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§5.1 Basics

Definition 1. A field K is a commutative non-zero ring (0 6= 1) such that any x ∈ K,
x 6= 0, has a unique inverse x−1 such that xx−1 = x−1x = 1.

Definition 2. A field homomorphism f : K → K ′ is just a ring homomorphism. Note that
f is necessarily injective, since if x ∈ K \ 0, f(x) · f(x−1) = 1 ⇒ f(x) 6= 0.

Remark 1. Every field K is a domain, that is, for every a, b ∈ K, if ab = 0, then a = 0 or
b = 0. More generally, any subring of a field is a domain.

Definition 3. If R is a domain and S = R \ {0}, K = S−1R is called the field of fractions
of R.

Definition 4. An extension L/K means K ⊂ L is a subfield of the field L. A subextension
or intermediate extension of L/K is a subfield M of L which contains K. We denote this
L/M/K.

Proposition 1. Let R be principal (PID). Let p ∈ R be a prime element. Then R/pR is a
field.

Proof. Let a ∈ R such that a 6= 0 in R/pR. This means that p does not divide a in R, so
gcd(a, p) = 1. By Bézout’s lemma, there are b, c ∈ R such that ba + cp = 1, so in R/pR,
b ·a+0 = 1, which means that ba = 1, so a ∈ (R/pR)×. Hence, since every non-zero element
has a multiplicative inverse, R/pR is a field.

Corollary 2. Let K be a field. Let P ∈ K[T ] be an irreducible polynomial. Then K[T ]/PK[T ]
is a field.

Proof. R = K[T ] is a PID, which means that P is prime.

Definition 5. The characteristic of a field K, char(K) ∈ {0} ∪ {p|p prime} is defined by
char(K) · Z = ker(φ : Z → K) where φ is defined by 1 7→ 1. There are two possible cases
here. If char(K) = 0, then for every n ∈ Z \ 0, n · 1k 6= 0 in K, which means that that
Q ↪→ K uniquely (for m 6= 0) by n

m
7→ (n · 1k) · (m · 1k)

−1. In this case, K is an extension of
Q. If char(K) = p > 0 for some prime p, then α : Z → K induces α : Z/pZ → K, so this is
a map from Fp → K.

Remark 2. If L/K, then char(L) = char(K).
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Corollary 3. If char(K) 6= char(L) then there is no field homomorphism from K → L
(since field homomorphisms must be injective).

Proposition 4. For a field K, char(K) = 0 if and only if K is an extension of Q.
char(K) = p > 0 if and only if K is an extension of Fp.

Proof. Obvious from the above remarks.

Definition 6. The degree of an extension L/K is the dimension of L as a K vector space,
which belongs to N ∪ {∞}, denoted [L : K]. If M/L/K is an extension, then the degree of
M/K, [M : K] is equal to [M : L][L : K].

Definition 7. An extension L/K is finite if the degree [L : K] < ∞.

Proposition 5. If K is a finite field then char(K) = p > 0 and K has pn elements where
n = [K : Fp].

Proof. char(K) = 0 if and only if Q ↪→ K which implies that K is infinite. So we know that
if char(K) = p, K/Fp. As an Fp vector space, K ∼= (Fp)

n (since it is finite) for n = dimFp(K),
so #(K) = pn.

Notation: If L/K is an extension and E ⊂ L, recall that K[E] is the smallest subring
of L containing K and E, which is equal to the set of all polynomials (over K) evalutaed
at elements of E. We now let K(E) denote the smallest subfield of L containing K and E.
This is equal to the field of fractions of K[E].

Definition 8. If L/K is an extension, L is a finitely generated extension of K if there exists
a finite E ⊂ L such that L = K(E).

Note that a finitely generated extension is different than a finite extension. For example,
K(T ) is a finitely generated extension of K, but is not a finite extension of K.

