
Operator Expansions for Linear Waves: Parallel Implementation and

Multilayer Inversion

by

Zheng Fang
B.A. (University of Science and Technology of China) 2010

M.S. (University of Illinois at Chicago) 2012

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics(Applied Mathematics)

in the Graduate College of the
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:
David P. Nicholls, Chair and Advisor
Gerard Awanou
Jan Verschelde
Irina Nenciu
Thomas J. Royston, Bioengineering

Copyright by

Zheng Fang

2015

To my parents,

Fengying and Zhiman,

who gave me the most spiritual and economical support so far.

iii

ACKNOWLEDGMENTS

Firstly, I want to thank my Advisor Professor David P. Nicholls, as without his patient and

insightful guidance, it would have been impossible for me to write this thesis, and my PhD life

would never have been pleasant as it has been. His rigorous attitude in doing research and

universal fraternity in treating students have an everlasting impression on me. Also, I want to

thank all my committee members, Professor Jan Verschelde, Professor Gerard Awanou and Pro-

fessor Irina Nenciu, and special thanks to Professor Thomas J. Royston, head of Bioengineering,

who spent time reading my thesis and help improve my thesis.

I would also like to thank Professor Charles Knessl, who was my mentor and gave me so

much careful guidance and encouragement during the first half of my PhD program. I also

thank Professor Roman Shvydkoy, for his enthusiasm in teaching and research. And thank all

the math teachers I’ve had class with during my PhD years.

Special thanks to my friends as well as USTC alumnus Yang Jiao, Hexi Ye and Xu Gao.

You really make my life here rich and colorful. My girlfriend Ting Hu’s comfort and company

help me a lot during the writing of this thesis, I want to thank her a lot, and all the other

friends I’ve made during my PhD years in the US as well.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 NAVIER’S EQUATION . 1
1.1 Introduction . 1
1.1.1 Previous Work . 1
1.1.2 Boundary Perturbation Method 2
1.1.3 Governing Equations . 4
1.1.4 Plane Harmonic Waves in Elastic Half–Space 9
1.1.5 Outgoing Solutions . 13
1.2 The Displacement–Traction Operator 14
1.2.1 Infinitesimal Deformations . 18
1.2.2 General Deformations . 21
1.3 Numerical Results . 25
1.3.1 Exact Solutions . 26
1.3.2 Complexity Analysis and Improvement 27
1.3.3 Numerical Implementation . 30
1.3.4 Error Measurement . 31
1.3.5 Numerical Tests . 31

2 INTERFACE RECOVERY . 39
2.1 Introduction . 39
2.1.1 Previous Work . 39
2.2 Governing Equation . 40
2.3 Forward Problem . 44
2.3.1 Surface Data Expansions . 45
2.3.2 Operator Expansions of the Upward Propagator 47
2.3.3 Operator Expansions of the Dirichlet-Neumann Operators . . 51
2.3.4 Parallel Computing Results for Forward Solver using OpenMP 59
2.3.5 Parallel Computing Results for Forward Solver using FFTW

MPI . 61
2.4 Inverse Problem . 63
2.4.1 2D Linear Model . 64
2.4.2 Numerical Results for 2D Reconstruction 66

3 CONCLUSION . 80

APPENDIX . 82

APPENDIX . 86

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

CITED LITERATURE . 87

VITA . 93

vi

LIST OF ABBREVIATIONS

BEM Boundary Element Method

BIM Boundary Integral Method

BPM Boundary Perturbation Method

DNO Dirichlet-Neumann Operator

DTO Displacement-Traction Operator

FDM Finite Di↵erence Method

FE Field Expansion

FEM Finite Element Method

FFT Fast Fourier Transform

FFTW Fast Fourier Transform in the West

ODE Ordinary Di↵erential Equation

OE Operator Expansion

OWC Outgoing Wave Condition

PDE Partial Di↵erential Equation

SEM Spectral Element Method

vii

SUMMARY

The propagation of linear elastic waves arise in a wide array of applications, for instance, in

mechanical engineering, materials science, and the geosciences. Many configurations of interest

can be e↵ectively modeled as layers of isotropic, homogeneous materials separated by thin

interfaces across which material properties vary rapidly. In the frequency domain one must solve

a system of coupled elliptic partial di↵erential equations, however, this can be greatly simplified

in the instance of layered media by considering interface unknowns. To realize this, one must be

able to produce normal stresses (tractions) at these interfaces and Dirichlet–Neumann Operators

accomplish this. In this contribution we discuss a novel Boundary Perturbation approach to

compute these operators in a rapid, high–order, and robust fashion.

In addition, we have also implemented a parallel version of the algorithm using OpenMP

and FFTW-MPI, and investigated the inversion method for 2D interface reconstruction using

this Operator Expansions approach.

viii

CHAPTER 1

NAVIER’S EQUATION

“Part of this chapter were previously published as (1)”

1.1 Introduction

The propagation of linear elastic waves in an inhomogeneous medium arises in a wide ar-

ray of applications, for instance, in mechanical engineering (2), materials science (3), and the

geosciences (4; 5). These disturbances are governed by the wave equation where the velocity

of propagation depends upon the properties of the material in question (2; 6). In many ap-

plications, e.g. in the instance of plane–wave incident radiation, it is su�cient to compute the

scattering at a single temporal frequency and thus, in light of the linear nature of the governing

equations, one may adopt the frequency–domain approach as we do here resulting in a system

of elliptic PDE to be solved.

1.1.1 Previous Work

In many instances, the medium may be e↵ectively modeled by two or more isotropic, homo-

geneous layers which are delineated by sharp interfaces across which the material properties vary

rapidly. Furthermore, for many purposes these can be specified by graphs of (single–valued)

functions which, additionally, are periodic. Many numerical algorithms have been devised for

the simulation of this problem. “The Finite Di↵erence (FDM) (7; 8), Finite Element (FEM)

(9; 10), and Spectral Element (SEM) (11; 12) methods have been studied but su↵er from the

1

2

fact that they discretize the full volume of the model which not only introduces a huge number

of degrees of freedom, but also raises the di�cult question of appropriately specifying a far–

field boundary condition explicitly. Furthermore, the Finite Di↵erence method, while simple to

devise and implement is not well–suited to the complex geometries of general layered media”.

An attractive alternative are surface integral methods (13; 14) “(e.g. Boundary Integral

Methods—BIM—or Boundary Element Methods—BEM) which only require a discretization

of the layer interfaces (rather than the whole structure) and which, due to the choice of the

Green’s function, enforce the far–field boundary condition exactly. These methods can deliver

high–accuracy simulations with greatly reduced operation counts”, however, such formulations

typically require not only the surface trace of the field (the displacement), but also the surface

trace of the normal derivative of the field (the traction) in order to close the set of coupled

boundary conditions. “Dirichlet–Neumann Operators” (DNOs), and their generalizations, per-

form the operation of mapping the Dirichlet trace to its unique Neumann trace and thus it is

clear that these DNOs play a central role in surface formulations. Before proceeding, we point

out that DNOs have been studied in many contexts and are alternatively known as “Dirichlet–

to–Neumann Maps” (15; 16; 17) and “Steklov–Poincaré Operators” (18).

1.1.2 Boundary Perturbation Method

For many problems, the layer interface shapes are moderate deviations from an exactly

solvable flat–layer (infinitesimal) configuration, in which case a perturbative approach is natural.

In particular, there are many low–order theories for scattering problems going back to the

classical work of Rayleigh (19) and Rice (20). In the general case we refer the interested reader

3

to (21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35), while specific to elasticity we suggest

(36; 37; 38; 39; 40). Boundary Perturbation Methods (BPMs) are built upon this philosophy,

and have been shown to be a rapid, accurate, and robust class of numerical procedures for this

problem (see (41) for a complete discussion and list of references). BPMs built upon Operator

Expansions (30; 42; 43; 44; 45; 46), Field Expansions (47; 48; 49; 50; 51), and Transformed

Field Expansions (52; 53; 54; 55; 56) have proven to be highly successful within their domains

of applicability (which is not restricted by the size of the perturbation (54)), and we follow

the Operator Expansions (OE) philosophy in this thesis (though other BPM could be imagined

based upon our work here).

While the developments in this contribution follow these to a certain degree, a fundamental

complication of the equations of linear elastodynamics is their three–dimensional nature, not

only of the independent variable, but also the unknown field. One well–known consequence of

this property is that within a homogeneous medium there are two (body) propagation velocities,

those of the primary (P–) and secondary (S–) waves. As we shall see, this plays a crucial role

in our developments and distinguishes it significantly from previous work.

Our approach is a Fourier/Taylor method which expands the quasiperiodic scattered field

in a (generalized) Fourier series in the spatial variable, and the field in powers of the interface

deformation which we characterize by a single quantity, ", which we view as an (not necessarily

small (54)) amplitude/slope. In previous work it has been shown that the scattered fields

depend analytically upon the parameter " with the radius of convergence dependent on the

smoothness of the interface perturbation (as rough as Lipschitz (57; 54; 58)). For smooth

4

deformations the field will be jointly analytic with respect to both spatial and perturbation

variables which results in a numerical scheme which converges exponentially as the numerical

parameters are refined.

1.1.3 Governing Equations

We refer the interested reader to the very clear description of Chapter 5 of Billingham &

King (2) for the governing equations of the propagation of linear waves in a solid (see also the

classical text by Achenbach (6)). To summarize these developments, we recall that for small

(total) displacements

ut = ut(x, t), x 2 R3,

of an elastic body, the governing equations are Navier’s equations

⇢@2tu
t
i = @j�ij(u

t),

where ⇢ is the undisturbed density of the elastic solid, considering the 3 dimensional nature of

the displacement,

ut = (ut
1, u

t
2, u

t
3)

and �ij is the symmetric stress tensor expressing the constituitive relation

�ij = �ekk�ij + 2µeij.

5

In these, � and µ are the Lamé constants, more specifically,

� =
⌫E

(1+ ⌫)(1- 2⌫)

µ =
E

2(1+ ⌫)

where E is Young’s modulus, and ⌫ is the Poisson ratio (2). The identity tensor is denoted by

�ij,

�ij =

8
>>>><

>>>>:

0, i 6= j

1, i = j

, i, j = 1, 2, 3,

and eij is the strain tensor (6),

eij = (1/2)
�
@ju

t
i + @iu

t
j

. (1.1)

And ekk is known as the dilatation, which reflects the change of volume of an elastic element,

is defined as

� = ekk = @iu
t
1 + @ju

t
2 + @ku

t
3 (1.2)

Proposition 1.1.1. The vector form of Navier’s equations is

⇢@2tu
t = (�+ µ)rdiv

⇥
ut
⇤
+ µ�ut.

6

And if we seek time-harmonic solutions of form

ut(x, t) = e-i!tut(x),

Navier’s equation becomes

µ�ut + (�+ µ)rdiv
⇥
ut
⇤
+!2⇢ut = 0. (1.3)

Proof.

⇢@2tu
t
i = @j�ij(u

t) = @j(�ekk�ij + 2µeij)

= ��ij@jekk + 2µ@jeij

= �@iekk + 2µ@j(
1

2
(@iu

t
j + @ju

t
i))

= �@i(@ju
t
j) + µ(@i@ju

t
j + @j@ju

t
i)

= (�+ µ)@i@ju
t
j + µ@j@ju

t
i

= (�+ µ)rdiv
⇥
ut
⇤
+ µ�ut.

Given that ut is time harmonic, we have

⇢@2tu
t
i = ⇢@2t(e

-i!tut
i)

= ⇢(-i!)2e-i!tut = -⇢!2e-i!tut
i

7

As well as

(�+ µ)rdiv
⇥
ut
⇤
+ µ�ut = (�+ µ)rdiv

h
e-i!tut

i

i
+ µ�e-i!tut

i

= e-i!t((�+ µ)rdiv
⇥
ut
i

⇤
+ µ�ut

i).

From the proven vector form Naver’s Equation we have

-⇢!2e-i!tut
i = e-i!t((�+ µ)rdiv

⇥
ut
i

⇤
+ µ�ut

i)

canceling e-i!t on both sides and moving all terms on to one side we get the (Equation 1.3)

Proposition 1.1.2. The Naver’s Equation (Equation 1.3) is equivalent to

��t +
⇣
!/c(1)

⌘2
�t = 0, � t +

⇣
!/c(2)

⌘2
 t = 0, div

⇥
 t
⇤
= 0, (1.4)

Given that

ut = r�t + curl[t], div
⇥
 t
⇤
= 0,

where c(1) :=
p
(�+ 2µ)/⇢ and c(2) :=

p
µ/⇢.

