ dV

+ Re

{∫
Γa

((A−A0)v)φ ds

}
− Re

{∫
Γb

((B −B0)v)φ ds

}
,

D1(v, φ) := −(k2 + 1)

∫
Ωa,b

vφ dV,

D2(v, φ) := Im

{∫
Γa

((A−A0)v)φ ds

}
− Im

{∫
Γb

((B −B0)v)φ ds

}
+

∫
Γa

(A0v)φ ds−
∫

Γb

(B0v)φ ds,

L(φ) := −
∫

Ωa,b

Gφ dV.

Following (55; 56; 44) it is not difficult to show that A is a continuous, sesquilinear form from

H1(Ωa,b)×H1(Ωa,b) to C which induces a bounded operator A : H1(Ωa,b) → (H1(Ωa,b))
′ (see
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Lemma 2.1.38 of (54)). The first two terms are “standard” while the latter two require that A

and B be at most order–one Fourier multipliers, e.g.,

∣∣∣∣Re

{∫
Γa

A[vr=a]φr=a ds

}∣∣∣∣ ≤ |〈A[vr=a], φr=a〉| ≤ ‖A[vr=a]‖H−1/2(Γa) ‖φr=a‖H1/2(Γa) ,

which are bounded as v, φ ∈ H1(Ωa,b), the trace operator maps each to H1/2(Γa), and A :

H1/2(Γa)→ H−1/2(Γa).

Furthermore, A is H1(Ωa,b)–elliptic (54), i.e., there is a γ > 0 such that

Re {A(v, v)} ≥ γ ‖v‖2H1(Ωa,b)
.

The first two terms do not cause any problem as they are the H1(Ωa,b)–norm, however the

second two must be handled by estimates such as

Re

{∫
Γa

(A−A0)[vr=a]vr=a ds

}
=

∞∑
p=−∞,p 6=0

Re
{
Âp

}
|v̂p(a)|2 ≥

∞∑
p=−∞,p 6=0

|v̂p(a)|2 ≥ 0,

− Re

{∫
Γb

(B −B0)[vr=a]vr=b ds

}
=

∞∑
p=−∞,p 6=0

Re
{
−B̂p

}
|v̂p(b)|2 ≥

∞∑
p=−∞,p 6=0

|v̂p(b)|2 ≥ 0.

By the Lax–Milgram Lemma (see Lemma 2.1.51 of (54)) the operator A satisfies

∥∥A−1
∥∥
H1(Ωa,b)←(H1(Ωa,b))′

≤ 1

γ
,

(see Theorem 2.1.44 of (54)).
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Again, as shown in (55; 56; 44) it is not hard to show thatD1 is a continuous sesquilinear from

L2(Ωa,b) × L2(Ωa,b) to C which induces another bounded operator D1 : L2(Ωa,b) → L2(Ωa,b).

Since H1(Ωa,b) embeds compactly into L2(Ωa,b) we have that D1 is a compact operator.

It is a little more difficult to show that D2 is a continuous sesquilinear form from L2 × L2

to C. For instance, we calculate

Im

{∫
Γa

(A−A0)[vr=a]φr=a ds

}
=

∞∑
p=−∞,p 6=0

Im
{
Âpv̂p(a)φ̂p(a)

}
,

which is bounded by the boundedness of Im
{
Âp

}
and the Cauchy–Schwartz inequality. In

addition A0 : L2(Γa)→ L2(Γa) so

∫
Γa

A0[vr=a]φr=a ds ≤ ‖A0[vr=a]‖L2(Γa) ‖φr=a‖L2(Γa) .

So since H1/2(Γa) embeds compactly into L2(Γa), with a similar result for B, we have that the

induced operator D2 is a compact operator.

Thus, the governing equations can be written as

(A + D1 + D2)v0 = G =⇒ (I + A−1(D1 + D2))v0 = A−1G,
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where A−1(D1 +D2) is a compact map from H1(Ωa,b) to H1(Ωa,b). Thus, by Fredholm’s theory

(55; 56; 44), provided the null space of (A + D1 + D2) is trivial (which we are guaranteed by

our choice of configuration), there exists a (unique) solution satisfying

‖v0‖H1(Ωa,b)
≤
∥∥(I + A−1(D1 + D2))A−1G

∥∥
H1(Ωa,b)

≤
∥∥I + A−1(D1 + D2)

∥∥
H1(Ωa,b)←H1(Ωa,b)

∥∥A−1
∥∥
H1(Ωa,b)←(H1(Ωa,b))′

‖G‖(H1(Ωa,b))′
,

and we are done.

The last theorem states the estimate for v1.

Theorem B.3.3. If K ∈ H−1/2(Γa), L ∈ H−1/2(Γb), the configuration {k = 0, a, b, A,B} ∈ Cδ

for some δ > 0, then there exists a harmonic function satisfying (Equation B.17) which verifies

the estimate (Equation B.19).