Definition 9. Let L/K be an extension. Let M1, M2 be two subextensions. M1M2 =
K(M1 ∪M2) is a subextension of L/Mi for i = 1, 2, and hence, of L/K.
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M1M2 is the composite of M1 and M2.
In this definition, we could replace K with the characteristic field (Q if charL = 0 and

Fp if charL = p > 0).
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§5.2 Algebraic Extension

Definition 10. Let L/K be an extension. Let x ∈ L. x is algebraic over K if there exists
P ∈ K[T ] such that P 6= 0 and P (x) = 0. WLOG, we can choose P to be monic, so this is
equivalent to saying that there exists a1, . . . , ad ∈ K such that xd + a1x

d−1 + . . . + ad = 0 (in
L).

Definition 11. An extension L/K is algebraic if every x ∈ L is algebraic over K.

A finite extension L/K is algebraic, since for x ∈ L, 1, x, x2, . . . , xn, . . . cannot be linearly
independent over K, so x is algebraic over K.

Definition 12. Let x ∈ L be algebraic over K. The minimal polynomial of x over K, P ∈
K[T ], is the unique monic polynomial such that AnnK[T ](x) = P ·K[T ], where AnnK[T ](x) =
{Q ∈ K[T ]|Q(x) = 0} is an ideal of K[T ]. Since K[T ] is a PID, there is a generator of
AnnK[T ](x) which is unique up to association, so by choosing P to be monic, it is unique.
In other words, P (x) = 0 and for every Q ∈ K[T ] such that Q(x) = 0, P |Q (so when P is
monic, it is unique).

Proposition 6. Let L/K be an extension. Let x ∈ L be algebraic over K. Let P ∈ K[T ] be
the minimal polynomial of X.

1. P is irreducible.

2. K[x] = K(x) ∼= K[T ]/P .

Proof. 1. If P1P2(x) = 0 then P1(x)P2(x) = 0 in L, so since L is a field, and thus, a
domain, P1(x) = 0 or P2(x) = 0, so P |P1P2 ⇒ P |P1 or P |P2. Thus, P is prime, which
means that it is irreduicble since K[T ] is a domain.

2. The natural evaluation at x, K[T ] → K[x] is surjective with kernel AnnK[T ](x) =
P ·K[T ]. So, since ring homomorphisms from fields to rings are necessarily injective,
we have an isomorphism, K[T ]/P

∼→ K[x] (since K[T ]/P is a field). Thus, K[x] is a
field, so K[x] = K(x).

Definition 13. If L/K is an extension, the degree of an algebraic element x ∈ L (over K),
[K(x) : K] is the degree of the minimal polynomial of x over K.

Proposition 7. Let L/K be an extension and let x ∈ L. x is algebraic over K if and only
if there exists a subextension L/M/K, M ⊂ L such that x ∈ M and M/K is finite.

Proof. ⇐: Let x ∈ M/K. Since M/K is finite, x is algebraic over K.
⇒: Let M = K(x).

Proposition 8. Let L/K be an extension and let x1, . . . , xn ∈ L be algebraic over K. Then
K[x1, . . . , xn] = K(x1, . . . , xn) and K(x1, . . . , xn)/K is an algebraic, finite extension.

Proof. First, suppose n = 1. Then by Proposition 6, K(x1) = K[x1]. Clearly K(x1)/K
is algebraic and finite. Now suppose the proposition holds for some fixed arbitrary n ≥ 1.
Then K(x1, . . . , xn+1) = K(x1, . . . , xn)(xn+1). By the induction hypothesis, K(x1, . . . , xn) =
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K[x1, . . . , xn]. Since xn+1 is algebraic over K, it is algebraic over M = K(x1, . . . , xn). Thus,
M [xn+1] = M(xn+1). So K[x1, . . . , xn+1] = K[x1, . . . , xn][xn] = K(x1, . . . , xn)(xn+1) =
K(x1, . . . , xn+1).

Finally,

K[x1, . . . , xn+1]

K[x1, . . . , xn]

...

K[x1]

K

is a finite tower of finite extensions, so [K(x1, . . . , xn+1) : K] is finite. Hence, by induction,
the claim holds for all n.

