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10.7 Exercise

LetM be an L-structure, A ⊂M , and a ∈Mn. Statements (1), (2), and (3) are equivalent:

(1) a is definable in M over A.

(2) For any N �M the only realization of tpM(a/A) in N is a.

(3) For any ε > 0 there is an L(A)-formula φ(x) and δ > 0 such that φM(a) = 0 and the
diameter of {b ∈Mn|φM(b) < δ} is ≤ ε.

If N is any fixed ω1-saturated elementary extension of M, then (1) is equivalent to:

(4) The only realization of tpM(a/A) in N is a.

(1)⇒(2) Suppose a is definable in M over A. Let (φk(x))k<ω be L(A)-formulas such that

∀ε > 0∃K∀k ≥ K∀x ∈Mn|φMk (x)− d(x, a)| ≤ ε.

Let ε > 0 be given and let K witness this for ε
2
. Let N � M and let b ∈ Nn realize

tpM(a/A). For k ≥ K, |φMk (a) − d(a, a)| ≤ ε
2
, so φMk (a) ≤ ε

2
, thus φk(x) ≤ ε

2
is in

tpM(a/A). Hence, N � φk(b) ≤ ε
2
. M � sup

x
|φk(x)− d(x, a)| ≤ ε

2
, so by elementarity,

N � sup
x
|φk(x) − d(x, a)| ≤ ε

2
, so in particular, N � |φk(b) − d(b, a)| ≤ ε

2
. Thus,

d(a, b) ≤ |d(a, b) − φNk (b)| + |φNk (b)| ≤ ε
2

+ ε
2

= ε. Hence, since ε > 0 was arbitrary,
a = b. So a is the only realization of tpM(a/A) in N �M.

(2)⇒(4) Clear.

(4)⇒(3) We will prove the contrapositive: suppose (3) fails, then ∃ε > 0 such that for all
L(A)-formulas φ(x) and δ > 0, if φM(a) = 0, then the set {b ∈ Mn|φM(b) < δ} has
diameter ≥ ε. Let such an ε > 0 be given. Let p(x) be the following type over A∪{a}:
tpM(a/A) ∪ {d(x, a) ≥ ε

2
}.

Claim 1. p(x) is finitely satisfiable.
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Proof. Let Γ(x) be a finite subset of p(x), and let {φ1(x) = 0, . . . , φm(x) = 0, d(x, a) ≥
ε
2
} ⊃ Γ(x) where φi(x) = 0 ∈ tpM(a/A). Then for φ(x) = max{φ1(x), . . . , φm(x)},
φ(x) = 0 ∈ tpM(a/A), so φ(x) = 0 ∈ p(x). Thus, it is enough to show that {φ(x) =
0, d(x, a) ≥ ε

2
} is satisfiable. By ¬(3), {b ∈Mn|φM(b) < δ} has diameter ≥ ε for every

δ > 0, so {b ∈Mn|φM(b) = 0} =
⋃
δ>0

{b ∈Mn|φM(b) < δ} has diameter ≥ ε. So choose

b such that d(b, a) ≥ ε
2

and φM(b) = 0. This satisfies Γ(x).

Now, let N � M be ω1-saturated. Since p(x) is finitely satisfiable, and A (without
loss of generality, by 10.10(3)) is countable, p(x) is realized by some b ∈ Nn. But
d(a, b) ≥ ε

2
> 0, so a 6= b. Thus, a is not the only realization of tpM(a/A) in N .

(3)⇒(1) Let φk(x) an L(A)-formula and δk > 0 be witnesses of (3) for ε = 1
k
. Then φMk (a) = 0

and φMk (b) < δk ⇒ d(a, b) ≤ 1
k

since a ∈ {b ∈ Mn|φMk (b) < δk} and it has diameter
≤ 1

k
. So by Proposition 9.19, {a} is definable.