Proof. The solution of (Equation B.17a) is given by (Equation B.7) with r–derivative specified

in (Equation B.8). To satisify the boundary conditions we use the Fourier series representations

K(θ) =
∞∑

p=−∞
K̂pe

ipθ, L(θ) =
∞∑

p=−∞
L̂pe

ipθ,
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and generate (Equation B.9) and (Equation B.10) with right–hand–side (K̂p, L̂p)
T . More specif-

ically, for p 6= 0,

q|p|
(
|p| /(bq)− Âp

) (
− |p| /a− Âp

)
(
|p| /b− B̂p

)
q|p|
(
−(|p| q)/a− B̂p

)

cp
dp

 =

K̂p

L̂p

 ,

and, for p = 0, 1/a− Â0 log(a) −Â0

1/b− B̂0 log(b) −B̂0


c0

d0

 =

K̂0

L̂0

 .

Using the definition of the determinant function, (Equation B.11), for p 6= 0, and, (Equation B.12),

we can write the solution as

cp
dp

 =
1

Λp



(
|p| /a+ Âp

)
L̂p(

− |p| /b+ B̂p

)
K̂p

+ q|p|


(
−(|p| q)/a− B̂p

)
K̂p(

|p| /(bq)− Âp
)
L̂p


 ,

for p 6= 0, and

c0

d0

 =
1

Λ0

 −B̂0K̂0 + Â0L̂0(
−1/b+ B̂0 log(b)

)
K̂0 +

(
1/a− Â0 log(a)

)
L̂0

 .
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We have already assumed that we are in a δ–permissible configuration so we know that Λp > δ

and all of these solutions are well–defined. To investigate the regularity results which we claim,

we must study the asmptotics of (Equation B.11). As 0 < q < 1 we can see that

Λp(0, a, b, Âp, B̂p) ∼
(
|p|
a

+ Âp

)(
|p|
b
− B̂p

)
,

and since A and B are at most order–one Fourier multipliers, i.e., there exist C̃A > 0 and

C̃B > 0 such that ∣∣∣Âp∣∣∣ < C̃A〈p〉,
∣∣∣B̂p∣∣∣ < C̃B〈p〉,

it is clear that there is a constant C̃Λ > 0, such that

1

C̃Λ

<
|Λp|
〈p〉2

< C̃Λ.

Thus, we find, as p→∞,

cp ∼

(
|p| /a+ Âp

Λp

)
K̂p, dp ∼

(
− |p| /b+ B̂p

Λp

)
L̂p,

so that

|cp|2 ≤ Cc〈p〉−2
∣∣∣K̂p

∣∣∣2 , |dp|2 ≤ Cd〈p〉−2
∣∣∣L̂p∣∣∣2 ,

for constants Cc, Cd > 0.
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Appendix B (Continued)

Regarding the H1(Ωa,b) norm of v1 we note that, from Parseval’s relation,

‖v1‖2H1(Ωa,b)
=

∞∑
p=−∞

〈p〉2
∥∥∥(̂v1)p

∥∥∥2

L2(dr)
+
∥∥∥∂r (̂v1)p

∥∥∥2

L2(dr)
.

From (Equation B.7) we have

∥∥∥(̂v1)p

∥∥∥2

L2(dr)
≤ |cp|2

∥∥∥∥(rb)|p|
∥∥∥∥2

L2(dr)

+ |dp|2
∥∥∥∥(ra)−|p|

∥∥∥∥2

L2(dr)

,

and from (Equation B.8)

∥∥∥∂r (̂v1)p

∥∥∥2

L2(dr)
≤ |p|2

∣∣∣cp
b

∣∣∣2 ∥∥∥∥(rb)|p|−1
∥∥∥∥2

L2(dr)

+ |p|2
∣∣∣∣dpa
∣∣∣∣2 ∥∥∥∥(ra)−|p|−1

∥∥∥∥2

L2(dr)

.

For p 6= −1 it is an elementary Calculus exercise to deduce that

‖rp‖2L2(dr) =

∫ b

a
r2p+1 dr =

b2p+2 − a2p+2

2p+ 2
< C〈p〉−1,

while
∥∥r−1

∥∥
L2(dr)

= log(b/a) <∞. With this it is not difficult to show that

‖v1‖2H1(Ωa,b)
≤ C0

∞∑
p=−∞

〈p〉2〈p〉−1
(
|cp|2 + |dp|2

)
+ C1

∞∑
p=−∞

〈p〉−1 |p|2
(
|cp|2 + |dp|2

)
≤ C

∞∑
p=−∞

〈p〉1〈p〉−2

(∣∣∣K̂p

∣∣∣2 +
∣∣∣L̂p∣∣∣2) ≤ C {‖K‖H−1/2 + ‖L‖H−1/2} ,

and we are done.
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Appendix C

PERMISSIONS FOR THE INCLUSION OF PUBLISHED WORKS

The boundary formulation via Dirichlet–Neumann Operator, and its related algorithms

and numerical experiments, were previously published by Springer, which allows authors to

use their articles in their thesis. Their policy states “Authors have the right to reuse their

articles Version of Record, in whole or in part, in their own thesis.” and is available at

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882.
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