Proof. Using the Helmholtz decomposition (2; 6), we know

ut = r�t + curl[t], div
⇥
 t
⇤
= 0,

8

for any su�cient smooth, rapidly decaying and periodic vector field ut. Plug it into (Equation 1.3),

we get

µ�ut+(�+ µ)rdiv
⇥
ut
⇤
+!2⇢ut

= µ�[r�t + curl[t]] + (�+ µ)rdiv
⇥r�t + curl[t]

⇤
+!2⇢(r�t + curl[t])

= r[µ��t +!2⇢�t + (�+ µ)div
⇥r�t

⇤
] + curl[µ� t +!2⇢ t] + (�+ µ)rdiv

⇥
curl[t]

⇤

= r[(�+ 2µ)��t +!2⇢�t] + curl[µ� t +!2⇢ t] + 0

= 0

Note here we use the fact from vector calculus that for any vector field F, it holds that

div [curl[F]] = 0. Now we choose a solution that satisfies

(�+ 2µ)��t +!2⇢�t = 0 µ� t +!2⇢ t = 0

��t +
!2⇢

�+ 2µ
�t = 0 � t +

!2⇢

µ
 t = 0

��t +
⇣
!/c(1)

⌘2
�t = 0 � t +

⇣
!/c(2)

⌘2
 t = 0

Which is equivalent to (Equation 1.4) based on the definition of c(1) and c(2).

Remark 1.1.3. Note that c(1) is larger than c(2), we also call c(1) the primary wave (P–wave),

c(2) the secondary wave (S–wave) velocities, �t is the scalar potential and t is the vector

potential respectively.

9

1.1.4 Plane Harmonic Waves in Elastic Half–Space

The problem we focus on here is the reflection of an incident plane wave in an elastic half–

space adjoining a medium which does not transmit mechanical waves. In particular, we focus

upon incident plane–waves

ui = Aei(↵·x̃-�x3), A 2 R3, ↵ = (↵1,↵2)
T , x̃ = (x1, x2)

T , (1.5)

impinging from above upon a periodic interface

x3 = g(x̃), g(x̃+ d̃) = g(x̃), d̃ = (d1, d2)
T ,

where the solid occupies the domain x3 > g(x̃).

Proposition 1.1.4. The incident radiation (Equation 1.5) will satisfy (Equation 1.3) provided

that either

�2 =
⇣
!/c(1)

⌘2
- |↵|2 , and A parallel to (↵,-�)T ,

or

�2 =
⇣
!/c(2)

⌘2
- |↵|2 , and A orthogonal to (↵,-�)T ,

10

Proof. Case 1: Setting A = a(↵,-�)T and ↵2 + �2 =
�
!/c(1)

�2
= ⇢!2

�+2µ

�ut = �[a(↵,-�)ei(↵·x̃-�x3)]

= A((i↵)2 + (-i�)2)ei(↵·x̃-�x3)

= A(-↵2 - �2)ei(↵·x̃-�x3)

= -A
⇢!2

�+ 2µ
ei(↵·x̃-�x3)

= -
⇢!2

�+ 2µ
ut

rdiv
⇥
ut
⇤
= rA · (i↵,-i�)ei(↵·x̃-�x3)

= ra(i↵2 + i�2)ei(↵·x̃-�x3)

= ia
⇢!2

�+ 2µ
�ei(↵·x̃-�x3)

= ia
⇢!2

�+ 2µ
· (i↵,-i�)ei(↵·x̃-�x3)

= -
⇢!2

�+ 2µ
A · ei(↵·x̃-�x3)

= -
⇢!2

�+ 2µ
ut

11

thus we have

µ�ut + (�+ µ)rdiv
⇥
ut
⇤
+!2⇢ut = µ(-

⇢!2

�+ 2µ
ut) + (�+ µ)(-

⇢!2

�+ 2µ
ut) +!2⇢ut

= (
-µ

�+ 2µ
+

-(�+ µ)

�+ 2µ
+ 1)⇢!2ut

= 0 · ⇢!2ut = 0

Case 2: A · (↵,-�) = 0 and ↵2 + �2 =
�
!/c(2)

�2
= ⇢!2

µ , then

�ut = (-↵2 - �2)ut

= -
⇢!2

µ
ut

r[div
⇥
ut
⇤
] = r[A · (i↵,-i�)ei(↵·x̃-�x3)]

= r[0] = 0.

Thus we also have

µ�ut + (�+ µ)rdiv
⇥
ut
⇤
+!2⇢ut = µ(-

⇢!2

µ
ut) +!2⇢ut

= -!2⇢ut +!2⇢ut

= 0.

12

Such an incident plane–wave will generate scattered surface displacements, u, satisfying the

boundary condition

u(x̃, g(x̃)) = ⇠(x̃) := -ui(x̃, g(x̃)).

Due to the linear character of the problem the scattered displacement also satisfies the Navier

equation, cf. (Equation 1.3),

µ�u+ (�+ µ)rdiv [u] +!2⇢u = 0, (1.6)

and, upon appealing to the Helmholtz decomposition, the Helmholtz equations, c.f. (Equation 1.4),

��+
⇣
!/c(1)

⌘2
� = 0, � +

⇣
!/c(2)

⌘2
 = 0, div [] = 0. (1.7)

This problem is known to have a unique, ↵–quasiperiodic,

u(x̃+ d̃, x3) = ei↵·d̃u(x̃, x3),

solution which is outgoing (6).

13

1.1.5 Outgoing Solutions

To make the notion of outgoing solutions more precise, for x3 > |g|L1 , the exact solutions

(given by the Rayleigh expansions) for the Helmholtz equations, (Equation 1.7), are

�(x) =
1X

|p|=-1

�̂(p)ei(↵(p)·x̃+�
(1)(p)x

3

), (x) =
1X

|p|=-1

 ̂(p)ei(↵(p)·x̃+�
(2)(p)x

3

), (1.8)

where (x) must be divergence–free. In these formulas p = (p1, p2)T 2 N2 (so that the sum-

mation notation above is shorthand for the double sum over all p 2 N2) and

↵(p) = ↵+ 2⇡

0

BB@
p1/d1

p2/d2

1

CCA

�(j)(p) =

8
>>>><

>>>>:

q
(!/c(j))2 - |↵(p)|2, |↵(p)|2 < (!/c(j))2

i
q
|↵(p)|2 - (!/c(j))2, |↵(p)|2 > (!/c(j))2

, j = 1, 2.

The outgoing wave condition is reflected in the choice of the positive signs before �(j)(p) in the

expressions for � and in (Equation 1.8).

With the definition of the wavevector

(j)(p) :=

0

BB@
↵(p)

�(j)(p)

1

CCA ,

14

we can write

�(x) =
1X

|p|=-1

�̂(p)ei
(1)(p)·x, (x) =

1X

|p|=-1

 ̂(p)ei
(2)(p)·x, i(2)(p) · ̂(p) = 0.

We can now express the scattered elastic wave field as

u(x) = r�+ curl[] =
1X

|p|=-1

(i(1)(p))�̂(p)ei
(1)(p)·x +

1X

|p|=-1

⌦
(i(2)(p))⇥ ̂(p)

↵
ei

(2)(p)·x,

(i(2)(p)) · ̂(p) = 0. (1.9)

Remark 1.1.5. In this expression the scalar coe�cient �̂(p) delivers the P–waves, while the

vector quantity {(i(2)(p))⇥ ̂(p)} gives the S–waves. Due to the orthogonality constraint

(i(2)(p)) · ̂(p) = 0,

the latter lies in a two–dimensional space which can be spanned by a vector in the vertical plane

(the SV–waves) and one in the horizontal plane (the SH–waves). Therefore (Equation 1.9)

captures all of the body waves which propagate in a homogeneous, isotropic solid.

1.2 The Displacement–Traction Operator

The fundamental object of our study is a generalized Dirichlet–Neumann Operator (DNO),

namely the Displacement–Traction Operator (DTO), which we define here.

15

Definition 1.2.1. Consider the time–harmonic Navier’s equations, (Equation 1.6),

µ�u+ (�+ µ)rdiv [u] +!2⇢u = 0, x3 > g(x̃),

supplemented with displacement (Dirichlet) data

u(x̃, g(x̃)) = ⇠(x̃). (1.10)

The unique, ↵–quasiperiodic, outgoing solution delivers the surface traction (normal stress;

Neumann) data

⌫i(x̃) = �ij(u)|x
3

=g Nj,

with normal

N = (-@1g,-@2g, 1)
T ,

and the Displacement–Traction Operator (DTO), G, is defined as the operation of computing

⌫ given ⇠,

G(g) : ⇠! ⌫.

Remark 1.2.2. In light of the relation

�ij = �ekk�ij + 2µeij,

16

we introduce the notation G = L+M where

L := �ekk�ijNj|x
3

=g = �ekkNi|x
3

=g , M := 2µeijNj|x
3

=g . (1.11)

Proposition 1.2.3. The DTO depends linearly upon the Dirichlet data ⇠, but the dependence

on g is nonlinear.

Proof. We assume w = u+ v, where

w = (w1,w2,w3) u = (u1, u2, u3) v = (v1, v2, v3)

By the definition of operators L andM (Equation 1.11), and definition of strain tensor (Equation 1.1)

and dilatation (Equation 1.2), we have

L(w) = �(@iwi + @jwj + @kwk)Ni

= �(@i(ui + vi) + @j(uj + vj) + @k(uk + vk))Ni

= �(@iui + @juj + @kuk)Ni + �(@ivi + @jvj + @kvk)Ni

= L(u) + L(v).

17

Similary we have

M(w) = 2µeijNj = µ(@iwj + @jwi)Nj

= µ(@i(uj + vj) + @j(ui + vi))Nj

= µ(@iuj + @jui)Nj + µ(@ivj + @jvi)Nj

= M(u) +M(v).

Also we have

L(0) = M(0) = 0

and for any constant m, we have

L(m ·w) = m · L(w) M(m ·w) = m ·M(w)

Thus both the operator L and operator M are linear with respect to Dirichlet data;

To understand that these operators depends non-linearly upon the shape of interface g, we

can look at the operators in more details.

w = (wi(x, g(x), wj(x, g(x), wk(x, g(x)) x = (x1, x2)

18

L(w) = �(@iwi + @jwj + @kwk)Ni

= � (@x
1

wi + @x
3

wk@1g(x) + @x
2

wi + @x
3

wk@2g(x) + @x
3

wk) · (@1g(x),@2g(x),-1)T

From the the above expression, we can see that the operator L contains terms like @1g@1g,

@1g@2g and @2g@2g which is non-linearly dependent upon g

Note that the dependence upon g is analytic and we use this fact to great e↵ect to produce

a robust high–order numerical algorithm.

1.2.1 Infinitesimal Deformations

Before coming to this, we begin with the (relatively) simple case of the DTO in the case of

an infinitesimal (non–zero but vanishingly small) interface that we model by g ⌘ 0 with normal

Ni = -�i3. While this is not the focus of our study, it is the “base case” which allows us to

address non–zero deformations.

The first step is to find the unique solution to Navier’s equation with displacement boundary

condition, (Equation 1.10). From (Equation 1.9) we have

1X

|p|=-1

⇠̂(p)ei↵(p)·x̃ = ⇠(x̃) = u(x̃, 0)

=
1X

|p|=-1

h
(i(1)(p))�̂(p) +

⌦
(i(2)(p))⇥ ̂(p)

↵i
ei↵(p)·x̃,

19

subject to (i(2)(p)) · ̂(p) = 0. The solution is found by solving the linear system of equations

0

BB@
i(2)(p)⇥ i(1)(p)

i(2)(p)T 0

1

CCA

0

BB@
 ̂(p)

�̂(p)

1

CCA =

0

BB@
⇠̂(p)

0

1

CCA ,

which, for each p, is four equations in four unknowns. We denote the solution map by

 ̂(p) = L
⇥
⇠̂(p)

⇤
, �̂(p) = L�

⇥
⇠̂(p)

⇤
.

Proposition 1.2.4. For any solution to the Navier’s Equation of the form satisfying (Equation 1.9),

and g = 0 We have

L(0)[⇠] =
1X

|p|=-1

�
���(1)(p)

���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃�i3. (1.12)

and

M(0)[⇠] = µ

1X

|p|=-1

h
2

(1)
j (p)(1)i (p)L�

⇥
⇠̂(p)

⇤

+(2)j (p)
⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

i
+ (2)i (p)

⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

j

�
ei↵(p)·x̃�j3. (1.13)

Proof. If g = 0, then

N = (@ig,@jg,-1) = (0, 0,-1)

20

Regarding the operator L = L(0), from (Equation 1.9) we have

ekk(x) = @kuk(x)

=
1X

|p|=-1

(i(1)(p)) · (i(1)(p))�̂(p)ei(1)(p)·x +
1X

|p|=-1

⌦
(i(2)(p))⇥ ̂(p)

↵
· (i(2)(p))ei(2)(p)·x

=
1X

|p|=-1

(i(1)(p))2 · �̂(p)ei(1)(p)·x + 0

=
1X

|p|=-1

-
���(1)(p)

���
2
�̂(p)ei

(1)(p)·x,

Note here we’ve used the fact that (i(2)(p))⇥ ̂(p) is perpendicular to (i(2)(p)). So

L(0)[⇠] = �ekkNi|x
3

=0

= �

1X

|p|=-1

-
���(1)(p)

���
2
�̂(p)ei

(1)(p)·x(-�i3)

=
1X

|p|=-1

�
���(1)(p)

���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃�i3.