10.8 Exercise

Let M be an L-structure, A ⊂ M , and a ∈ Mn. Statements (1), (2), (3), and (4) are
equivalent:

(1) a is algebraic in M over A.

(2) For any N �M, every realization of tpM(a/A) in N is in Mn.

(3) For any ε > 0 there is an L(A)-forumla φ(x) and δ > 0 such that φM(a) = 0 and the
set {b ∈Mn|φM(b) < δ} has a finite ε-net.

(4) For any N �M, the set of realizations of tpM(a/A) in N is compact.

If N is any fixed ω1-saturated extension of M, then (1) is equivalent to:

(5) The set of realizations of tpM(a/A) in N is compact.

If N is any fixed κ-saturated elementary extension of M, with κ uncountable, then (1) is
equivalent to:

(6) The set of realizations of tpM(a/A) in N has density character < κ.

(1)⇒(3) Let C ⊂ Mn be a compact set containing a and let (φk)k<ω be L(A)-formulas such
that ∀x ∈ Mn, |φMk (x) − d(x,C)| ≤ 1

k
. Let ε > 0 be given. Choose k so that 3

k
< ε

3
.

Let δ = 1
k

and φ(x) = φk(x)−̇ 1
k

(where x−̇y = max(x− y, 0)).

Then, since |φMk (a) − d(a, C)| = φMk (a) ≤ 1
k

because a ∈ C, φM(a) = φMk (a)−̇ 1
k

= 0.
Let b ∈ Mn with φM(b) < δ. φMk (b)−̇ 1

k
< 1

k
, so φMk (b) < 2

k
. Thus d(b, C) ≤ |φMk (b) −

d(b, C)|+ |φMk (b)| ≤ 1
k

+ 2
k

= 3
k
< ε

3
. Now consider the open cover {B(c, ε

2
) : c ∈ C} of

C. Since C is compact, there are c1, . . . , cm ∈ C such that B(c1,
ε
2
), . . . , B(cm,

ε
2
) is a

finite subcover of C. Let b ∈ {b ∈ Mn|φM(b) < δ}. Since d(b, C) < ε
3
, we can choose

x ∈ C such that d(b, x) < ε
2
. Since {B(ci,

ε
2
)|1 ≤ i ≤ m} is a cover of C, there is ci such

that x ∈ B(ci,
ε
2
). So d(b, ci) ≤ d(b, x) + d(x, ci) <

ε
2

+ ε
2

= ε. So {B(ci, ε)|1 ≤ i ≤ m}
is a finite ε-net of {b ∈Mn|φM(b) < δ}.
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(3)⇒(1) Let N �M be ω1-saturated.

Claim 2. For any ε > 0, there is an L(A)-formula φ(x) and δ > 0 such that φN (a) = 0
and {b ∈ Nn|φN (b) < δ} has a finite ε-net.

Proof. Let ε > 0 be given. Choose an L(A)-formula φ(x) and δ > 0 such that there
are b1, . . . , bm which give a finite ε-net of {b ∈Mn|φM(b) < δ}. So

M � sup
b

min(δ−̇φ(b), min
1≤i≤m

(d(b, bi)−̇ε)) = 0. Since M� N ,

N � sup
b

min(δ−̇φ(b), min
1≤i≤m

(d(b, bi)−̇ε)) = 0. So for b ∈ {b ∈ Nn|φN (b) < δ},

δ−̇φN (b) > 0, so min
1≤i≤m

(b, bi)−̇ε = 0 for some i, so d(b, bi) ≤ ε. Thus, b1, . . . , bm

give a finite ε-net of {b ∈ Nn|φN (b) < δ}.

For k ≥ 1, let φk(x) an L(A)-formula and δk > 0 be witnesses of this in N for ε = 1
k
.

Let C =
⋂
k<ω

Z(φk(x)−̇δk
2

).

Claim 3. C is compact.