Corollary 9. If L/K is an extension and x, y ∈ L are algebraic over K, then x + y, xy,
and x

y
(if y 6= 0) are algebraic. Thus, {x ∈ L|x is algebraic over K} ⊂ L is a subfield of L.

Proposition 10. If L/K is an algebraic extension and M/L is an algebraic extension, then
M/K is algebraic.

Proof. Let x ∈ M be given. x satisfies a polynomial equation with coefficients in L, so there
are y1, . . . , yn ∈ L such that x is algebraic over K(y1, . . . , yn) (take yi’s to be the coefficients
of the minimal polynomial of x in L[T ]). Each yi is algebraic over K, so K(y1, . . . , yn) =
K[y1, . . . , yn] is a finite extension of K, which means that [K(y1, . . . , yn, x) : K(y1, . . . , yn)]
is finite, and [K(y1, . . . , yn) : K] is finite, and thus, x is algebraic over K.

Definition 14. Let L/K be an extension. If x ∈ L is not algebraic over K it is transcendental
over K.

Proposition 11. If L/K is an extension and x ∈ L is transcendental over K, then if
Q ∈ K[T ] is such that Q(x) = 0, then Q = 0. This is equivalent to saying that K ⊂ K(T ) ∼=
K(x) ⊂ L where K(T ) ∼= K(x) is a K-isomorphism.
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§5.3 Remarks on ruler and compass constructions

The idea here is to take a set of “known” points in R2, typically we begin with Z2, from
which we can get Q2, and then try to construct new points with an (unmarked) ruler and a
compass.

With the ruler we are able to draw a line through two known points and with the compass
we can draw a circle with a known center through a known point (or with a known radius).

Definition 15. The points of intersection of any two distinct lines or circles drawn using the
ruler and compass are said to be constructible. A point r ∈ R2 is said to be constructible from
an initial set of points P0 if there is a finite sequence r1, . . . , rn = r of points of R2 such that
for each j = 1, . . . , n, the point rj is constructible in one step from the set P0∪{r0, . . . , rj−1}.

To formalize this idea in terms of field extensions, we begin with K0 ⊂ R to be the
field generated by the x and y coordinates of each of the points in P0, then for j > 0,
Kj = Kj−1(xj, yj) where rj is the point (xj, yj). Note that we are not adjoining the point
(xj, yj) ∈ R2, we are adjoining each of the elements of R, xj and yj.

Thus, we have a tower of subfields K0 ⊂ K1 ⊂ . . . ⊂ Kn ⊂ R.

Lemma 12. xj and yj are zeros in Kj of a quadratic polynomial in Kj−1.

Proof. There are three cases to consider: when a line meets a circle, when a line meets a
line, and when a circle meets a circle. Let A = (p, q), B = (r, s) and C = (t, u) be points
in Kj−1 and draw the line AB and the circle with center C and radius w where w2 ∈ Kj−1

(since we can construct this distance using the coordinates of the center and a point on the
circle which are in Kj−1 using Pythagoras). The equation of the line AB is x−p

r−p
= y−q

s−q
and

the equation of the cirle is (x− t)2 + (y − u)2 = w2. Combining these equations gives us

(x− t)2 + ( (s−q)
(r−p)

(x− p) + q − u)2 = w2

so the x-coordinates of the intersection points X and Y are zeros of quadratic polynomials
over Kj−1, as are the y-coordinates.

Now let D = (v, z). The equation of the line CD is x−t
v−t

= y−u
z−u

, so combining this with
the equation of the line AB gives us x and y in terms of p, q, r, s, t, u, v, z ∈ Kj−1, and thus,
x, y ∈ Kj−1. So, x and y are solutions of the quadratic equations (T − x)2 and (T − y)2 in
Kj−1[T ] respectively.