Similarly, for For M = M(0) we compute

@jui(x) =
1X

|p|=-1

(i(1)j (p))(i(1)i (p))�̂(p)ei
(1)(p)·x

+
1X

|p|=-1

(i(2)j (p))
⌦
(i(2)(p))⇥ ̂(p)

↵

i
ei

(2)(p)·x,

21

again subject to (i(2)(p)) · ̂(p) = 0. So

2eij = @jui + @iuj =
1X

|p|=-1

2(i(1)j (p))(i(1)i (p))�̂(p)ei
(1)(p)·x

+
1X

|p|=-1


(i(2)j (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

i
+ (i(2)i (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

j

�
ei

(2)(p)·x,

and

M(0)[⇠] = 2µ eijNj|x
3

=0 = -2µ eij�j3|x
3

=0

= µ

1X

|p|=-1

h
2

(1)
j (p)(1)i (p)�̂(p)

+(2)j (p)
⌦
(2)(p)⇥ ̂(p)

↵

i
+ (2)i (p)

⌦
(2)(p)⇥ ̂(p)

↵

j

�
ei↵(p)·x̃�j3

= µ

1X

|p|=-1

h
2

(1)
j (p)(1)i (p)L�

⇥
⇠̂(p)

⇤

+(2)j (p)
⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

i
+ (2)i (p)

⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

j

�
ei↵(p)·x̃�j3. (1.14)

1.2.2 General Deformations

We now move to the general setting of DTOs connected to non–trivial geometries with

interface shaped by the graph of the function x3 = g(x̃). Of course this is generally quite a

di�cult problem and the key to our approach is to consider deformations of the form

g(x̃) = "f(x̃),

22

which gives rise to expansions

u = u(x; ") =
1X

n=0

u(n)(x)"n, L = L(") =
1X

n=0

L(n)"n, M = M(") =
1X

n=0

M(n)"n,

that can be shown to be strongly convergent (52; 54; 58). We now outline the Method of

Operator Expansions (OE) (30; 42; 59; 55) for simulating DTO in this setting of linear elasto-

dynamics.

To begin our development consider the following ↵–quasiperiodic, outgoing solution of the

time–harmonic Navier’s equation

u(x;p) = (i(1)(p))�̂(p)ei
(1)(p)·x +

⌦
(i(2)(p))⇥ ̂(p)

↵
ei

(2)(p)·x, (1.15)

subject to (i(2)(p)) · ̂(p) = 0. We note that, in terms of these, (Equation 1.9) can be written

as

u(x) =
1X

|p|=-1

u(x;p), (i(2)(p)) · ̂(p) = 0.

We now define the surface quantities

U(x̃;g, p) := u(x̃, g(x̃);p) (1.16a)

K(x̃;g, p) := @kuk(x̃, g(x̃);p) (1.16b)

Eij(x̃;g, p) := {@jui(x̃, g(x̃);p) + @iuj(x̃, g(x̃);p)} , (1.16c)

23

and observe that, expressing g = "f, these are analytic in " so that

{U,K, Eij}(x̃; "f, p) =
1X

n=0

{U(n)(x̃;p), K(n)(x̃;p), E(n)
ij (x̃;p)}"n.

We will derive forms for the {U(n), K(n), E
(n)
ij } in § A.

Turning to the operator L, from (Equation 1.11) we can write

L("f) [U(x̃; "f, p)] = �K(x̃; "f, p)Ni|x
3

="f ,

and expand

 1X

n=0

"nL(n)(f)

!" 1X

m=0

U(m)(x̃; f, p)"m
#
= �("@1f)

1X

n=0

K(n)(x̃; f, p)"n�i1

+ �("@2f)
1X

n=0

K(n)(x̃; f, p)"n�i2 - �
1X

n=0

K(n)(x̃; f, p)"n�i3.

Equating at order zero we find

L(0)
h
U(0)

i
= -�K(0)�i3,

where

U(0) = u(x̃, 0;p) = (i(1)(p))�̂(p)ei↵(p)·x̃ +
⌦
(i(2)(p))⇥ ̂(p)

↵
ei↵(p)·x̃ = ⇠̂(p)ei↵(p)·x̃

K(0) = -
���(1)(p)

���
2
�̂(p)ei↵(p)·x̃ = -

���(1)(p)
���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃,

24

so that we recover (Equation 1.12)

L(0)
h
⇠̂(p)ei↵(p)·x̃

i
= �

���(1)(p)
���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃�i3.

At order n > 0 we find

L(n)(f)
h
⇠̂(p)ei↵(p)·x̃

i
= L(n)(f)

h
U(0)

i
= -�K(n)(f)�i3

+ �(@1f)K
(n-1)(f)�i1 + �(@2f)K

(n-1)(f)�i2 -
n-1X

m=0

L(m)(f)
h
U(n-m)

i
. (1.17)

In an exactly analogous fashion we can show that

M("f) [U(x̃; "f, p)] = 2µeij|x
3

="f = µ · E(x̃; "f, p)Ni|x
3

="f ,

After expanding the operators, we get

 1X

n=0

"nM(n)(f)

!" 1X

m=0

U(m)(x̃; f, p)"m
#
= µ("@1f)

1X

n=0

E(n)(x̃; f, p)"n�i1

+ µ("@2f)
1X

n=0

E(n)(x̃; f, p)"n�i2 - �
1X

n=0

E(n)(x̃; f, p)"n�i3.

25

Equating at order zero we find

M(0)
h
⇠̂(p)ei↵(p)·x̃

i
= M(0)

h
U(0)

i
= µE

(0)
ij �j3

= µ
h
2

(1)
j (p)(1)i (p)L�

⇥
⇠̂(p)

⇤

+(2)j (p)
⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

i
+ (2)i (p)

⌦
(2)(p)⇥ L

⇥
⇠̂(p)

⇤↵

j

�
�j3,

which recovers (Equation 1.13), and equating at order n it follows that

M(n)(f)
h
U(0)

i
= -µE

(n)
i3 (f) + µ(@1f)E

(n-1)
i1 (f) + µ(@2f)E

(n-1)
i2 (f)

-
n-1X

m=0

M(m)(f)
h
U(n-m)

i
. (1.18)

Of course the key to all of these developments is the derivation of useful forms for the {U(n), K(n), E
(n)
ij }

which we describe in Appendix § A.

1.3 Numerical Results

Now we show the numerical simulation results of our DTO solver in details, and compare

the results with the exact solutions. From the L1 norm of the di↵erence, we can see that our

method achieves hight e�ciency and accuracy. Also from the configuration of the algorithm,

we can also expect it’s generalization in other applications.

26

1.3.1 Exact Solutions

Naturally, for a problem as complicated as what we consider here (that of non–trivial inter-

faces), there are no known exact solutions. Thus, to conduct a study on the convergence of our

algorithm we will follow this rule: When implementing a solver for the homogeneous problem:

Lu = 0 in ⌦

Bu = 0 at @⌦,

it is usually not hard to develop a method for the related inhomogeneous problem:

Lu = R in ⌦

Bu = Q at @⌦.

For any function f, we can calculate

Rf := Lf, Qf := Bf,

and automatically knows a solution that solves the problem

Lu = Rf in ⌦

Bu = Qf at @⌦,

27

e.g. u = f. Thus, we have a means to test the inhomogeneous solver in this (special) case.

Here we specify f such that Rf ⌘ 0. These exact solutions correspond to plane–wave reflection

rather than incidence.

More specifically, we consider the functions, c.f. (Equation 1.15),

u(x;p) = (i(1)(p))�̂(p)ei
(1)(p)·x +

⌦
(i(2)(p))⇥ ̂(p)

↵
ei

(2)(p)·x, (1.19)

which, for any choice of integer p, real �̂(p), and real three–vector ̂(p) such that i(2)(p) ·

 ̂(p) = 0, satisfy Navier’s equations (Equation 1.6) and is outgoing so that Rf ⌘ 0. Note

that these functions satisfied di↵erent boundary conditions from incident plane wave. We can

calculate the surface data from the way we construct Qf

⇠(x̃, g(x̃);p) = u(x̃, g(x̃);p)

=
h
(i(1)(p))�̂(p)ei�

(1)(p)g(x̃) +
⌦
(i(2)(p))⇥ ̂(p)

↵
ei�

(2)(p)g(x̃)
i
ei↵(p)·x̃.

Now we get a group of exact solutions to the inhomogeneous problem, which we can use to test

our numerical algorithm for di↵erent types of interface g(x̃).

1.3.2 Complexity Analysis and Improvement

Before leaving our discussion of the numerical implementation, we address one (initially)

subtle, but crucially important consideration which can be e↵ectively demonstrated in the

formula for L(n) (Equation 1.17) and M(n)(Equation 1.18). Careful inspection of these formulas

28

reveal its recursive nature: In order to compute L(n)[] one needs to evaluate L(n-1) applied to

the function U(1) which, in turn requires the evaluation of L(n-2) applied to U(1), etc.

Proposition 1.3.1. The complexity for calculating all L(n) and M(n) are both O(N2
x2

n+1).

Proof. Firstly, from the formulas for {U(n), K(n) and E
(n)
ij } in § A, we know that the computation

cost for them is O(1) for each of them.

If we use notation T(n) to stands for the time complexity for calculating L(n), then following

the formula for L(n), we can write the following relationship:

T(n) = O(1) +
n-1X

m=0

T(m).

We know T(0) = N2
x and if we set T(n) = O(N2

x2
n), we will see the equation holds. Thus the

time complexity for calculating all L(n) is

X

m=0

T(m) =
X

m=0

N2
x2

m = O(N2
x2

(n+1)).

Similarly the time complexity for calculating all M(n) will be the same O(N2
x2

(n+1)).

In previous work we have shown (60; 55) how adjointness properties of these operators can

be used to reduce this to O(Nx log(Nx)n2), however, we have been unable (thusfar) to reproduce

this success in this setting. However, there is an alternative which avoids the prohibitive factorial

cost of a direct implementation of (Equation 1.17). For this we store at every perturbation

29

order the action of L(n) as a matrix acting on the basis functions exp(i↵(p) · x̃) evaluated at

the equally spaced gridpoints x̃l. While this is far from optimal (at every perturbation order

one must evaluate at every wavenumber p which we represent, of order O(N2
xn

2)), it certainly

makes our algorithm feasible.

Proposition 1.3.2. Calculating the operators L(n) and M(n) acting on basis functions lowers

the time complexity of computing DTOs to O(N2
xn

2)

Proof. For each dimension of the 3 dimensional wave(displacement), we need Nx · Nx many

wave numbers to represent the solution. For each wave number in each dimension we need to

calculate the DTO action on them.

If we use notation T(n) to stands for the time complexity for calculating L(n) acting on one

basis function in one dimension, then following the formula for L(n), we can write the following

relationship:

T(n) = O(1) +

(n-1)X

m=0

O(1) = O(n)

Thus the time complexity for calculating all L(n) is

X

m=0

T(m) =
X

m=0

O(m) = O(n2)

Thus the total complexity to calculate all L(n) is

3 · (Nx)
2O(n2) = O((Nx)

2n2)

30

Similarly the time complexity for calculating all M(n) will be the same O((Nx)2n2).

1.3.3 Numerical Implementation

The description of our numerical scheme is not complicated which, in our view, is a dis-

tinct advantage of our method. Our Boundary Perturbation approach posits, for instance, an

expansion of the traction in the form

⌫(x̃; ") =
1X

n=0

⌫(n)(x̃)"n

and we seek as an approximation, the truncation of this Taylor series after N terms

⌫N(x̃; ") =
NX

n=0

⌫(n)(x̃)"n.

