In his unpublished 1998 manuscript *Minimal Stretch Maps between Hyperbolic Surfaces*, Thurston considers the following question,

"Given any two hyperbolic surfaces S and T, what is the least possible value of the global Lipschitz constant

$$L(\phi) = \sup_{x \neq y} \frac{d(\phi(x), \phi(y))}{d(x, y)}$$

for a homeomorphism $\phi: S \to T$ in a given homotopy class?"

If we consider a single surface M, then we can examine the function $L: \mathcal{T}(M) \times \mathcal{T}(M) \to \mathbb{R}$ defined by

$$L(g,h) = \inf_{\phi \sim \mathrm{id}} \log L(\phi) = \inf_{\phi \sim \mathrm{id}} \log \sup_{x \neq y} \frac{d_h(\phi(x), \phi(y))}{d_g(x, y)}$$

In the same paper, Thurston proves that $L(g,h) \ge 0$ and L(g,h) = 0 if and only if g = h ([1] p. 5), and that, in general, L is not symmetric. He leaves the remaining proposition to the reader,

Proposition 0.1. L satisfies the triangle inequality. More precisely, we have

$$L(f,g) + L(g,h) \ge L(f,h).$$

To prove Proposition 0.1, we use the following characterization of the infimum.

Lemma 0.2. Let $E \subset \mathbb{R}$ and $C \in \mathbb{R}$. Then $\inf E \leq C$ if and only if there is some $e \in E$ so that $e \leq C$.

Proof. If every $e \in E$ is larger that C, then C is a lower bound for E, and it follows that $C \leq \inf E$. On the other hand, if there is some $e \in E$ satisfying $e \leq C$, then $\inf E$ is no larger than C because $\inf E$ is a lower bound of E.

Now we prove Proposition 0.1.

Proof. By the Lemma, we need to find $\phi: (S, f) \to (S, h)$ so that

$$\log L(\phi) \le L(f,g) + L(g,h).$$

Let $\epsilon > 0$. By the definition of the infimum, there are maps $\phi_1 : (S, f) \to (S, g)$ and $\phi_2 : (S, g) \to (S, h)$ so that

$$\log L(\phi_1) \le L(f,g) + \epsilon$$
$$\log L(\phi_2) \le L(g,h) + \epsilon.$$

Consider the composition $\phi := \phi_2 \circ \phi_1 : (S, f) \to (S, h)$. We have,

$$\log L(\phi) = \log L(\phi_2 \circ \phi_1)$$

= log L(\phi_2)L(\phi_1) (*)
= log L(\phi_2) + log L(\phi_1)
\le L(f,g) + L(g,h) + 2\epsilon.

Since ϵ was arbitrary, this establishes the proposition modulo the equality labeled (*), which requires justification. Using the definition, we compute

$$L(\phi_2 \circ \phi_1) = \sup_{x \neq y} \frac{d_h(\phi_2(\phi_1(x)), \phi_2(\phi_1(y)))}{d_f(x, y)}$$

$$= \sup_{x \neq y} \left(\frac{d_h(\phi_2(\phi_1(x)), \phi_2(\phi_1(y)))}{d_g(\phi_1(x), \phi_1(y))} \cdot \frac{d_g(\phi_1(x), \phi_1(y))}{d_f(x, y)} \right)$$
$$= \sup_{x \neq y} \frac{d_h(\phi_2(\phi_1(x)), \phi_2(\phi_1(y)))}{d_g(\phi_1(x), \phi_1(y))} \cdot \sup_{x \neq y} \frac{d_g(\phi_1(x), \phi_1(y))}{d_f(x, y)}$$
$$= L(\phi_2)L(\phi_1).$$

This completes the proof of Proposition 0.1.

References

[1] William Thurston. Minimal stretch maps between hyperbolic surfaces. arXiv:math/9801039