Finally, let A = (a, b), C = (c, d) and consider the circles (x − a)2 + (y − b)2 = r2 and
(x− c)2 +(y−d)2 = s2 where a, b, c, d, s2, r2 ∈ Kj−1. Combining these equations gives us the
line (−2a− 2c)x + (−2b− 2d)y = r2 − s2, so intersecting this line with either of the circles
gives us the points of intersection. Hence, by the first case the x and y coordinates of each
of the points of intersection are solutions of quadratic polynomials over Kj−1.

Theorem 13. If r = (x, y) is constructible from a subset P0 of R2, and K0 is the subfield
of R generated by the coordinates of the points of P0, then [K0(x) : K0] and [K0(y) : K0] are
powers of 2.

Proof. We have seen that for each step in the construction, if rj = (xj, yj), then [Kj−1(xj) :
Kj−1] and [Kj−1(yj) : Kj−1] must be either 1 or 2, since xj and yj are the solutions of
quadratic polynomials, which are either irreducible, in which case the degree is 2, or can be
written as the product of linear factors, in which case the degree is 1. Thus, [Kj−1(xj, yj) :
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Kj−1] = [Kj−1(xj, yj) : Kj−1(xj)][Kj−1(xj) : Kj−1] which is 1, 2, or 4, so it is a power of 2.
Thus, [Kj : Kj−1] is a power of 2.

So, since [Kn : K0] = [Kn : Kn−1] . . . [K1 : K0], this is also a power of 2.
Thus, since [Kn : K0(x)][K0(x) : K0] = [Kn : K0], we must have that [K0(x) : K0] is a

power of 2, since it divides [Kn : K0]. Similarly, [K0(y) : K0] is also a power of 2.

Corollary 14. If x ∈ C is such that [Q(x) : Q] is not a power of 2, then x is not constructible
with a ruler and compass.
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§5.4 Splitting Fields and Algebraic Closures

Definition 16. Let K be a field and P ∈ K[T ] a non-constant polynomial. A splitting
field of P is an extension L/K in which P decomposes into degree 1 factors, that is, P (T ) =
c(T −α1) . . . (T −αn) in L[T ] where α1, . . . , αn ∈ L and c ∈ K. L is generated by the roots of
P , that is, L = K(α1, . . . , αn). Note that the αi’s are algebraic over K, so K(α1, . . . , αn) =
k[α1, . . . , αn] is a finite, and thus, algebraic extension of K.

Proposition 15. Any non-constant polynomial P ∈ K[T ] (where K is a field) admits a
splitting field.

Proof. It is enough to show that there exists an extension M/K in which the given P ∈ K[T ]
decomposes completely. First suppose P is irreducible. Let M0 = K[T ]/P , and note that
this is a field since P is irreducible. This is an extension, M0/K, in which P has a root,
namely, α = T = T + PK[T ], the class of T . This is because P (α) = P (T ) = P (T ) = 0,
since P ∈ PK[T ]. Then, choose an irreduicble factor of P in M0[T ] and construct M1 in the
same way such that P decomposes further in M1. Continue this process, and by induction
on the maximal degree of polynomials which are irreduicble and divide P , in some Mn with
n >> 0, P will be the product of linear factors.

Corollary 16. Let p1, . . . , ps ∈ K[T ] be non-constant polynomials over the field K. There
exists an extension L/K in which all p1, . . . , ps decompose into degree 1 factors.

Proof. Apply the above to P = p1 · . . . · ps.

Definition 17. A field E is called algebraically closed if it admits no algebraic extension
except itself. That is, L/E is algebraic ⇒ L = E.

Proposition 17. E is algebraically closed if and only if every polynomial in E decomposes
as a product of degree 1 factors.

Proof. ⇒: Let P ∈ E[T ] and let L/E be the splitting field of P (note that L/E is algebraic).
Then L = E, so P decomposes as a product of degree 1 factors in E[T ].

⇐: Suppose L/E is an algebraic extension. The minimal polynomial of any α ∈ L must
be of degree 1 ⇒ α ∈ E.