Without approximation we can recover the ⌫(n) from the formulas (Equation 1.12) & (Equation 1.13)

at order zero, and (Equation 1.17) & (Equation 1.18) for n > 0. Each function appears in these

formulas will be represented by Fourier series with finite number of non-zero coe�cients. Thus,

each of the ⌫(n)(x̃) can be spectrally approximated as

⌫n,Nx(x̃) :=

N
x

/2-1X

|p|=-N
x

/2

⌫̂(n)(p)ei↵(p)·x̃. (1.20)

31

Products appearing in (Equation 1.12), (Equation 1.13), (Equation 1.17), and (Equation 1.18)

are computed by fast convolutions via the Fast Fourier Transform (FFT) algorithm (61) and

our final Fourier/Taylor approximation is

⌫N,N
x(x̃; ") :=

NX

n=0

N
x

/2-1X

|p|=-N
x

/2

⌫̂(n)(p)ei↵(p)·x̃"n. (1.21)

1.3.4 Error Measurement

With these numerical approximations we can make error measurements versus the exact

solutions (Equation 1.19). We choose to measure the defect in the traction which is quite

di�cult, because this data is on the perturbed interface g(x). we measure the relative supremum

norm of the results in § 1.3.5,

Errorrel(N,Nx) =

��⌫- ⌫N,N
x

��
L1

|⌫|L1
. (1.22)

1.3.5 Numerical Tests

We now consider a (2⇡) ⇥ (2⇡) periodic interface bounding a three–dimensional solid. We

follow the lead of (53; 62) and select the following interface shapes: The cosine

fs(x1, x2) = cos(x1 + x2), (1.23a)

the analytic profile,

fa(x1, x2) = W(x1)W(x2), (1.23b)

32

where

W(z) =
B2 cos(z)- B

B2 + 1- 2B cos(z)
, B = (2⇢)-1/(R-1), ⇢ = 10-16, R = 10,

the “rough” (C2 but not C3) profile

fr(x1, x2) =

✓
2

9
⇥ 10-3

◆�
x21(2⇡- x1)

2x22(2⇡- x2)
2 -

64⇡8

225

�
, (1.23c)

and the Lipschitz boundary

fL(x1, x2) =
1

3
+

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

-1+ (2/⇡)x1, x1  x2  2⇡- x1

3- (2/⇡)x2, x2 > x1, x2 > 2⇡- x1

3- (2/⇡)x1, 2⇡- x1 < x2 < x1

-1+ (2/⇡)x2, x2 < x1, x2 < 2⇡- x1

. (1.23d)

These four profiles share some common properties: (1) they have zero mean; (2) the approximate

amplitude of them is 2; (3) the maximum slop is near 1. To clarify the choice of analytic profile

fa we point out (62) that the Fourier coe�cients of W are

Ŵp =

8
>>>><

>>>>:

1
2(2⇢)

(|p|-1)/(R-1) p 6= 0

0 p = 0

so that the profile has mean zero, Ŵ1 = Ŵ-1 = 1/2 like the cosine, the coe�cients decay

exponentially fast (giving analyticity of the profile), and the R–th coe�cient has value ⇢.

33

In Figures Figure 1 through Figure 4, we display results of our numerical simulations for

the cosine profile(Equation 1.23a), analytic profile(Equation 1.23b), C2 profile(Equation 1.23c),

and Lipschitz profile(Equation 1.23d) respectively, for values of " = 10-3, 3⇥10-3, 10-2, 3⇥10-2.

For physical parameters we picked values meant to be representative of steel (2)

⇢ = 7800, � = 8.6⇥ 1010, µ = 7.9⇥ 1010,

so that c(1) ⇡ 5600 and c(2) ⇡ 3180, and the academic value! = 8000 under normal illumination

so that

���(1)
��� = !/c(1) ⇡ 1.429,

���(2)
��� = !/c(2) ⇡ 2.516.

For all four simulations we have chosen numerical parameters Nx
1

= Nx
2

= 8 and perturbation

orders N = 0, . . . , 10. In all four cases we see the rapid and stable convergence which our

algorithm delivers in agreement with the spectral properties our Fourier/Taylor approach should

enjoy.

34

TABLE I

COMMON PARAMETERS USED FOR NUMERICAL SIMULATIONS
Parameter value meaning

N 10 perturbation orders
d1 2⇡ period in x direction
d2 2⇡ period in y direction
Nx

1

16 number of grid points in x direction
Nx

2

16 number of grid points in y direction
c(1) 5600 the speed of P-wave
c(2) 3180 the speed of S-wave
! 8000 angular frequency
⇢ 7800 the density of the material
� 8.6⇥ 1010 Lame’s first parameter
µ 7.9⇥ 1010 Lame’s second parameter��(1)
�� 1.429 magnitude of wavenumber of P-wave��(2)
�� 2.516 magnitude of wavenumber of S-wave

35

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

Relative Error versus " (Cosine)

"

R
el
a
ti
v
e
L

1
E
rr
o
r

N = 2
N = 4
N = 6
N = 8

Figure 1. Plot of relative L1 error versus perturbation order N for the cosine profile,
(Equation 1.23a) (" = 10-3, 3⇥ 10-3, 10-2, 3⇥ 10-2).

36

10
−3

10
−2

10
−10

10
−5

10
0

Relative Error versus " (Analytic)

"

R
el
a
ti
v
e
L

1
E
rr
o
r

N = 2
N = 4
N = 6
N = 8

Figure 2. Plot of relative L1 error versus perturbation order N for the analytic profile,
(Equation 1.23b) (" = 10-3, 3⇥ 10-3, 10-2, 3⇥ 10-2).

37

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

Relative Error versus " (C 2)

"

R
el
a
ti
v
e
L

1
E
rr
o
r

N = 2
N = 4
N = 6
N = 8

Figure 3. Plot of relative L1 error versus perturbation order N for the C2 profile,
(Equation 1.23c) (" = 10-3, 3⇥ 10-3, 10-2, 3⇥ 10-2).

38

10
−3

10
−2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Relative Error versus " (Lipschitz)

"

R
el
a
ti
v
e
L

1
E
rr
o
r

N = 2
N = 4
N = 6
N = 8

Figure 4. Plot of relative L1 error versus perturbation order N for the Lipschitz profile,
(Equation 1.23d) (" = 10-3, 3⇥ 10-3, 10-2, 3⇥ 10-2).

CHAPTER 2

INTERFACE RECOVERY

2.1 Introduction

The interior of the earth’s crust can e↵ectively be modeled as a layered media: largely

homogeneous blocks of material separated by sharp interfaces across which material properties

change discontinuously. Two important and related questions are raised naturally by many.

(1) Given the knowledge of the material properties of the layers and the shapes of the interfaces,

can one compute scattering wave returns from such a structure given incident radiation? (2)

Specifying incident radiation and measuring scattered waves, can one deduce information about

material properties and interface shapes within the layered media? To address these questions,

we first implemented the forward solver designed by Malcolm and Nicholls (63) using FFTW-

MPI(64) and OpenMP(65), then we designed a linear inverse solver, which we tested using the

data from the forward solver.

2.1.1 Previous Work

From the introduction of the previous chapter, § 1.1, we know that there are many papers

on classical numerical methods like the finite di↵erence method, the finite element method, the

spectral element method and surface methods, which can be implemented to solve the forward

problem. Also there are huge volumes of books and papers ((18) has a good introduction) on

methods for the inverse problem.

39

40

Here we propose a boundary perturbation method for inverse problems for irregularly shaped

periodic layered media. Our approach avoids the need for specialized quadrature rules, and is

a generalization of the ’method of operator expansions’ (OE) of Milder(30; 42; 43; 44; 45; 46)

that we described in chapter § 1 which we use precisely because the interface shapes appear so

explicitly in these formulations making them particularly appealing for the development of an

inversion algorithm.

Milder showed that OE method is spectrally accurate, which means the numerical con-

vergence rate is faster than any polynomial order. For our method, as the scattered fields is

analytic with respect to boundary perturbation and the choice of spatial basis is optimal, it

also inherits the spectral accuracy. Our approach is developed based on the work of Malcolm

and Nicholls(63) and the work of Nicholls and Taber(66; 67) on interface recovery.

2.2 Governing Equation

The domain of interest is a (d1, d2)-periodic structure that contains two layers of medium,

where the medium on the top is in domain Su and the medium on the bottom is in domain Sv.

Areau = {(x, y, z)|0 > z > g(x, y)}

Areav = {(x, y, z)|z < g(x, y)}

g(x+ d1, y) = g(x, y) = g(x, y+ d2), g(x, y) = ḡ+ "f(x, y)

41

The wave scattering not only satisfies the Helmholtz equation with an incident radiation

from up the surface, but also OWC at infinity.

The normal on the interface of two medium is

N = (-@xg,-@yg, 1)
T .

We assume the density of each domain is constant, thus we can set the velocity of waves

propagating in each layer to be cj (j = u, v); We assume incident radiation of the form

u(x, y, z, t) = e-i!tei(↵x+�y+�uz) = e-i!tui(x, y, z). (2.1)

We also define a parameter kj in each layer so that kj = !/cj; It is the magnitude of the

wavenumber of interest. e.g. we have

↵2 + �2 + �2
u = k2u

↵2 + �2 + �2
u = k2v

From the work of Malcolm and Nicholls (63) and (68), we know that the solutions to the

Helmholtz equation are quasiperiodic. If we denote

{u, v} = {u(x, y, z), v(x, y, z)}

42

then quasi periodicity means

u(x+ d, y, z) = ei↵du(x, y, z)

v(x+ d, y, z) = ei↵dv(x, y, z).

The equations governing the waves propagating in these media are the well-known Helmholtz

equations, with the outgoing wave conditions,

�u+ k2uu = 0 0 > z > g(x, y) (2.1a)

Bu = 0 y !1 (2.1b)

�v+ k2vv = 0 z < g(x, y) (2.1c)

Bv = 0 y ! -1 (2.1d)

u- v = ⇠ @N(u- v) = y = g(x, y) (2.1e)

⇠(x) := -ui(x, y, g(x, y)) = -ei(↵x+�y-�ug(x,y)) (2.1f)

 (x) := -[@Nui(x, y, z)]z=g(x,y) = (i�u + i�(@yg) + i↵(@xg))e
i(↵x+�y-�

u

g(x,y)). (2.1g)

It is important to understand the ’outgoing wave condition’ (OWC) (68) before we proceed.

43

Proposition 2.2.1. The solutions to (Equation 2.1a) are

u(x, y, z) =
1X

|p|=-1

ape
(i(↵

p

x+�
p

y+�
u,p

z)) z > ḡ+ " · |f|1

v(x, y, z) =
1X

|p|=-1

bpe
(i(↵

p

x+�
p

y-�
v,p

z)) z < ḡ- " · |f|1

based on the quasi periodicity of the solution and outgoing wave condition.

Proof. From the quasi periodicity of the solution, assume d is the period of the structure, we

know that

↵p = ↵+ (2⇡/d)p �p = �+ (2⇡/d)p p 2 Z

�j,p =

8
>>>><

>>>>:

q
k2j - ↵

2
p - �

2
p, ↵2

p + �
2
p < k2j

i
q
↵2
p + �

2
p - k2j , ↵2

p + �
2
p > k2j

, j = u, v.

Then generally the solution u(x, y) will be

u(x, y) =
1X

|p|=-1

ape
(i(↵

p

x+�
p

y+�
u,p

z)) + cpe
(i(↵

p

x+�
p

y-�
u,p

z)). (2.2)

From equation (Equation 2.1b), we know that when z goes to 1, u(x, y, z) should decay to

zero. When p is large enough, �j,p = i
q
↵2
p + �

2
p - k2j , and

-i�u,pz = -i · i
q
↵2
p + �

2
p - k2j z =

q
↵2
p + �

2
p - k2j z. (2.3)

44

As z goes to 1, then e-i�
u,p

z will also go to 1, which will violates equation (Equation 2.1b),

thus we have to set cp in equation (Equation 2.2) to be 0. Similary if we set

v(x, y, z) =
1X

|p|=-1

bpe
(i(↵

p

x+�
p

y-�
v,p

z)) + dpe
(i(↵

p

x+�
p

y+�
v,p

z)) (2.4)

we can also prove dp in equation (Equation 2.4) must be zero, as ei�v,pz goes to 1 when p

is large enough and z goes to -1.

2.3 Forward Problem

For the forward problem, the shape of the grating g(x,y) is given, and the Dirichlet data

⇣(x, y) and Neumann data (x, y) are derived from the incident radiation. Thus, we should be

able to solve for the scattered fields u(x,y,z), and v(x,y,z), in particular u(x,y,0). Using notation

N = (-@xg(x, y),-@yg(x, y), 1), and defining:

U(x, y) := u(x, y, g(x, y)), V(x, y) := v(x, y, g(x, y)) (2.5)

U 0(x, y) := @Nu(x, y, g(x, y)), V 0(x, y) := @Nv(x, y, g(x, y)) (2.6)

G(g)[U(x, y)] := U 0(x, y), H(g)[V(x, y)] := V 0(x, y) (2.7)

Where G and H are the DNOs. From the boundary conditions, we obtain:

U- V = ⇣ (2.8)

45

G[U]-H[V] = (2.9)

u(x, y, 0) =: P[U] (2.10)

Where operator P from (Equation 2.10) is called the Upward Propagator which maps the scat-

tered wave on the interface z = g(x, y) to the above surface z = 0. We will discuss how to solve

this operator in section § 2.3.2.

We can solve (Equation 2.8) for V and get V = U- ⇣, then plugging it into (Equation 2.9)

we get

G[U]-H[U- ⇣] =

which implies:

(G-H)[U] = -H[⇣]

Thus for a known interface z = g(x, y), as long as we know how to calculate the operators

G, H we can get U, and then by (Equation 2.10) we can solve for u(x,y,0) after having a good

understanding of operator P.