Proof. Let ε > 0 be given. Let k be such that 1
k
< ε. Then, since C ⊂ Z(φk(x)−̇ δk

2
) ⊂

{b ∈ Nn|φNk (b) < δk}, and there is a finite ε-net of {b ∈ Nn|φNk (b) < δk}, we get a
finite ε-net of C.

Let (bk)k<ω be a sequence in C. We will define C1 ⊃ C2 ⊃ . . . subsets of C with
diam(Ck) ≤ 1

k
and (ak)k<ω a subsequence of (bk) such that {k ∈ ω|bk ∈ Ci} is infinite

and (ak) is Cauchy.

Let C1 = C, a1 = b1. Given a1, . . . , ak and C1 ⊃ . . . ⊃ Ck, let B1, . . . , Bm be a finite
1

k+1
-net of C. Then B1 ∩ Ck, . . . , Bm ∩ Ck is a finite 1

k+1
-net of Ck. Since there are

infinitely many j such that bj ∈ Ck, for at least one Bi, Bi∩Ck is such that for infinitely
many j, bj ∈ Bi ∩ Ck. Let Ck+1 = Bi ∩ Ck and let ak+1 = bj where j is the least such
that bj ∈ Ck+1 and if a1 = bi1 , . . . , ak = bik , j > i1, . . . , ik.

So for any ε > 0, choose N such that 1
N
< ε. Then for k, j > N , ak, aj ∈ CN , so

d(ak, aj) <
1
N

= diam(CN) < ε. So (ak) is Cauchy.

Since N is complete, (ak) converges to some c. Now consider φk(x)−̇ δk
2

. Let ε > 0

be given, and let ∆ be the modulus of uniform continuity for φk(x)−̇ δk
2

. Choose j

such that d(aj, c) < ∆(ε). Then |(φNk (aj)−̇ δk
2

) − (φNk (c)−̇ δk
2

)| ≤ ε. But since aj ∈ C,

φNk (aj)−̇δk = 0, so φNk (c)−̇δk ≤ ε. Thus, since ε > 0 was arbitrary, φNk (c)−̇ δk
2

= 0. So
since k was arbitrary, c ∈ C. Hence, C is sequentially compact.

Thus, since N is a metric space, C is compact.

By Proposition 9.14, C = Z(P ) for some predicate P which is definable over A. So by
Proposition 10.6, C is definable over A since N is ω1-saturated.

Since φNk (a) = 0 for all k, φNk (a)−̇ δk
2

= 0, so a ∈ C.

Thus, a ∈ aclN (A) = aclM(A) by Corollary 10.5. So a is algebraic over A in M, as
required.
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(3)⇒(4) Let N �M and let D ⊂ Nn be the set of realizations of tpM(a/A) in N .

Claim 4. For every ε > 0, there is a finite ε-net of D.

Proof. Let ε > 0 be given. Let φ(x) be an L(A) formula and δ > 0 be such that {b ∈
Mn|φM(b) < δ} has a finite ε-net. Let c1, . . . , cm be such that B(c1, ε), . . . , B(cm, ε)
is that net. So M � sup

b
(min(δ−̇φ(b), min

1≤i≤m
(d(ci, b)−̇ε))) = 0. So since M � N ,

N � sup
b

(min(δ−̇φ(b), min
1≤i≤m

(d(ci, b)−̇ε))) = 0. Let b ∈ D. Since φM(a) = 0 and

b � tpM(a/A), φN (b) = 0. δ−̇φ(b) > 0, so for some i, d(ci, b)−̇ε = 0, so ε ≥ d(ci, b).
Thus, B(c1, ε), . . . , B(cm, ε) is a finite ε-net of D.

Claim 5. D is sequentially compact.

Proof. Let (bk)k<ω be a sequence in D. We will define C1 ⊃ C2 ⊃ . . . subsets of D with
diam(Ck) ≤ 1

k
and (ak)k<ω a subsequence of (bk) such that {k ∈ ω|bk ∈ Ci} is infinite

and (ak) is Cauchy.