Fact 1. (From Chapter 6) If R is a non-zero commutative ring, there exists a ring ho-
momorphism from R → K where K is a field (take m to be a maximal ideal in R and
K = R/m).

Theorem 18. Let K be a field. There exists an extension E/K (K ↪→ E) with E alge-
braically closed.

Proof. Let A = K[xp]p∈K[T ]\K . A is a big polynomial ring with infinitely many variables
over K, one variable for each non-constant polynomial p ∈ K[T ]. Consider the ideal I ⊂ A

defined by I = 〈P (xP )〉p∈K[T ]/K ⊂ K[xp]p∈K[T ]\K = A. Let Q =
n∑

i=1

QiPi(xPi
) ∈ I where

Qi ∈ A for 1 ≤ i ≤ n. Consider that P1, . . . , Pn ∈ K[T ]. By the last corollary, there exists
L/K in which the Pi’s all decompose completely. In particular, there are α1, . . . , αn ∈ L
such that Pi(αi) = 0 for 1 ≤ i ≤ n. Evaluate Q = Q(xp1 , xp2 , . . . , xpn ,other xp’s) at xpi

= αi
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and set the other xp’s all to 0. This gives us 0 in L. Thus, Q cannot be equal to 1 in A.
Hence, since Q ∈ I was arbitrary, 1 /∈ I, so I 6= A.

Consider R = A/I, a commutative, non-zero (since I 6= A) ring. By the above fact, there
is a field E1 and a ring homomorphism f : R → E1. This is just a ring homomorphism
f : A → E1 such that f(I) = 0. Since A = K[xP ]P∈K[T ]\K , this E1 is an extension of K. So
we have:

K
� � φ //

��?
??

??
??

??
??

??
??

??
??

E1

R = A/I

f

hhRRRRRRRRRRRRRRR

K[xp]p∈K[T ]\K = A

f

OO

π

66mmmmmmmmmmmmm

Where φ is the composition of ring homomorphisms into a field, and thus, is injective.
Consider p ∈ K[T ] non-constant. Let αp = f(xp) ∈ E1. p(αp) = p(f(xp)) = f(p(xp)) = 0,

since f is a homomorphism. Thus, every polynomial of K has a root in E1.
Thus, repeat this process by induction, and get K ↪→ E1 ↪→ E2 ↪→ . . . ↪→ En ↪→

En+1 ↪→ . . . such that every non-constant polynomial in En has a root in En+1. Let E =

colimn→∞En =
⋃
n≥1

En (and since the category of fields is closed under colimits, this is a field).

This E is algebraically closed, since E(T ) =
⋃
n≥1

En[T ], so any non-constant polynomial in T

exists in En for some n, and thus, has a root in En+1 ⊂ E.

Definition 18. Let K be a field. An algebraic closure is an algebraic extension E/K with
E algebraically closed.

Proposition 19. Any field admits an algebraic closure.

Proof. Let K be a field. By the previous theorem, there exists K ↪→ L with L algebraically
closed. Take E to be the set of elements in L which are algebraic over K. E = {x ∈ L|x is
algebraic over K}. Then E/K is algebraic. Let p ∈ E[T ]. p decomposes completely in L,
P (T ) = c(T−α1) . . . (T−αn) for c ∈ E and α1, . . . , αn ∈ L. Now, each αi is algebraic over E
since p(αi) = 0 ⇒ E(αi) is algebraic over E, and E is algebraic over K ⇒ E(αi) is algebraic
over K ⇒ αi is algebraic over K ⇒ αi ∈ E by definition of E. Hence, the above complete
decomposition holds in E[T ]. Since p ∈ E[T ] was arbitrary, E is algebraically closed.

Theorem 20. Let E be algebraically closed and let σ0 : K ↪→ E be a homomorphism. Let
L/K be an algebraic extension. Then there is σ : L → E such that σ is K-linear, i.e.,
σ|K = σ0.