2.3.1 Surface Data Expansions

We represent the Dirichlet and Neumann data as expansions in the grating height/slope.

We start with ⇣:

⇣(x, y; ") =
1X

n=0

⇣n(x, y)"
n.

46

On the other hand, we know that

⇣(x, y; ") = -ei(↵x+�y-�u(ḡ+"f(x,y)))

= -ei(↵x+�y)e-i�
u

ḡ
1X

n=0

Fn(x, y)(-i�u)
n"n,

where

g(x, y) = ḡ+ "f(x, y)

Fn(x, y) := fn(x, y)/(n!).

Thus by equating corresponding orders in both expressions we can prove that:

⇣n = -ei(↵x+�y)e-i�
u

ḡFn(x, y)(-i�u)
n. (2.11)

47

Then we can apply similar ideas to find the di↵erent orders of . We have

 (x, y; ") =
1X

n=0

 n(x, y)"
n

= @N⇣(x, y; ")

= -(-@xg,-@yg, 1) · (i↵, i�,-i�u)(e
i(↵x+�y-�

u

(ḡ+"f(x,y))))

= (i�u + i↵"(@xf) + i�"(@yf))

ei(↵x+�y)e-i�

u

ḡ
1X

n=0

Fn(x, y)(-i�u)
n"n

!

= ei(↵x+�y)e-i�
u

ḡ

i�u

1X

n=1

Fn(x, y)(-i�u)
n"n + (i↵@xf+ i�@yf)

1X

n=0

Fn(x, y)(-i�u)
n"n

!

= ei(↵x+�y)e-i�
u

ḡ

-

1X

n=0

Fn(x, y)(-i�u)
n+1"n +

1X

n=1

(i↵@xf+ i�@yf)Fn-1(x, y)(-i�u)
n-1"n

!

By equating both sides of the equation, we can observe that

 0 = (i�u)e
-i�

u

ḡei(↵x+�y) (2.11b)

 n =
⇣
-Fn(x, y)(-i�u)

n+1 + ((i↵)(@xf) + i�(@yf))Fn-1(x, y)(-i�u)
n-1
⌘
e-i�

u

ḡei(↵x+�y).

(2.11b)

2.3.2 Operator Expansions of the Upward Propagator

Now to understand the behavior of operator P, we need to understand how it acts on

Fourier basis functions, then we will know its operation on any periodic L2 functions. As we

48

have seen in (Equation 2.10), the Upward propagator P maps the surface data U to the upper

field ũ = u(x, y, 0). Consider

up(x, y, z) = ei(↵p

x+�
p

y-�
u,p

z),

which is a solution to our governing equation and satisfies the OWC. Thus from (Equation 2.10),

we get

P(g)[up(x, y, g(x, y))] = up(x, y, 0)

which implies:

P(g)[ei(↵p

x+�
p

y-�
u,p

g(x,y)) = ei(↵p

x+�
p

y). (2.12)

Proposition 2.3.1. The Upward propagator P satisfies

P0[⇠] = e-i�
u,D

ḡ⇠ (2.12a)

Pn[⇠] = -
n-1X

m=0

Pm[Fn-m(x, y)(i�u,D)
n-m⇠] (2.12b)

given that

g(x, y) = ḡ+ "f(x, y)

Proof. Note that

P(g) =
1X

n=0

Pn(g)"
n

49

Thus from (Equation 2.12) we know that

 1X

n=0

Pn(g)"
n

!
ei(↵p

x+�
p

y)ei�u,p

1X

n=0

Fn(x, y)(i�u,p)
n"n

!
= ei(↵p

x+�
p

y)

Now we first study the zeroth order and we find that

P0(e
i(↵

p

x+�
p

y)ei�u,p

ḡ) = ei(↵p

x+�
p

y)

implying

P0(e
i(↵

p

x+�
p

y)) = e-i�
u,p

ḡei(↵p

x+�
p

y

which gives

P0[⇠] = e-i�
u,D

ḡ⇠.

Note here we used a Fourier multiplier

m(D)[⇠] :=
1X

p=-1
m(p)⇠̂pe

i(↵
p

x+�
p

y).

50

If we equate the n-th order where n > 0, the it follows that

nX

m=0

Pm[Fn-m(x, y)(i�u,p)
n-mei�u,p

ḡei(↵p

x+�
p

y)] = 0,

Pn[e
i�

u,p

ḡei(↵p

x+�
p

y)] = -
n-1X

m=0

Pm[Fn-m(x, y)(i�u,p)
n-mei�u,p

ḡei(↵p

x+�
p

y)],

Pn[e
i(↵

p

x+�
p

y] = -
n-1X

m=0

Pm

h
Fn-m(x, y)(i�u,p)

n-mei(↵p

x+�
p

y
i
,

Pn[⇠] = -
n-1X

m=0

Pm[Fn-m(x, y)(i�u,D)
n-m⇠].

Remark 2.3.2. If we study the operator P, we can see that when p is small enough, e.g. when

↵2
p + �

2
p < k2u,

then �u,p will be a positive number(propagating mode), and the Fourier multiplier ei�u,p

ḡ is of

modulus one. But if p is large so that

↵2
p + �

2
p > k2u,

which is an evanescent mode of p, according to (Equation 2.3) and the fact that ḡ < 0, we find

that the Fourier multiplier e-i�
u,D

ḡ will be exponentially decaying, so the upward propagator

is very nice and smooth for the forward problem. But in terms of the inverse solver in § 2.4,

51

we need to use the operator P-1
0 which will, on the other hand, enlarge the Fourier coe�cients

exponentially when p is large.

2.3.3 Operator Expansions of the Dirichlet-Neumann Operators

We now first focus on the DNO G that generates normal derivative U 0 from Dirichlet data

U on the surface g(x, y) = "f(x, y). We define

up(x, y, z) = ei(↵p

x+�
p

y+�
u,p

z)

By the definition of operator G (Equation 2.7), we have

G(g)[up(x, y, g(x, y))] = @Nup

= (i↵p, i�p, i�u,p) · (-@xg,-@yg, 1)up(x, y, g(x, y)

= (-i↵p@xg- i�p@yg+ i�u,p)up(x, y, g(x, y)).

Also we have expansions of G and up(x, y, g(x, y) as follows:

G =
1X

n=0

Gn"
n,

52

and

up(x, y, g(x, y)) = ei(↵p

x+�
p

y+�
u,p

g(x,y))

= ei(↵p

x+�
p

y)ei�u,p

g(x,y)

= ei(↵p

x+�
p

y)
1X

n=0

(i�u,p)
nFn(x, y)"

n.

Then by substituting the above two expansions into the definition of operator G, we get the

left hand side as follows,

G(g)[up(x, y, g(x, y))] = (
1X

n=0

Gn"
n)

ei(↵p

x+�
p

y) ·
1X

n=0

(i�u,p)
nFn(x, y)"

n

!

=
1X

n=0

nX

m=0

Gm

h
Fn-m(i�u,p)

n-mei(↵p

x+�
p

y)
i
"n.

The expansion of right hand side becomes the following:

(-i↵p@xg- i�p@yg+ i�u,p)up(x, y, g(x, y))

= (-i↵p(@xf)"- i�p(@yf)"+ i�u,p)e
i(↵

p

x+�
p

y)
1X

n=0

(i�u,p)
nFn(x, y)"

n

=

-

1X

n=0

(i↵p@xf+ i�p@yf)Fn(x, y)(i�u,p)
n"n+1 +

1X

n=0

Fn(x, y)(i�u,p)
n+1"n

!
ei(↵p

x+�
p

y)

=

-

1X

n=1

(i↵p@xf+ i�p@yf)Fn-1(x, y)(i�u,p)
n-1"n +

1X

n=0

Fn(x, y)(i�u,p)
n+1"n

!
ei(↵p

x+�
p

y)

=

-

1X

n=1

(i↵p@xFn + i�p@yFn)(i�u,p)
n-1"n +

1X

n=0

Fn(x, y)(i�u,p)
n+1"n

!
ei(↵p

x+�
p

y).

53

Note we used the facts that

@xFn(x, y) = @xf(x, y)Fn-1(x, y), @yFn(x, y) = @yf(x, y)Fn-1(x, y).

Proposition 2.3.3. The DNO G operator satisfies

G0[⇠] = (i�u,D)⇠, (2.13)

and

Gn[⇠] = -k2uFn(i�u,D)
n-1⇠- @x

h
Fn@x(i�u,D)

n-1⇠
i

- @y
h
Fn@y(i�u,D)

n-1⇠
i
-

n-1X

m=0

Gm

⇥
Fn-m(i�u,D)

n-m⇠
⇤
. (2.14)

Proof. Refering to the expansions of the left hand side and right hand side of (Equation 2.7),

for zeroth order equality it holds that

G0[e
i(↵

p

x+�
p

y)] = F0(x, y)(i�u,p)
0+1ei(↵p

x+�
p

y)

= (i�u,p)e
i(↵

p

x+�
p

y),

54

e.g. G0[⇠] = (i�u,D)[⇠] in the sense of Fourier multipliers. After equating n-th order on both

sides of the expansions, we get

nX

m=0

Gm[Fn-m(i�u,p)
n-mei(↵p

x+�
p

y)]

= -(i↵p@xFn + i�p@yFn)(i�u,p)
n-1ei(↵p

x+�
p

y) + Fn(i�u,p)
n+1ei(↵p

x+�
p

y)

=
⇣
-i↵p@xFn - i�p@yFn + Fn(i�u,p)

2
⌘
(i�u,p)

n-1ei(↵p

x+�
p

y)

=
⇣
-i↵p@xFn - i�p@yFn + Fn

⇣
-k2u - (i↵p)

2 - (i�p)
2
⌘⌘

(i�u,p)
n-1ei(↵p

x+�
p

y)

= -
⇣
(@xFn + Fn(i↵p))(i↵p) + (@yFn + Fn(i�p))(i�p) + k2uFn

⌘
(i�u,p)

n-1ei(↵p

x+�
p

y)

= -@x
h
Fn@x(i�u,p)

n-1ei(↵p

x+�
p

y)
i
- @y

h
Fn@y(i�u,p)

n-1ei(↵p

x+�
p

y)
i

- k2uFn(i�u,p)
n-1ei(↵p

x+�
p

y).

Using Fourier multiplier notation, we can translate the result into

nX

m=0

Gm[Fn-m(i�u,D)
n-m⇠] = -@x

h
Fn@x(i�u,D)

n-1⇠
i
- @y

h
Fn@y(i�u,D)

n-1⇠
i

- k2uFn(i�u,D)
n-1⇠. (2.15)

If we isolate the term Gn[⇠] on the LHS, we have proven the result,

Gn[⇠] = -k2uFn(i�u,D)
n-1⇠- @x

h
Fn@x(i�u,D)

n-1⇠
i

- @y
h
Fn@y(i�u,D)

n-1⇠
i
-

n-1X

m=0

Gm

⇥
Fn-m(i�u,D)

n-m⇠
⇤
.

55

Particularly, we will need to use the result when n = 1 in section § 2.4, i.e.

G1[⇠] = -k2uf⇠- @x[f@x⇠]- @y[f@y⇠]-G0[f(i�u,p)⇠]

= -k2uf⇠- @x[f@x⇠]- @y[f@y⇠]-G0 [fG0[⇠]] .

Now we proceed to the DNO H that generates the normal derivative V 0 from Dirichlet data

V on the surface. We set

vp(x, y, z) = ei(↵p

x+�
p

y-�
v,p

z),

and as we have proven for up(x, y, z), it also holds for vp(x, y, z) that it satisfies the Helmholtz

equation and the outgoing wave condition in the area g(x, y) > z > -1. Now, we derive the

exact form of all orders of the DNO H. By the definition of operator H (Equation 2.7), we have

H(g)[vp(x, y, g(x, y))] = @Nvp

= (-@xg,-@yg, 1) · (i↵p, i�p,-i�v,p)vp(x, y, g(x, y))

= -((i↵p)@xg+ (i�p)@yg+ i�v,p)vp(x, y, g(x, y)).

Expanding H and vp(x, y, g(x, y)), we get

H =
1X

n=0

Hn"
n,

56

and

vp(x, y, g(x, y)) = ei(↵p

x+�
p

y-�
v,p

g(x,y))

= ei(↵p

x+�
p

y)e-i�
v,p

g(x,y)

= ei(↵p

x+�
p

y)
1X

n=0

(-i�v,p)
nFn(x, y)"

n.

Substituting the above two expansions into the definition of operator H (Equation 2.7), the

LHS becomes

H(g)[vp(x, y, g(x, y))] = (
1X

n=0

Hn"
n)

ei(↵p

x+�
p

y)
1X

n=0

(-i�v,p)
nFn(x, y)"

n

!

