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Continuous Logic

Idea: Instead of being true or false, formulas have a value in [0, 1].

The signature (or language) is the same as in classical logic:
functions, constants, and predicates (relations), but now the
predicates are functions from Mn to [0, 1].

Logical symbols:

d , the metric on the underlying space
variables, constants
a symbol for each continuous function u : [0, 1]n → [0, 1]
(these are connectives)
sup and inf (these are quantifiers)

Convention: we use φ(x) = 0 to mean φ(x) is “true”.
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Observations

This is a “positive” language. There is no negation, and inf acts as ∃,
but only gives approximate witnesses.

{0, 1, x2 , −̇} is a full set of connectives, meaning that any formula can
be approximated by formulas only using these connectives.

From now on, “formula” refers to formulas only using these
connectives.

A definable predicate P(x) is a function from Mn → [0, 1] which can
be uniformly approximated by formulas.
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Structures and Theories

L-structures are complete metric spaces M.

For an L-formula φ(x) and a ∈M, M � φ(a) = 0 if φM(a) = 0.

φ(x) = 0 is called an L-condition.

Theories are collections of L-conditions with no free variables.

Example

L = ∅, M an infinite set with the discrete metric.
M � sup

x
d(x , x) = 0

M � inf
x1
. . . inf

xn
max

1≤i<j≤n
(1− d(xi , xj)) = 0
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Viewing Classical Structures as Continuous Structures

Let L be a classical language. Let L′ be a continuous language with
all of the same symbols as L.

For M a (classical) L-structure, let M′ be a continuous L′-structure
with the same universe as M, equipped with the discrete metric.
Note that M′ is complete.

View M′ as an L′-structure as follows:

For a constant symbol c , cM′
= cM

For a function symbol f , a ∈M, f M′
(a) = f M(a)

For a relation symbol R, a ∈M′,

RM′
(a) =

{
0 M � R(a)

1 M � ¬R(a)

Note that the L′-terms are just L-terms.
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Viewing Classical Formulas as Continuous Formulas

For a classical L-formula θ(x), define the continuous L′-formula θ′(x)
inductively as follows:

θ(x) θ′(x)

t1(x) = t2(x) d(t1(x), t2(x))
R(t1(x), . . . , tn(x)) R(t1(x), . . . , tn(x))

φ(x) ∧ ψ(x) max(φ′(x), ψ′(x))
φ(x) ∨ ψ(x) min(φ′(x), ψ′(x))

¬φ(x) 1− φ′(x)
∃yφ(y , (x)) inf

y
φ′(y , x)

∀yφ(y , x) sup
y
φ′(y , x)

Note: min(φ′(x), ψ′(x)) = φ′(x)−̇(φ′(x)−̇ψ′(x)) and
max(φ′(x), ψ′(x)) = 1−̇((1−̇(φ′(x)−̇ψ′(x)))−̇ψ′(x)) are L′-formulas.
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Viewing Classical Theories as Continuous Theories

Fact

For an L-formula θ(x) and L-structure M, for all x ∈M′,
M′ � θ′(x) = 0 or M′ � θ′(x) = 1, and

M � θ(x)⇔M′ � θ′(x) = 0

M � ¬θ(x)⇔M′ � θ′(x) = 1

Let T be a classical L-theory.

Let T ′ be the continuous L′-theory
{θ′ = 0|T ` θ} ∪ {1−̇θ′ = 0|T ` ¬θ}.

Fact

For an L-structure M, M � T ⇔M′ � T ′
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A Proposed Characterization of Strong Minimality

The following characterization of strong minimality for continuous logic
was suggested by Isaac Goldbring:

“Definition”

A continuous theory T is “strongly minimal” if for any M � T , and any
definable predicate P(x), Z (P) = {x ∈M|M � P(x) = 0} is totally
bounded, or M\ Z (P) is totally bounded.
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Pros

Theorem

(Exchange Principle) Let M � T , assume T is “strongly minimal”. For
a, b ∈M and A ⊂M, if a ∈ acl(Ab) \ acl(A), then b ∈ acl(Aa).

Theorem

For a classical theory T , if T ′ is “strongly minimal”, then T is strongly
minimal (in the classical sense).
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Cons

Theorem

If T is “strongly minimal” and M � T , then M is locally compact at a
point.

So the theory of infinite dimensional Hilbert spaces is not “strongly
minimal”.
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More Cons

A classical theory T being strongly minimal does not guarantee that its
corresponding continuous theory T ′ is “strongly minimal”.

Example

T , the theory of infinite sets in the empty language, is strongly minimal,
but its corresponding continuous theory T ′ is not “strongly minimal”.

Let A = {ai : i < ω} be an infinite set with an infinite complement.

φk(x) = max(1−̇d(x , a0), 12(1−̇d(x , a1)), . . . , 1
2k

(1−̇d(x , ak)))

φk(x) converges uniformly to

P(x) =

{
0 x /∈ A
1
2k

x = ak

P is a definable prediate, and Z (P) =M\ A and M\ Z (P) = A are
both infinite, so not totally bounded.
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A Revision

Definition

A continuous theory T is strongly minimal if for any M � T , and any
definable predicate P(x), Z (P) = {x ∈M|M � P(x) = 0} is totally
bounded, or for every δ > 0, M\ {x ∈M|M � P(x) ≤ δ} is totally
bounded.
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Pros

Theorem (N.)

(Exchange Principle) Let M � T , assume T is strongly minimal. For
a, b ∈M and A ⊂M, if a ∈ acl(Ab) \ acl(A), then b ∈ acl(Aa).
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More Pros

Theorem (N.)

For a classical theory T , T is strongly minimal if and only if T ′, its
corresponding continuous theory, is strongly minimal.

Proof sketch:

P a definable predicate, φk → P

For each φk there are finitely many r0, . . . , rn ∈ [0, 1] such that for all
x , φk(x) = ri for some i .

There is 0 ≤ i ≤ n such that {x |φk(x) = ri} is cofinite. Let rk := ri .

(rk : k < ω) is Cauchy, so converges to some r∗ ∈ [0, 1]

If r∗ 6= 0, Z (P) is finite (totally bounded).

If r∗ = 0, for any δ > 0, for k sufficiently large, for cofinitely many x ,
P(x) ≤ |P(x)−φk(x)|+ |φk(x)| = |P(x)−φk(x)|+ |φk(x)− r∗| ≤ δ,
so {x |P(x) ≤ δ} is cofinite, so Z (P) \ {x |P(x) ≤ δ} is finite.
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Cons

None yet!

Conjecture

The theory of infinite dimensional Hilbert spaces is strongly minimal.
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Thank You!
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