L
� � σ //___ E

K
. �

σ0

>>}}}}}}}
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Proof. Consider S = {(M, τ)|K ⊂ M ⊂ L, τ : M → E, τ |K = σ0} with an ordering
(M, τ) ≤ (M ′, τ ′) if M ⊂ M ′ and τ ′|M = τ . This is a partial ordering, so by Zorn’s lemma,
there is a maximal element, (M, σ). This means that if there is (M ′, σ′) such that M ⊂ M ′

and σ′|M = σ, then M = M ′.
We claim that M = L. Let σ0 : K ↪→ E be a homomorphism with E algebraically

closed and let L/K be an algebraic extension. Let x ∈ L be given. Then there exists a
homomorphism σ : K(x) → E such that σ|K = σ0, since if P is the minimal polynomial
of x over K, then K[T ]/P

∼→ K[x] ∼= K(x) ⊂ L, so σ0(P ) is a polynomial in E[T ] and
E is algebraically closed ⇒ ∃α ∈ E a root of σ0(P ) ⇒ σ0K ↪→ E and T 7→ α define the
homomorphism τ : K[T ] → E by Q 7→ (σ0(Q))(α) and τ(P ) = (σ0(P ))(α) = 0 (by choice).
Hence, τ induces a field homomorphism τ : K[T ]/P ↪→ E, so we have

K(x) σ // E

K[T ]/P

∼=
ddJJJJJJJJJ - 


τ

;;wwwwwwwww

K[T ]

[[77777777777777777

τ

DD
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K

WW/////////////////////////

σ0

HH������������������������?�

OO

where K[T ]/P ↪→ E is defined by T 7→ the root of P n.
By the commutativity of the diagram, σ|K = σ0.

Corollary 21. Let E/K be an algebraic closure of K. Let M/L/K be an algebraic ex-
tension and let σ0 : L → E be a K-linear homomorphism. Then there exists a K-linear
homomorphism σ : M → E such that σ|L = σ0.

Proof. Apply the theorem to

M
∃σ //___ E

L
. �

σ0

>>}}}}}}}}

σ is automatically K-linear since σ|K = σ0|K which is the inclusion map K ↪→ E, and
thus, fixes K).

Thus, algebraic closures are unique up to (non-unique) isomorphism of fields. So when
we refer to “the” algebraic closure of a field K, we are referring to some choice of algebraic
closure, and we denote this K/K.

Definition 19. Let F be a family of non-constant polynomials in K[T ]. A splitting field for
F is an extension L/K such that every p ∈ F

1. decomposes completely in L[T ]

2. L = K(A) if A = {α ∈ L|α is a root of some p ∈ F}.
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Proposition 22. Let K be a field and F ⊂ K[T ] be a family of non-constant polynomials

1. A splitting field for F exists: In K, the algebraic closure of K, we can and must take
L = K(A) ⊂ K where A is the set of roots of polynomials of F .

2. The splitting field is unique up to K-isomorphism.

Proof. 1. In L, any p ∈ F decomposes completely and L, by construction, is generated
by the roots.

2. This follows from the fact that L must be K(A) where A is the set of roots of poly-
nomials in F . If L′/K is some other splitting field, by the previous theorem there is

σ : L → K which is a K-homomorphism so σ|L : L
∼=→ σ(L) ⊂ K, and σ(L) is a

splitting field in K, which must be unique because of the first part.
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§5.5 Normal Extensions

Definition 20. Let L/K be an algebraic extension. We say that this is normal if for any
irreducible polynomial P ∈ K[T ], if P has a root in L, then it has all roots in L. That is,
P ∈ K[T ] irreducible with α ∈ L such that P (α) = 0 ⇒ P = c(x− α1) . . . (x− αn) in L[T ].

Q(2
1
4 ) ⊂ R is not a normal extension of Q, since T 4 − 2 does not decompose completely

in Q(2
1
4 ⊂ R (since ±2

1
4 i are also roots and i /∈ Q(2

1
4 ) ⊂ R).