=
1X

n=0

nX

m=0

Hm

h
Fn-m(-i�v,p)

n-mei(↵p

x+�
p

y)
i
"n.

The expansions of the right hand side are,

- (i↵p@xg+ i�p@yg+ i�v,p)vp(x, y, g(x, y))

= -(i↵p(@xf)"+ i�p(@yf)"+ i�v,p) · ei(↵p

x+�
p

y) ·
1X

n=0

(-i�v,p)
nFn(x, y)"

n

= -

 1X

n=0

(i↵p@xf+ i�p@yf)Fn(x, y)(-i�v,p)
n"n+1 -

1X

n=0

Fn(x, y)(-i�v,p)
n+1"n

!
ei(↵p

x+�
p

y)

=

-

1X

n=1

(i↵p@xf+ i�p@yf)Fn-1(x, y)(-i�v,p)
n-1"n +

1X

n=0

Fn(x, y)(-i�v,p)
n+1"n

!
ei(↵p

x+�
p

y)

=

-

1X

n=1

(i↵p@xFn + i�p@yFn)(-i�v,p)
n-1"n +

1X

n=0

Fn(x, y)(-i�v,p)
n+1"n

!
ei(↵p

x+�
p

y).

57

Proposition 2.3.4. The DNO H operator satisfies

H0[⇠] = (-i�v,D)⇠, (2.16)

and

Hn[⇠] = -k2vFn(-i�v,D)
n-1⇠- @x

h
Fn@x(-i�v,D)

n-1⇠
i

- @y
h
Fn@y(-i�v,D)

n-1⇠
i
-

n-1X

m=0

Hm

⇥
Fn-m(-i�v,D)

n-m⇠
⇤
. (2.17)

Proof. Refering to the expansions of LHS and RHS of (Equation 2.7), for zeroth order equality

it holds that

H0[e
i(↵

p

x+�
p

y)] = F0(x, y)(-i�v,p)
0+1ei(↵p

x+�
p

y)

= (-i�v,p)e
i(↵

p

x+�
p

y),

58

e.g. H0[⇠] = (-i�v,D)[⇠] in the sense of Fourier multipliers. After equating n-th order on both

sides of the expansions, we get

nX

m=0

Hm[Fn-m(-i�v,p)
n-mei(↵p

x+�
p

y)]

= -(i↵p@xFn + i�p@yFn)(-i�v,p)
n-1ei(↵p

x+�
p

y) + Fn(-i�v,p)
n+1ei(↵p

x+�
p

y)

=
⇣
-i↵p@xFn - i�p@yFn + Fn(-i�v,p)

2
⌘
(i�v,p)

n-1ei(↵p

x+�
p

y)

=
⇣
-i↵p@xFn - i�p@yFn + Fn

⇣
-k2v - (i↵p)

2 - (i�p)
2
⌘⌘

(-i�v,p)
n-1ei(↵p

x+�
p

y)

= -
⇣
(@xFn + Fn(i↵p))(i↵p) + (@yFn + Fn(i�p))(i�p) + k2vFn

⌘
(-i�v,p)

n-1ei(↵p

x+�
p

y)

= -@x
h
Fn@x(-i�v,p)

n-1ei(↵p

x+�
p

y)
i
- @y

h
Fn@y(-i�v,p)

n-1ei(↵p

x+�
p

y)
i

- k2vFn(-i�v,p)
n-1ei(↵p

x+�
p

y).

Using Fourier multipliers, we can translate the result into

nX

m=0

Hm[Fn-m(-i�v,D)
n-m⇠] = -@x

h
Fn@x(-i�v,D)

n-1⇠
i
- @y

h
Fn@y(-i�v,D)

n-1⇠
i

- k2vFn(-i�v,D)
n-1⇠. (2.18)

If we isolate the term Hn[⇠] on the LHS, we have proven the result,

Hn[⇠] = -k2vFn(-i�v,D)
n-1⇠- @x

h
Fn@x(-i�v,D)

n-1⇠
i

- @y
h
Fn@y(-i�v,D)

n-1⇠
i
-

n-1X

m=0

Hm

⇥
Fn-m(-i�v,D)

n-m⇠
⇤
.

59

Particularly, we will need to use the result when n = 1 in section § 2.4, i.e.

H1[⇠] = -k2vf⇠- @x[f@x⇠]- @y[f@y⇠]-H0[f(-i�v,p)⇠]

= -k2vf⇠- @x[f@x⇠]- @y[f@y⇠]-H0 [fH0[⇠]] .

2.3.4 Parallel Computing Results for Forward Solver using OpenMP

We have implemented this algorithm in parallel using OpenMP (65), in which we parallelized

all sequential processes except Fast Fourier Transforms. We begin with a 2 dimensional solver,

and the basic parameters for our experiments are given in Table II.

TABLE II

PARAMETERS USED FOR THE FORWARD SOLVER SIMULATIONS(OPENMP)

Parameter value meaning

d 2⇡ The period of the grating
� 5.5 the magnitude of wave number
ḡ -1.5 the depth of the interface
✏ 0.02 the profile heights
f cos(x) shape of the interface
N 2400 perturbation orders
nx 12800 number of sub-intervals in x direction

60

Note here that the forward solver takes as inputs the exactly position ḡ and shape "f(x) of

the interface, the perturbation order, and the exact value of the incident radiation. It outputs

the value of the DNO operator up to order N.

The following table lists the running time for the sequential code versus an OpenMP im-

plementation with di↵erent numbers of threads.

TABLE III

SEQUENTIAL VS OPENMP PERFORMANCE (UNIT : SECONDS)

cases real time user time system time speedup

sequential 20.405 18.007 2.394 0
openmp 2 threads 14.645 26.280 2.560 0.3933
openmp 4 threads 11.028 40.123 2.619 0.8503
openmp 8 threads 9.333 68.347 3.059 1.186

Table III contains information about the running time, which is the elapsed real time be-

tween invocation and termination, and user time, which is the user CPU time.

We can see from Figure 5 that the real time elapsed decreases as we add more threads. This

is because the computation jobs are distributed to multiple threads.

In Figure 6 we can see the speedup of computation contributed by using multi-threads.

61

From Figure 7 we realize that when we use di↵erent numbers of threads, the speedup per

thread also varies. When the number of threads is 4 we have the maximum speedup per thread,

which is 0.2126, i.e. each thread will contribute to 21% speed up.

Lastly, we should note that OpenMP parallel computing is not complete, as Fast Fourier

Transforms cannot be parallelized using OpenMP. However we can parallelize all remaining

parts.

2.3.5 Parallel Computing Results for Forward Solver using FFTW MPI

From § 2.3.4 we can see that the speedup contributed by each new thread is not very high.

In fact using OpenMP, we can only parallelize a small portion of the DNO calculations. Most

of the calculation is focused on the Fast Fourier Transform, but OpenMP cannot be used to

accelerate FFT, as the Fourier coe�cients at di↵erent places needs to communicate with each

other when a FFT is processed. So in order to increase the speedup per thread, we need to find

a way to parallelize the FFT. We used the FFTW MPI package (64) to implement a parallel

version of Operator Expansions algorithm(“FFTW won the J. H. Wilkinson Prize for Numerical

Software in 1999. The J. H. Wilkinson Prize for Numerical Software is awarded every four years

to honor outstanding contributions in the field of numerical software”).

Here are the parameters we used for our experiments.

62

TABLE IV

COMMON PARAMETERS USED FOR FORWARD SOLVER NUMERICAL
SIMULATIONS(MPI)

Parameter value meaning

d1 0.53 the period of the grating in x dimension
d2 0.53 the period of the grating in y dimension
Nh 100 number of profile heights
h 0:0.001:0.1 profile heights
� 0.5 wavelength
ḡ -1.5 the depth of the interface
f cos(x) shape of the interface
N 32 perturbation orders
nx1 128 number of grid points in x direction
nx2 128 number of grid points in y direction

Note that the computational complexity of the 3D forward solver is much higher than 2D

solver, thus we refine grid much less than the 2D solver.

Table V lists the running times for sequential code versus FFTW-MPI with di↵erent number

of threads.

63

TABLE V

SEQUENTIAL VS FFTW-MPI PERFORMANCE (UNIT : SECONDS)

cases real time user time system time speedup

sequential 282.54 152.06 120.42 0
MPI 2 threads 253.51 225.74 259.45 0.115
MPI 4 threads 131.28 345.92 46.62 1.15
MPI 8 threads 94.5 420.35 59.67 1.99

From Table V we notice that, by using only 4 processes, the FFTW-MPI implementation

can achieve the same speedup as OpenMP using 8 threads, which shows obvious outperformance

to OpenMP, and the speedup contributed by each processes is about 28.8% when using 4 MPI

nodes.

The real time cost and speedup per thread is shown in Figure 8 and Figure 9

2.4 Inverse Problem

Our final project involves designing an algorithm to reconstruct the shape of the interface

g(x) from the incident radiation and scattered wave data. The problem is very hard due to

the ill-posedness of this inverse problem. But we first decrease the di�culty by specifying more

information rather than just the surface data. We will specify the medium properties as well as

ḡ, which is the average depth of the layer interface. Then we can focus on the reconstructing

of the shape of interface. Currently we have results for a 2 dimensional model.

64

2.4.1 2D Linear Model

In the 2D forward solver, we assume the interface is g(x) = "f(x), and we have information

about the scattered wave on the surface y = 0. We assume this data to be

⌘(x) = u(x, 0),

and expanding it in " up to the first order, we have

⌘(x) = ⌘0(x) + ⌘1(x) +O("2).

Equating at like orders, we get

⌘0(x) = u0(x, 0) ⌘1(x) = u1(x, 0).

However we only know ⌘(x), not ⌘0(x) or ⌘1(x).

To start, we refer to (Equation 2.9) and (Equation 2.10), and, by the Operator Expansion

formulas, we get at zeroth order:

P0U0 = u0(x, 0) = ⌘0(x)

(G0 -H0)U0 = 0 -H0(⇠0).

65

To make this more clear, we notice that there are two variables: (⌘0(x) and U0) and two

equations, 0

BB@
P0 -I

G0 -H0 0

1

CCA

0

BB@
U0

⌘0(x)

1

CCA =

0

BB@
0

 0 -H0(⇠0)

1

CCA .

So U0 and ⌘0(x) can be solved correctly(uniquely), moreover, we can solve for ⌘1(x) with

accuracy within "2 as ⌘1(x) = ⌘(x)- ⌘0(x) +O("2).

Then we proceed to first order, using the expansions of (Equation 2.9) and (Equation 2.10).

It follows that

P1U0 + P0U1 = u1(x, 0) +O("2) = ⌘1(x) +O("2)

(G1 -H1)U0 + (G0 -H0)U1 = 1 - (H0⇠1 +H1⇠0) +O("2).

Note that all the first order operators and values depend on the shape of the interface g(x) =

"f(x), so that we can write P1,U1,G1,H1, 1, ⇠1 as P1(g), U1(g), G1(g), H1(g), 1(g), ⇠1(g).

Writing it in matrix form, we can see the equations more clearly,

0

BB@
P0 P1(·)U0

G0 -H0 Q(·)

1

CCA

0

BB@
U1

g

1

CCA =

0

BB@
⌘1

0

1

CCA ,

where Q(·) = (G1 -H1)(·)U0 - 1(·) +H0⇠1(·) +H1(·)⇠0, which depends on g(x).

66

Remark 2.4.1. As we mentioned earlier § 2.3.2, the operator P-1
0 is ill-conditioned, which

will potentially lead to numerical instability. However the instability is also a very common

characteristic of inverse problems (18) and it is not surprising to appear here.

2.4.2 Numerical Results for 2D Reconstruction

The numerical parameters of our experiment are listed in the following table,

TABLE VI

PARAMETERS USED FOR INVERSE SOLVER SIMULATIONS
Parameter value meaning

N 1,2,3 perturbation orders for the forward solver
nx 16 number of grid points in x direction
↵ 0.1 angle of incident radiation
ku 1 magnitude of wavenumber in the upper layer
kv 0.5 magnitude of wavenumber in the lower layer
d 10⇡ the period of the structure
✏ 10-1, 10-2, 10-3, 10-4 the magnitude of perturbation
ḡ -4.0 the average depth of the interface

Note that the parameter N is only used in the forward solver to generate data on the surface.

The the inverse solver is implemented based on linear model that will take the data from the

67

forward solver and recover the interface shape. We conducted several experiments with the

inverse solver, but here we focus on two profiles as the shape of interface: a cosine profile

f1 = cos(x),

which is very smooth and has a very simple representation in the Fourier side. The other is

Lipschitz profile which is shown in Figure 10.

Note that the input surface data for our inverse solver is generated by our forward solver.

