Thurston's Metric satisfies the Triangle Inequality

In his unpublished 1998 manuscript Minimal Stretch Maps between Hyperbolic Surfaces, Thurston considers the following question,
"Given any two hyperbolic surfaces S and T, what is the least possible value of the global Lipschitz constant

$$
L(\phi)=\sup _{x \neq y} \frac{d(\phi(x), \phi(y))}{d(x, y)}
$$

for a homeomorphism $\phi: S \rightarrow T$ in a given homotopy class?"
If we consider a single surface M, then we can examine the function $L: \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathbb{R}$ defined by

$$
L(g, h)=\inf _{\phi \sim \mathrm{id}} \log L(\phi)=\inf _{\phi \sim \mathrm{id}} \log \sup _{x \neq y} \frac{d_{h}(\phi(x), \phi(y))}{d_{g}(x, y)}
$$

In the same paper, Thurston proves that $L(g, h) \geq 0$ and $L(g, h)=0$ if and only if $g=h$ (1] p. 5), and that, in general, L is not symmetric. He leaves the remaining proposition to the reader,

Proposition 0.1. L satisfies the triangle inequality. More precisely, we have

$$
L(f, g)+L(g, h) \geq L(f, h)
$$

To prove Proposition 0.1, we use the following characterization of the infimum.
Lemma 0.2. Let $E \subset \mathbb{R}$ and $C \in \mathbb{R}$. Then $\inf E \leq C$ if and only if there is some $e \in E$ so that $e \leq C$.
Proof. If every $e \in E$ is larger that C, then C is a lower bound for E, and it follows that $C \leq \inf E$. On the other hand, if there is some $e \in E$ satisfying $e \leq C$, then $\inf E$ is no larger than C because $\inf E$ is a lower bound of E.

Now we prove Proposition 0.1.
Proof. By the Lemma, we need to find $\phi:(S, f) \rightarrow(S, h)$ so that

$$
\log L(\phi) \leq L(f, g)+L(g, h)
$$

Let $\epsilon>0$. By the definition of the infimum, there are maps $\phi_{1}:(S, f) \rightarrow(S, g)$ and $\phi_{2}:(S, g) \rightarrow(S, h)$ so that

$$
\begin{aligned}
& \log L\left(\phi_{1}\right) \leq L(f, g)+\epsilon \\
& \log L\left(\phi_{2}\right) \leq L(g, h)+\epsilon
\end{aligned}
$$

Consider the composition $\phi:=\phi_{2} \circ \phi_{1}:(S, f) \rightarrow(S, h)$. We have,

$$
\begin{aligned}
\log L(\phi) & =\log L\left(\phi_{2} \circ \phi_{1}\right) \\
& =\log L\left(\phi_{2}\right) L\left(\phi_{1}\right) \quad(*) \\
& =\log L\left(\phi_{2}\right)+\log L\left(\phi_{1}\right) \\
& \leq L(f, g)+L(g, h)+2 \epsilon
\end{aligned}
$$

Since ϵ was arbitrary, this establishes the proposition modulo the equality labeled $(*)$, which requires justification. Using the definition, we compute

$$
L\left(\phi_{2} \circ \phi_{1}\right)=\sup _{x \neq y} \frac{d_{h}\left(\phi_{2}\left(\phi_{1}(x)\right), \phi_{2}\left(\phi_{1}(y)\right)\right)}{d_{f}(x, y)}
$$

$$
\begin{aligned}
& =\sup _{x \neq y}\left(\frac{d_{h}\left(\phi_{2}\left(\phi_{1}(x)\right), \phi_{2}\left(\phi_{1}(y)\right)\right)}{d_{g}\left(\phi_{1}(x), \phi_{1}(y)\right)} \cdot \frac{d_{g}\left(\phi_{1}(x), \phi_{1}(y)\right)}{d_{f}(x, y)}\right) \\
& =\sup _{x \neq y} \frac{d_{h}\left(\phi_{2}\left(\phi_{1}(x)\right), \phi_{2}\left(\phi_{1}(y)\right)\right)}{d_{g}\left(\phi_{1}(x), \phi_{1}(y)\right)} \cdot \sup _{x \neq y} \frac{d_{g}\left(\phi_{1}(x), \phi_{1}(y)\right)}{d_{f}(x, y)} \\
& =L\left(\phi_{2}\right) L\left(\phi_{1}\right) .
\end{aligned}
$$

This completes the proof of Proposition 0.1.

References

[1] William Thurston. Minimal stretch maps between hyperbolic surfaces. arXiv:math/9801039