Recall that if L1/K and L2/K are extensions of K, a K-homomorphism σ : L1 → L2

is just a ring homomorphism which is the identity on K. This is equivalent to saying σ is
K-linear.

Proposition 23. Let L/K be an algebraic extension. Let K/L be an algebraic closure of K
and L (they have the same closure since L/K is algebraic). TFAE:

1. L/K is normal.

2. For any K-homomorphism, L
σ

↪→ K, we have σ(L) ⊂ L.

3. For any K-homomorphism K
σ

↪→ K, we have σ(L) ⊂ L.

Proof. 1. ⇒ 2.: Let x ∈ L. let P ∈ K[T ] be the minimal polynomial of x. By assumption,
P decomposes completely in L. For any σ : L → K K-homomorphism, 0 = σ(0) = σ(P (x))
since P (x) = 0, which is equal to P (σ(x)) since σ is a K-homomorphism, so it fixes the
coefficients in P . Thus, σ(x) is also a root of P , but all of the roots are in L, so σ(x) ∈ L.
Thus, since x ∈ L was arbitrary, σ(L) ⊂ L.

2. ⇒ 3.: Obvious: If σ : K → K then σ|L : L → K is a K-homomorphism, so by
assumption, σ|L(L) ⊂ L, which means that σ(L) ⊂ L.

3. ⇒ 1.: Let P ∈ K[T ] be an irreducible polynomial which has a root α ∈ L. Let β ∈ K
be another root. We have a K-isomorphism

L ⊃ K(α) oo ∼ K[T ]/P ∼ // K(β) ⊂ K

K

⊃

NNNNNNNNNNNN
⊂

pppppppppppp

So by Theorem 20, there is σ : K → K which extends K(α)
∼→ K(β) ↪→ K. Thus, we

have this:

K
� � σ // K

L

K(α) ∼ // K(β)

K

yyyyyyyy

EEEEEEEE

By hypothesis, σ(L) ⊂ L, and hence, β = σ(α) ∈ σ(L) ⊂ L, so β ∈ L.
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Theorem 24. Let L/K be an algebraic extension. Then L/K is normal if and only if L is
the splitting field of some family of polynomials in K.

Proof. ⇒: If L/K is normal, take F to be the set of p ∈ K[T ] such that p is the minimal
polynomial of some x ∈ L (for all x ∈ L). Let A be the set of α ∈ L such that α is the root
of some p ∈ F . By Proposition 22, L = K(A), and any p ∈ F decomposes completely in
L[T ] since L is normal. Hence, L is the splitting field of F .

⇐: Suppose F ⊂ K[T ] is a family of polynomials and let L/K be the splitting field
of F . Let σ : K → K be a K-homomorphism. Let A be the set of roots of P ∈ F .
By assumption, L = K(A). For every α ∈ A, there is P ∈ F such that P (α) = 0, so
0 = σ(0) = σ(P (α)) = P (σ(α)) (as in the previous proposition) since σ is K-linear and
P ∈ K[T ]. Thus, σ(α) is a root of P , so σ(α) ∈ A ⊂ K(A). Hence, by the previous
proposition, L/K is normal.

Corollary 25. Finite normal extensions are just splitting fields of finite families of polyno-
mials, which are the same as splitting fields of one polynomial.

Remark 3. Let M/L/K be an algebraic extension.

1. If M/K is normal, then M/L is normal. This is obvious from the theorem, since if
F ⊂ K[T ] is such that M is the splitting field of F over K, then M is also the splitting
field of F over L.

2. If M/K is normal it does not imply that L/K is normal. For example, Q(2
1
4 )/Q is not

normal, but Q(2
1
4 , i)/Q is.

Proposition 26. Let L/K be algebraic. There exists N/L algebraic such that N/K is
normal (hence, N/L is as well) and which is minimal by extension. This N is unique up to
K-isomorphism. Finally, if L/K is finite, so is N/L.