When we set the perturbation order of our forward solver N to di↵erent numbers, we will have

di↵erent input data(with di↵erent orders of accuracy). We first tested our linear inverse solver

with N = 1,2,3, and the result is shown in Figures 9 to 11.

Remark 2.4.2. From the results, we can see that when we set N = 1 (Figure 11), the error is

very small which is close to machine precision. That is because our inverse solver is linear, which

is the exact inverse of the forward solver when N = 1, no doubt it generates such good results.

When N is larger, we can see decreased accuracy for the inverse solver. More interestingly, we

notice that the greatest error is contributed by the second order, as we can see little di↵erence

between the graph of the case N =2 (Figure 12) and N=3 (Figure 13). This gives us confidence

to develop an iterative inverse solver which will generalize the linear model to a general n-th

order accurate inverse solver. A similar approach can be found in the work of Malcolm and

Nicholls (63).

68

In addition, to address the criticism of committing an “inverse crime” (18), we conducted

experiments on the input data with two types of noise. The first type is relative noise, which

is defined as,

⌘1 = ⌘(1+M · (2U(0, 1)- 1))

where M, the magnitude of the noise is set to be 0.001, and the results we get are shown in

Figure 14. The second type is absolute noise, which is defined as,

⌘2 = ⌘+M · |⌘| (2U(0, 1)- 1))

where M = 0.001, and the results we get are shown in Figure 15.

Remark 2.4.3. From both Figure 14 and Figure 15, we can see that noise a↵ects the accuracy

of our inverse solver greatly, especially absolute noise. Also, in both cases, the impact of the

noise tends to be larger on the smooth cosine profile rather than the non-smooth Lipschitz

profile, which is reasonable based on the fact that the Fourier coe�cients of the cosine profile

are zero with only two exceptions, while the Lipschitz profile has all non-zero Fourier coe�-

cients. To achieve a better result, we are also trying to introduce the Tikhonov Regularization

technique(69) into our linear model, which will enhance the performance of the inverse solver

if we choose an appropriate regularizing parameter(62).

69

number of threads
1 2 3 4 5 6 7 8

re
al

 ti
m

e
co

st
(in

 s
ec

on
ds

)

8

10

12

14

16

18

20

22

Figure 5. Plot of real time cost versus number of threads for the cosine profile.

70

number of threads
1 2 3 4 5 6 7 8

sp
ee

d
up

 fo
r a

dd
in

g
th

re
ad

s

1

1.2

1.4

1.6

1.8

2

2.2

Figure 6. Plot of speedup versus number of threads for the cosine profile.

71

number of threads
1 2 3 4 5 6 7 8

sp
ee

du
p

pe
r t

hr
ea

d

0

0.05

0.1

0.15

0.2

0.25

Figure 7. Plot of speedup e�ciency per thread versus number of threads for the cosine profile.

72

number of threads
1 2 3 4 5 6 7 8

re
al

 ti
m

e
co

st

50

100

150

200

250

300

Figure 8. Plot of real time cost versus number of threads for the cosine profile using FFTW
MPI.

73

number of threads
1 2 3 4 5 6 7 8

sp
ee

du
p

pe
r t

hr
ea

d

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 9. Plot of speedup e�ciency per thread versus number of threads for the cosine profile
using FFTW MPI.

74

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16
graph of lipschitz profile

Figure 10. Lipschitz Profile.

75

epsilon
10-4 10-3 10-2 10-1

th
e

re
la

tiv
e

er
ro

r o
f i

nt
er

fa
ce

10-16

10-15

10-14 N=1

cosine profile
lipchitz profile

Figure 11. Relative L1 error in reconstructed solution when N = 1.

76

epsilon, the magnitude of perturbation
10-4 10-3 10-2 10-1

th
e

re
la

tiv
e

er
ro

r o
f i

nt
er

fa
ce

10-5

10-4

10-3

10-2

10-1

100

101 relative error versus perturbation size when N=2

cosine profile
lipchitz profile

Figure 12. Relative L1 error in reconstructed solution when N = 2.

77

epsilon, the magnitude of perturbation
10-4 10-3 10-2 10-1

th
e

re
la

tiv
e

er
ro

r o
f i

nt
er

fa
ce

10-5

10-4

10-3

10-2

10-1

100

101 relative error versus perturbation size when N=3

cosine profile
lipchitz profile

Figure 13. Relative L1 error in reconstructed solution when N = 3.

78

epsilon, the magnitude of perturbation
10-4 10-3 10-2 10-1

th
e

re
la

tiv
e

er
ro

r o
f i

nt
er

fa
ce

10-4

10-3

10-2

10-1

100 relative error versus perturbation size when relative noise added

cosine profile
lipchitz profile

Figure 14. Relative L1 error in reconstructed solution when relative noise is added.

79

epsilon, the magnitude of perturbation
10-4 10-3 10-2 10-1

th
e

re
la

tiv
e

er
ro

r o
f i

nt
er

fa
ce

10-1

100

101

102

103

104 relative error versus perturbation size when absolute noise added

cosine profile
lipchitz profile

Figure 15. Relative L1 error in reconstructed solution when absolute noise is added.

CHAPTER 3

CONCLUSION

The work of this thesis fits into three categories.

First, we generalized the concept of DNO to DTO when the governing equations are Naver’s

equations. These formulas are far more complicated due to the fact that waves propagating in

elastic bodies have P- and S- wave components with di↵erent speeds and directions. Although

the computational complexity is huge due to the recursive nature of DTO, we lowered the

overall complexity of the algorithm by storing the value of the DTO acting on a set of Fourier

basis functions in 3 dimensional space.

Secondly, for solutions of the Helmholtz equation, we derived the formulas for the DNO in

the 3 dimensional case, which is more complicated than the work done in (63). We designed

a robust and rapidly convergent Operator Expansions numerical algorithm to solve DNO, and

implemented the solver in a parallel fashion in both 2D and 3D cases, utilizing OpenMp as well

as FFTW MPI.

Lastly, we focused our attention on the inverse solver for the Helmholtz equation to recover

the shape of a layer interface in 2D layered medium. With the help of the previously built

forward solver, we were able to design a linear model for the inverse solver, and the solver

showed satisfying accuracy in the case when surface data is from the linear model. To achieve

higher order accuracy, we will also try to generalize this linear model to an iterative non-linear

model, which should generate good results based on our current experiment. In addition,

80

81

we investigated the cases when we have data with two types of noise, and produced some

enlightening results. Tikhonov regularization is the next technique we are deciding to try to

enhance the performance of the inverse solver when the surface data contains noise.

82

APPENDIX

RECURSIVE FORMULAS FOR THE U(N), K(N), AND E
(N)
IJ

Of crucial importance to our Operator Expansions approach outlined in § 1.2.2 are forms

for the {U(n), K(n), E
(n)
ij }, and in this section we briefly derive these. We begin by recalling the

↵–quasiperiodic outgoing solution of the time–harmonic Navier’s equation, c.f. (Equation 1.15),

u(x;p) = (i(1)(p))�̂(p)ei
(1)(p)·x +

⌦
(i(2)(p))⇥ ̂(p)

↵
ei

(2)(p)·x,

and the surface quantities, c.f. (Equation 1.16),

U(x̃;g, p) = u(x̃, g(x̃);p)

K(x̃;g, p) = @kuk(x̃, g(x̃);p)

Eij(x̃;g, p) = {@jui(x̃, g(x̃);p) + @iuj(x̃, g(x̃);p)} .

We begin with the U(n) by writing

U(x̃; "f, p) =
⌦
(i(1)(p))�̂(p)ei�

(1)(p)"f + (i(2)(p))⇥ ̂(p)ei�(2)(p)"f
↵
ei↵(p)·x̃

83

APPENDIX (Continued)

so that

1X

n=0

U(n)"n =
1X

n=0

"nFn

⌦
(i�(1)(p))n(i(1)(p))�̂(p) + (i�(2)(p))n(i(2)(p))⇥ ̂(p)

↵
ei↵(p)·x̃,

where Fn = fn/n!. Thus

U(0) =
⌦
(i(1)(p))�̂(p) + (i(2)(p))⇥ ̂(p)

↵
ei↵(p)·x̃

=
⌦
(i(1)(p))L�

⇥
⇠̂(p)

⇤
+ (i(2)(p))⇥ L

⇥
⇠̂(p)

⇤↵
ei↵(p)·x̃

= ⇠̂(p)ei↵(p)·x̃,

and, for n > 0,

U(n) = Fn

⌦
(i�(1)(p))n(i(1)(p))�̂(p) + (i�(2)(p))n(i(2)(p))⇥ ̂(p)

↵
ei↵(p)·x̃

= Fn

⌦
(i�(1)(p))n(i(1)(p))L�

⇥
⇠̂(p)

⇤
+ (i�(2)(p))n(i(2)(p))⇥ L

⇥
⇠̂(p)

⇤↵
ei↵(p)·x̃.

Moving to K(n) we write

K(x̃; "f, p) = -
���(1)(p)

���
2
�̂(p)ei�

(1)(p)"fei↵(p)·x̃,

so that
1X

n=0

K(n)"n = -
1X

n=0

"nFn(i�
(1)(p))n

���(1)(p)
���
2
�̂(p)ei↵(p)·x̃.

84

APPENDIX (Continued)

Thus

K(0) = -
���(1)(p)

���
2
�̂(p)ei↵(p)·x̃

= -
���(1)(p)

���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃,

and, for n > 0,

K(n) = -Fn(i�
(1)(p))n

���(1)(p)
���
2
�̂(p)ei↵(p)·x̃

= -Fn(i�
(1)(p))n

���(1)(p)
���
2 L�

⇥
⇠̂(p)

⇤
ei↵(p)·x̃.

To close, consider E(n)
ij by writing

Eij(x̃; "f, p) =
⌦
2(i(1)j (p))(i(1)i (p))�̂(p)ei�

(1)(p)"f

+


(i(2)j (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

i
+ (i(2)i (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

j

�
ei�

(2)(p)"f

�
ei↵(p)·x̃,

so that

1X

n=0

E
(n)
ij "

n =
1X

n=0

"nFn

⌦
2(i�(1)(p))n(i(1)j (p))(i(1)i (p))�̂(p)

+(i�(2)(p))n

(i(2)j (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

i
+ (i(2)i (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

j

��
ei↵(p)·x̃.

85

APPENDIX (Continued)

Thus

E
(0)
ij =

⌦
2(i(1)j (p))(i(1)i (p))�̂(p)

+
h
(i(2)j (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

i

+(i(2)i (p))
⌦
(i(2)(p))⇥ ̂(p)

↵

j

��
ei↵(p)·x̃

= -
⌦
2((1)j (p))((1)i (p))L�

⇥
⇠̂(p)

⇤

+
h
((2)j (p))

⌦
((2)(p))⇥ L

⇥
⇠̂(p)

⇤↵

i

+((2)i (p))
⌦
((2)(p))⇥ L

⇥
⇠̂(p)

⇤↵

j

��
ei↵(p)·x̃,

and, for n > 0,

E
(n)
ij = Fn

⌦
2(i�(1)(p))n(i(1)j (p))(i(1)i (p))�̂(p)

+ (i�(2)(p))n
h
(i(2)j (p))

⌦
(i(2)(p))⇥ ̂(p)

↵

i

+(i(2)i (p))
⌦
(i(2)(p))⇥ ̂(p)

↵

j

��
ei↵(p)·x̃

= -Fn

⌦
2(i�(1)(p))n((1)j (p))((1)i (p))L�

⇥
⇠̂(p)

⇤

+ (i�(2)(p))n
h
((2)j (p))

⌦
((2)(p))⇥ L

⇥
⇠̂(p)

⇤↵

i

+((2)i (p))
⌦
((2)(p))⇥ L

⇥
⇠̂(p)

⇤↵

j

��
ei↵(p)·x̃.

86

APPENDIX

AUTHOR AND USER RIGHTS OF JOURNAL OF COMPUTATIONAL

PHYSICS

As a journal author, you have rights for a large range of uses of your article, including use

by your employing institute or company(including usage in a thesis or dissertation). These

rights can be exercised without the need to obtain specific permission.

87

CITED LITERATURE

1. Fang, Z. and Nicholls, D. P.: An operator expansions method for computing Dirichlet–
Neumann operators in linear elasticity. Journal of Computational Physics, 2014.

2. Billingham, J. and King, A. C.: Wave motion. Cambridge Texts in Applied Mathematics.
Cambridge, Cambridge University Press, 2000.

3. ed. C. Godrèche Solids far from equilibrium. Cambridge, Cambridge University Press,
1992.

4. Virieux, J. and Operto, S.: An overview of full-waveform inversion in exploration geo-
physics. Geophysics, 74(6):WCC1–WCC26, 2009.

5. Bleibinhaus, F. and Rondenay, S.: E↵ects of surface scattering in full-waveform inversion.
Geophysics, 74(6):WCC69–WCC77, 2009.