Let C1 = D, a1 = b1. Given a1, . . . , ak and C1 ⊃ . . . ⊃ Ck, let B1, . . . , Bm be a finite 1
k
-

net of D. Then B1∩Ck, . . . , Bm∩Ck is a finite 1
k+1

-net of Ck. Since there are infinitely
many j such that bj ∈ Ck, for at least one Bi, Bi ∩ Ck is such that for infinitely many
j, bj ∈ Bi ∩ Ck. Let Ck+1 = Bi ∩ Ck and let ak+1 = bj where j is the least such that
bj ∈ Ck+1 and if a1 = bi1 , . . . , ak = bik , j > i1, . . . , ik.

So for any ε > 0, choose N such that 1
N
< ε. Then for k, j > N , ak, aj ∈ CN , so

d(ak, aj) <
1
N

= diam(CN) < ε. So (ak) is Cauchy.

Since M is complete, (ak) converges to some c. Now let φ be an L(A)-formula such
that φ = 0 ∈ tpM(a/A). Let ε > 0 be given, and let ∆ be the modulus of uniform
continuity for φ. Choose k such that d(ak, c) < ∆(ε). Then |φN (ak)− φN (c)| ≤ ε. But
since ak ∈ D, φN (ak) = 0, so φN (c) ≤ ε. Thus, since ε > 0 was arbitrary, φN (c) = 0.
So since φ was arbitrary, c � tpM(a/A), so c ∈ D. Hence, D is sequentially compact.

Thus, since N is a metric space, D is compact, as required.

(4)⇒(3) Since M � M, the set of realizations of tpM(a/A) in M is compact. Let ε > 0 be
given. Let b1, . . . , bn � tpM(a/A) be such that B(b1, ε), . . . , B(bn, ε) is a finite ε-net of

the realizations of tpM(a/A). Let φ(x) = min
1≤i≤m

(d(x, bi)−̇
ε

2
). Let δ = ε

2
.

Then φM(x) < δ ⇔ d(x, bi)−̇ ε
2
< ε

2
for some 1 ≤ i ≤ m ⇔ d(x, bi) < ε for some

1 ≤ i ≤ m. That is, x ∈ {b ∈Mn|φM(x) < δ} if and only if x is in one of the B(bi, ε),
so this set has a finite ε-net.

(3)⇒(2) Let ε > 0 be given. Let φ(x) = 0 ∈ tpM(a/A) and δ > 0 be such that {b ∈Mn|φM(b) <
δ} has a finite ε-net.

Let B(b1, ε), . . . , B(bm, ε) with b1, . . . , bm ∈Mn be such a net.

M � sup
c

(min(δ−̇φ(c), min
1≤i≤m

(d(c, bi)−̇ε))) = 0, so since M� N ,
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N � sup
c

(min(δ−̇φ(c), min
1≤i≤m

(d(c, bi)−̇ε))) = 0. So for c ∈ Nn with φN (c) = 0, for some

1 ≤ i ≤ m, d(c, bi) ≤ ε.

So let c ∈ Nn and suppose c � tpM(a/A). Then for each 1
k
, since φN (c) = 0 for all

φ = 0 ∈ tpM(a/A), we can find some bk ∈ M such that d(c, bk) ≤ 1
k
. Thus, c is the

limit of the sequence (bk)k<ω in M and M is complete, so c ∈Mn.

(2)⇒(3) Suppose ¬(3). That is, ∃ε > 0 such that for every L(A)-formula φ and δ > 0 such
that φM(a) = 0, there is no finite ε-net of {b ∈M |φM(b) < δ}. Let B be the set of all
realizations of tpM(a/A) inM. For b ∈ B, let ψb(x) be ε−̇d(x, b). Let p be the following
type over A∪B: {φ(x) ≤ 1

n
|φ is an L(A)-forumla, φM(a) = 0, n ∈ N}∪{ψb(x) : b ∈ B}.

Claim 6. p is finitely satisfiable.

Proof. Let Γ ⊂ p be finite. Then there are b1, . . . , bn � tpM(a/A) and φ1, . . . , φm
L(A)-formulas such that φMi (a) = 0 so that Γ ⊂ {ψb1 = 0, . . . , ψbn = 0, φ1(x) <
1
n1
, . . . , φm(x) < 1

nm
}. Let φ = max(φ1, . . . , φm) and δ = min( 1

n1
, . . . , 1

nm
). We know

φM(a) = 0, so B(b1, ε), . . . , B(bn, ε) is not a cover of {b ∈ Mn|φM(b) < δ}. So choose
x ∈ {b ∈Mn|φM(b) < δ} \ (B(b1, ε) ∪ . . . ∪B(bn, ε)). Thus, x � Γ.

Let N � M be such that there is y ∈ Nn realizing p. So y � tpM(a/A) since for all
L(A)-formulas with φ(x) = 0 ∈ tpM(a/A), and all n ∈ N, φN (y) ≤ 1

n
, so φN (y) = 0.

d(y, b) ≥ ε > 0 for all b ∈ B, so y /∈ B. Thus, y /∈Mn.

(4)⇒(5) Clear.

(5)⇒(4) Let N � M and let N ′ � N be an ω1-saturated elementary extension. Then {b ∈
N|b � tpM(a/A)} = {b ∈ N ′|b � tpM(a/A)} ∩ N . {b ∈ N ′|b � tpM(a/A)} is compact
by assumption and N is complete, and thus closed, so {b ∈ N|b � tpM(a/A)} is
compact.

(4)⇒(6) The set of realizations of tpM(a/A) in N is compact, and thus, separable. That is, it
has a countable dense subset, so its density character is < κ, since κ is is uncountable.

(6)⇒(4) Suppose there is ε > 0 such that there is no finite ε-net of the realizations in N of
p(x) = tpM(a/A). Note: in the proof of (3)⇒(4), we saw that it is enough to show
that if for every ε > 0, the set of realizations of tpM(a/A) has a finite ε-net, to see that
it is compact. So if we assume the set of realizations in not compact, there must be
some such ε > 0.

Consider the following type in κ variables:

Γ((xi)i<κ) =
⋃
i<κ

p(xi) ∪ {d(xi, xj) ≥ ε : i 6= j}.

Claim 7. Γ is finitely satisfiable.

Proof. Suppose not. Let n be such that p(x1)∪ . . .∪ p(xn)∪ {d(xi, xj) ≥ ε|i, j ≤ n} is
realized by some a1, . . . , an but p(x1)∪ . . .∪p(xn)∪p(xn+1)∪{d(xi, xj) ≥ ε|i, j ≤ n+1}
is not satisfiable. Then, for every b � p(x), d(ai, b) < ε for some 1 ≤ i ≤ n. So these
give a finite ε-net of the set of realizations. ⇒⇐.
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Thus, by compactness, Γ((xi)i<κ) is satisfiable.

Fact 1. If M is ω-saturated and (inf
y
φ(x, y))M = 0, then there is y ∈ M such that

φ(x, y) = 0.

Proof. Let q(y) be the type over x {φ(x, y) ≤ 1
k
|k < ω}. This is finitely satisfiable,

since for any k < ω, there is y such that φ(x, y) ≤ 1
k
. Thus, by ω-saturation, since x is

finite, there is y realizing q, and for such a y, we must have φ(x, y) = 0.

Lemma 2. If q((xi)i<κ), a type over A with |A| < κ, is finitely satisfiable and M is
κ-saturated, then q is realized in M

Proof. Let p((xi)i<κ) be a completion of q. For γ < κ, let φ((xi)i≤γ) denote a formula
whose variables are among (xi)i≤γ. Let p|γ((xi)i≤γ) be the set of formulas from p who
variables are among (xi)i≤γ.