6. Achenbach, J. D.: Wave Propagation in Elastic Solids. Amsterdam, North–Holland, 1973.

7. Moczo, P., Robertsson, J., and Eisner, L.: The finite-di↵erence time-domain method for
modeling of seismic wave propagation. Advances in Geophysics, 48:421, 2007.

8. Pratt, R. G.: Frequency-domain elastic wave modeling by finite di↵erences: A tool for
crosshole seismic imaging. Geophysics, 55(5):626–632, 1990.

9. Zienkiewicz, O. C.: The Finite Element Method in Engineering Science, 3rd ed.. New
York, McGraw-Hill, 1977.

10. Koketsu, K., Fujiwara, H., and Ikegami, Y.: Finite-element simulation of seismic ground
motion with a voxel mesh. Journal Pure and Applied Geophysics, 161(11-12), 2004.

11. Komatitsch, D. and Tromp, J.: Spectral-element simulations of global seismic wave
propagation-I. Validation. Geophysical Journal International, 149(2):390–412,
2002.

88

12. Komatitsch, D. and Tromp, J.: Spectral-element simulations of global seismic wave
propagation-II. 3-D models, oceans, rotation, and self-gravitation. Geophysical
Journal International, 150(1):303–318, 2002.

13. Sanchez-Sesma, F. and Perez-Rocha, E.: Di↵raction of elastic waves by three-dimensional
surface irregularities. part II. Bulletin of the Seismological Society of America,
79(1):101, 1989.

14. Bouchon, M.: A review of the discrete wavenumber method. Pure appl. geophys.,
160(3):445–465, 2003.

15. Ihlenburg, F.: Finite element analysis of acoustic scattering. New York, Springer-Verlag,
1998.

16. Keller, J. B. and Givoli, D.: Exact nonreflecting boundary conditions. J. Comput. Phys.,
82(1):172–192, 1989.

17. Givoli, D.: Recent advances in the DtN FE method. Arch. Comput. Methods Engrg.,
6(2):71–116, 1999.

18. Colton, D. and Kress, R.: Inverse acoustic and electromagnetic scattering theory. Berlin,
Springer-Verlag, second edition, 1998.

19. Rayleigh, L.: On the dynamical theory of gratings. Proc. Roy. Soc. London, A79:399–416,
1907.

20. Rice, S. O.: Reflection of electromagnetic waves from slightly rough surfaces. Comm. Pure
Appl. Math., 4:351–378, 1951.

21. Wait, J. R.: Perturbation analysis for reflection from two-dimensional periodic sea waves.
Radio Sci., 6:387–391, 1971.

22. Nayfeh, A. H. and Asfar, O. R.: Parallel–plate waveguide with sinusoidally perturbed
boundaries. J. Appl. Phys., 45:4797–4800, 1974.

23. Harper, E. Y. and Labianca, F. M.: Perturbation theory for scattering of sound from a
point source by a moving rough surface in the presence of refraction. J. Acoust.
Soc. Am., 57:1044–1051, 1975.

89

24. Harper, E. Y. and Labianca, F. M.: Scattering of sound from a point source by a rough sur-
face progressing over an isovelocity ocean. J. Acoust. Soc. Am., 58:349–364, 1975.

25. Lopez, C., Yndurain, F. J., and Garcia, N.: Iterative series for calculating the scattering
of waves from hard corrugated surfaces. Phys. Rev. B, 18:970–972, 1978.

26. Gre↵et, J. J.: Scattering of electromagnetic waves by rough dielectric surfaces. Phys. Rev.
B, 37:6436–6441, 1988.

27. Jackson, D. R., Winebrenner, D. P., and Ishimaru, A.: Comparison of perturbation theories
for rough–surface scattering. J. Acoust. Soc. Am., 83:961–969, 1988.

28. Gre↵et, J. J. and Maassarani, Z.: Scattering of electromagnetic waves by a grating: a
numerical evaluation of the iterative–series solution. J. Opt. Soc. Am. A, 7:1483–
1493, 1990.

29. Roginsky, J.: Derivation of closed–form expressions for the T matrices of Rayleigh–Rice
and extinction–theorem perturbation theories. J. Acoust. Soc. Am., 90:1130–1137,
1991.

30. Milder, D. M.: An improved formalism for rough-surface scattering of acoustic and elec-
tromagnetic waves. In Proceedings of SPIE - The International Society for Optical
Engineering (San Diego, 1991), volume 1558, pages 213–221. Bellingham, WA, Int.
Soc. for Optical Engineering, 1991.

31. Gre↵et, J. J., Baylard, C., and Versaevel, P.: Di↵raction of electromagnetic waves by
crossed gratings: a series solution. Opt. Lett., 17:1740–1742, 1992.

32. Kazandjian, L.: Comparison of the Rayleigh-Fourier and extinction theorem meth-
ods applied to scattering and transmission at a rough solid-solid interface.
J. Acoust. Soc. Am., 92:1679–1691, 1992.

33. Chesneaux, J. M. and A. Wirgin, A.: Response to comments on “reflection from a corru-
gated surface revisited”. J. Acoust. Soc. Am., 98:1815–1816, 1995.

34. Voronovich, A. G.: Wave scattering from rough surfaces. Berlin, Springer-Verlag, second
edition, 1999.

90

35. Coifman, R., Goldberg, M., Hrycak, T., Israeli, M., and Rokhlin, V.: An improved operator
expansion algorithm for direct and inverse scattering computations. Waves Random
Media, 9(3):441–457, 1999.

36. Gilbert, F. and Knopo↵, L.: Seismic scattering from topograhic irregularities. Journal of
Geophysical Research, 65(10):3437–3444, 1960.

37. Herrera, I.: A perturbation method for elastic wave propagation: 1. nonparallel boundaries.
Journal of Geophysical Research, 69(18):3845–3851, 1964.

38. Woodhouse, J. and Dahlen, F.: The e↵ect of a general aspherical perturbation on the free
oscillations of the earth. Geophysical Journal of the Royal Astronomical Society,
53(2):335–354, 1978.

39. Snieder, R.: The influence of topography on the propagation and scattering of surface
waves. Physics of the earth and planetary interiors, 44(3):226–241, 1986.

40. Wu, R.-S.: The perturbation method in elastic wave scattering. In Scattering and
Attenuation of Seismic Waves, Part II, pages 605–637. Springer, 1989.

41. Nicholls, D. P.: E�cient enforcement of far-field boundary conditions in the transformed
field expansions method. Journal of Computational Physics, 230(22):8290–8303,
2011.

42. Milder, D. M.: An improved formalism for wave scattering from rough surfaces.
J. Acoust. Soc. Am., 89(2):529–541, 1991.

43. Milder, D. M. and Sharp, H. T.: E�cient computation of rough surface scat-
tering. In Mathematical and numerical aspects of wave propagation phenomena
(Strasbourg, 1991), pages 314–322. Philadelphia, PA, SIAM, 1991.

44. Milder, D. M. and Sharp, H. T.: An improved formalism for rough surface scattering. ii:
Numerical trials in three dimensions. J. Acoust. Soc. Am., 91(5):2620–2626, 1992.

45. Milder, D. M.: Role of the admittance operator in rough-surface scattering.
J. Acoust. Soc. Am., 100(2):759–768, 1996.

46. Milder, D. M.: An improved formalism for electromagnetic scattering from a perfectly
conducting rough surface. Radio Science, 31(6):1369–1376, 1996.

91

47. Bruno, O. P. and Reitich, F.: Numerical solution of di↵raction problems: A method of
variation of boundaries. J. Opt. Soc. Am. A, 10(6):1168–1175, 1993.

48. Bruno, O. P. and Reitich, F.: Numerical solution of di↵raction problems: A method of
variation of boundaries. II. Finitely conducting gratings, Padé approximants, and
singularities. J. Opt. Soc. Am. A, 10(11):2307–2316, 1993.

49. Bruno, O. P. and Reitich, F.: Numerical solution of di↵raction problems: A method of varia-
tion of boundaries. III. Doubly periodic gratings. J. Opt. Soc. Am. A, 10(12):2551–
2562, 1993.

50. Bruno, O. P. and Reitich, F.: Calculation of electromagnetic scattering via boundary varia-
tions and analytic continuation. Appl. Comput. Electromagn. Soc. J., 11(1):17–31,
1996.

51. Bruno, O. P. and Reitich, F.: Boundary–variation solutions for bounded–obstacle scattering
problems in three dimensions. J. Acoust. Soc. Am., 104(5):2579–2583, 1998.

52. Nicholls, D. P. and Reitich, F.: A new approach to analyticity of Dirichlet-Neumann
operators. Proc. Roy. Soc. Edinburgh Sect. A, 131(6):1411–1433, 2001.

53. Nicholls, D. P. and Reitich, F.: Stability of high-order perturbative methods for the com-
putation of Dirichlet-Neumann operators. J. Comput. Phys., 170(1):276–298, 2001.

54. Nicholls, D. P. and Reitich, F.: Analytic continuation of Dirichlet-Neumann operators.
Numer. Math., 94(1):107–146, 2003.

55. Nicholls, D. P. and Reitich, F.: Shape deformations in rough surface scattering: Cancella-
tions, conditioning, and convergence. J. Opt. Soc. Am. A, 21(4):590–605, 2004.

56. Nicholls, D. P. and Reitich, F.: Shape deformations in rough surface scattering: Improved
algorithms. J. Opt. Soc. Am. A, 21(4):606–621, 2004.

57. Coifman, R. and Meyer, Y.: Nonlinear harmonic analysis and analytic dependence. In
Pseudodi↵erential operators and applications (Notre Dame, Ind., 1984), pages 71–
78. Amer. Math. Soc., 1985.

58. Hu, B. and Nicholls, D. P.: Analyticity of Dirichlet–Neumann operators on Hölder and
Lipschitz domains. SIAM J. Math. Anal., 37(1):302–320, 2005.

92

59. Craig, W. and Sulem, C.: Numerical simulation of gravity waves. Journal of Computational
Physics, 108:73–83, 1993.

60. Nicholls, D. P.: Traveling water waves: Spectral continuation methods with parallel imple-
mentation. J. Comput. Phys., 143(1):224–240, 1998.

61. Gottlieb, D. and Orszag, S. A.: Numerical analysis of spectral methods: theory and
applications. Philadelphia, Pa., Society for Industrial and Applied Mathematics,
1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26.

62. Malcolm, A. and Nicholls, D. P.: Operator expansions and constrained quadratic opti-
mization for interface reconstruction: Impenetrable acoustic media. Wave Motion,
51:23–40, 2014.

63. Malcolm, A. and Nicholls, D. P.: A boundary perturbation method for recovering interface
shapes in layered media. Inverse Problems, 27(9):095009, 2011.

64. Frigo, M. and Johnson, S. G.: FFTW: An adaptive software architecture for the FFT.
In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, volume 3,
pages 1381–1384. IEEE, 1998.

65. OpenMP Architecture Review Board: OpenMP Application Program Interface, version 4.0
edition, July 2013.

66. Nicholls, D. P. and Taber, M.: Joint analyticity and analytic continuation for
Dirichlet–Neumann operators on doubly perturbed domains. J. Math. Fluid Mech.,
10(2):238–271, 2008.

67. Nicholls, D. P. and Taber, M.: Detection of ocean bathymetry from surface wave measure-
ments. Euro. J. Mech. B/Fluids, 28(2):224–233, 2009.

68. ed. R. Petit Electromagnetic theory of gratings. Berlin, Springer-Verlag, 1980.

69. Kress, R.: Linear integral equations. New York, Springer-Verlag, second edition, 1999.

93

VITA

94

Zheng Fang

Education
Phd in Applied Math, University of Illinois at Chicago, Expected June 2015.
GPA: 4.0/4.0
Homepage:http://www.math.uic.edu/ zfang3/
Master in Applied Mathematics, University of Illinois at Chicago, 2012.
GPA: 4.0/4.0
Master exam marks: 157/160
Master in Computer Science, University of Illinois at Chicago, Expected June
2015.
GPA: 4.0/4.0
Bachelor of Mathematics, University of Science and Technology of China, June
2010.
GPA: 3.6/4.3

Related Coursework
Advanced Partial Di�erential Equations, Numerical Analysis of PDE, Lin-
ear & Nonlinear Waves, Asymptotic Methods, Singular Pertubations, Top-
ics in Fluid Mechanics, Computer Algorithms, Object-Oriented Languages
& Environments, Supercomputing.

Work Experience
Summer

2014
Tech Intern II, Yahoo Mail!, Sunnyvale, CA.

Summer
2012–Present

Research Assistant, University of Illinois at Chicago.
Advisor: Professor David Nicholls.

2010-2012 Teaching Assistant, University of Illinois at Chicago.

Computer Skills
Scientific MATLAB, MATHEMATICA, R

Development Java, C++, Smalltalk, Python
Typesetting Latex, Beamer

Other SQL, CSS, HTML, Linux,