We will inductively build a sequence (ai)i<κ which realizes p. By κ-saturation, since
|A| < κ, we can find a0 � p|0(x0).
Then, suppose we have (ai)i<γ. Let φ((xi)i<γ, xγ) = 0 be from p|γ((xi)i≤γ). Then,
since p is complete, inf

y
φ((xi)i<γ, y) = 0 is in p, and thus, in p|β for some β < γ.

Thus, inf
y
φ((ai)i<γ, y) = 0. So by the previous fact, there is some aγ ∈ M such that

φ((ai)i<γ, aγ) = 0. Hence, p|γ((ai)i<γ, xγ) is finitely satisfiable.

So, if we consider p|γ((ai)i<γ, xγ) as a 1-type over A∪{ai|i < γ}, since γ < κ, |A∪{ai|i <
γ}| < κ, so by κ-saturation, there is aγ realizing it.

Thus, we get (ai)i<κ realizing p((xi)i<κ), and hence, q((xi)i<κ).

So by κ-saturation, since A is, without loss of generality, countable by 10.11(3),
Γ((xi)i<κ) is realized by some (ai)i<κ in N .

Now suppose the set of realizations of p in N has density character λ < κ. Let S be a
size λ dense subset of the set of realizations.

We know from Γ that there are at least κ many distinct realizations and that for every
ai there is s ∈ S such that d(ai, s) <

ε
2
. So since |S| < κ, there must be some s ∈ S

with i 6= j such that d(ai, s) <
ε
2

and d(aj, s) <
ε
2

(or else there could only be at most
λ many ai’s). But then d(ai, aj) ≤ d(ai, s) + d(aj, s) <

ε
2

+ ε
2

= ε ⇒⇐.

Thus, the set of realizations of tpM(a/A) in N has density character ≥ κ.

10.11 Exercise

Let M be an L-structure and A,B be subsets of M. We write dcl instead of dclM.
Properties of dcl:

(1) A ⊂ dcl(A).

Proof. Let a ∈ A. Then d(x, a) is an L(A)-formula, so a ∈ dcl(A).
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(2) If A ⊂ dcl(B) then dcl(A) ⊂ dcl(B).

Proof.

Lemma 3. For X ⊂M, if σ ∈ Aut(M/X), then σ(x) = x for all x ∈ dcl(X).

Proof. Let x ∈ dcl(X). By 10.7(2), x is the only realization of tpM(x/X). Let σ ∈
Aut(M/X). Then σ(x) � tpM(x/X), so σ(x) = x.

Let a ∈ dcl(A). By 10.7(2), it is enough to show that the only realization of tpM(a/B)
is a. Let b � tpM(a/B). Let σ ∈ Aut(M/B) be such that σ(a) = b. Since σ
fixes B point wise, by the lemma, it fixes dcl(B) point wise, and thus, A point wise.
σ ∈ Aut(M/A), so by the lemma, σ(a) = a. Thus, b = a.

Hence, a ∈ dcl(B).

(3) If a ∈ dcl(A) then there exists a countable set A0 ⊂ A such that a ∈ dcl(A0).

Proof. Let a ∈ dcl(A). Let φk(x, y) and ak ∈ A|y| be such that |d(x, a)−φk(x, ak)| ≤ 1
k
.

Let A0 =
⋃
k<ω

ak. A0 is countable, since each |y| is finite. Thus, d(x, a) is definable over

A0, so a ∈ dcl(A0).

(4) If A is a dense subset of B, then dcl(A) = dcl(B).

Proof. A ⊂ B ⇒ A ⊂ dcl(B) by (1), so dcl(A) ⊂ dcl(B) by (2).

Let b ∈ dcl(B). By 10.7(2), it is enough to show that b is the only realization of
tpM(b/A).

Claim 8. For A ⊂ B dense, if c � tpM(b/A) then c � tpM(b/B).

Proof. Let φ(x, b1, . . . , bm) = 0 ∈ tpM(b/B) with b1, . . . , bm ∈ B. Let ε > 0 be
given. We will show that φ(c, b1, . . . , bm) ≤ ε, and thus, since ε > 0 was arbitrary,
φ(c, b1, . . . , bm) = 0.

Let δ be such that max(d(a1, b1), . . . , d(am, bm)) < δ ⇒ |φ(x, b1, . . . , bm)−φ(x, a1, . . . , am)| ≤
ε (δ = ∆(ε) where ∆ is the modulus of uniform continuity for φ). We can choose such an
a1, . . . , am ∈ A since A ⊂ B is dense. So since φ(b, b1, . . . , bm) = 0, φ(b, a1, . . . , am) ≤ ε.
Thus, since c � tpM(b/A), φ(c, a1, . . . , am) ≤ ε, as required.

Hence c � tpM(b/B).

So suppose a � tpM(b/A). Then by the claim, a � tpM(b/B). So since b ∈ dcl(B), by
10.7(2), we must have b = a.

Hence, b is the only realization of tpM(b/A), so b ∈ dcl(A).
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10.12 Exercise

Let M be an L-structure and A,B be subsets of M. We write acl instead of aclM.
Properties of acl:

(1) A ⊂ acl(A).

Proof. Let a ∈ A. Then {a} is definable by d(x, a), an L(A)-formula, and it is compact,
so a ∈ acl(A).

(2) If A ⊂ acl(B) then acl(A) ⊂ acl(B).

Proof.

Lemma 4. For any X ⊂M, if σ ∈ Aut(M/X) and x ∈ acl(X), then σ(x) ∈ acl(X).

Proof. Let x ∈ acl(X) and σ ∈ Aut(M/X). Then tpM(σ(x)/X) = tpM(x/X). So
by 10.8(2), since x ∈ acl(X), the only realizations of this type are in M. Thus, by
10.8(2), σ(x) ∈ acl(X).

Let a ∈ acl(A). Let N �M and b ∈ N be such that b � tpM(a/B). So, by 10.8(2), it
is enough to show that b ∈M to see that a ∈ acl(B).

Let σ ∈ Aut(N /B) be such that σ(a) = b. σ fixes B, so it fixes acl(B) set wise. So
σ(A) ⊂ acl(B) ⊂M.

Claim 9. σ(a) ∈ aclN (σ(A))

Proof. Let C ⊂ N be compact with a ∈ C which is definable over A (in fact, since
a ∈ acl(A), there is such a C in M). σ(C) is compact since σ is an isometry, and
definable over σ(A), so since σ(a) ∈ σ(C), σ(a) ∈ aclN (σ(A)).

Since σ(A) ⊂ M, by Proposition 10.5, aclN (σ(A)) = aclM(σ(A)), so σ(a) ∈ M, and
thus, b ∈M as required.

(3) If a ∈ acl(A) then there exists a countable set A0 ⊂ A such that a ∈ acl(A0).

Proof. Let C be a compact set definable over A with a ∈ C.

Let φk(x, y) and ak ∈ A|y| be such that |d(x,C)− φk(x, ak)| ≤ 1
k
. Let A0 =

⋃
k<ω

ak. A0

is countable, since each |y| is finite. Thus, C is definable over A0, so a ∈ acl(A0).

(4) If A is a dense subset of B, then acl(A) = acl(B).
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Proof. A ⊂ B ⇒ A ⊂ acl(B) by (1) ⇒ acl(A) ⊂ acl(B) by (2).

So let b ∈ acl(B). Consider tpM(b/A). By Claim 8, if a � tpM(b/A), then a �
tpM(b/B), so since b ∈ acl(B), by 10.8(2), a ∈M. Thus, by 10.8(2), b ∈ acl(A).

Hence, acl(A) = acl(B).
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