Proof. It is enough to produce N ⊂ K = L a (fixed) algebraic extension and prove uniqueness
of N in K (since algebraic closures are isomorphic). Let A ⊂ L be such that L = K(A) and
note that A is finite if L/K is finite. Let F ⊂ K[T ] be the collection of minimal polynomials
of α ∈ A (F is finite if A is finite). Then, let N be the splitting field of F in K. We
have that A is a subset of the set of roots of polynomials in F which is a subset of N , so
L = K(A) ⊂ N , which means that N/K is normal. Any normal M/L must contain all of
the roots of F , and hence, must contain N .

12



§5.6 Separable Extensions

Definition 21. Let L/K be an extension.

1. x ∈ L/K is separable over K if it is algebraic over K and its minimal polynomial over
K has only simple roots in K.

2. An irreduicble polynomial p ∈ K[T ] is separable if it has only simple roots in K, that
is, p = c(T − α1) . . . (T − αn) and αi 6= αj for i 6= j.

3. A general polynomial in K[T ] is separable if its irreducible factors are separable.

4. An algebraic extension L/K is separable if every x ∈ L is separable.

Proposition 27. Let P ∈ K[T ] be irreduicble. P has multiple roots (is not separable) if and
only if P ′ = 0. This can only happen in positive characeristic, say, char(K) = p > 0, in
which case, P = Q(T p) with Q ∈ K[T ] irreducible.

Proof. Suppose P has a multiple root α. Then P (T ) = (T − α)2R(T ), so P ′(T ) = 2(T −
α)R(T ) + (T − α)2R′(T ). Thus, P ′(α) = 0.

So P ′ ∈ K[T ] has α as a root, but P is the minimal polynomial of α over K, because P
is irreduicble. Thus, P |P ′, but degP ′ ≤ degP − 1, so P ′ = 0.

Now suppose P ∈ K[T ] such that P ′ = 0. P = adT
d + . . . + a1T + a0, so P ′ =

dadT
d−1 + . . . + 2a2T + a1. Thus, P ′ = 0 ⇒ iai = 0 for 1 ≤ i ≤ d ⇒ i = 0 or ai = 0 since

K is a field, and thus a domain, and since i 6= 0, ai = 0 for each 1 ≤ i ≤ d. Thus, P = a0 is
constant, but this is not an irreduicble polynomial (it is a unit or 0), so this is a contradiction.
Hence, char(K) = p > 0. So, the equation iai = 0 implies that ai = 0 for i such that p does
not divide i, for 1 ≤ i ≤ d. Thus, P = a0 +apT

p +a2pT
2p + . . .+arpT

rp = Q(T p) for Q(T ) =
a0 + apT + . . . + arpT

r. If P is irreducible, then Q is (otherwise a factorization of Q would
give a factorization of P ). Finally, if P is irreduicble, P ′ = 0 ⇒ P = Q(T p), Q irreducible.
Factor Q(T ) = c(T − β1) . . . (T − βr) in K. Then P (T ) = Q(T p) = c(T p − β1) . . . (T p − βr)
in K. In K, there exists αi such that αp

i = βi for each 1 ≤ i ≤ r (solutions to yp − βi),
so P (T ) = c(T p − αp

1) . . . (T p − αp
r) = c(T − α1)

p . . . (T − αn)p (since in characteristic p,
(ap ± bp) = (a± b)p). Thus, P has multiple roots.

Definition 22. If char(K) = p > 0, x 7→ xp defines a homomorphisms from K → K. This
is called the Frobenius Homomorphism.

Corollary 28. In characteristic 0, all (irreduicble) polynomials are separable and all alge-
braic elements are separable. Hence, all algebraic extensions are separable.

Proposition 29. If char(K) = p > 0 and a ∈ K but a /∈ Kp = {bp|b ∈ K}, then P (T ) =
T p − a ∈ K[T ] is irreducible and non-separable (in fact, P only has one root).

Proof. Let K = Fp(x). Consider a = x in K. Note that a does not have a pth root in K, so
P (T ) = T p − a ∈ K[T ] is irreduicble. Indeed: use P (t) = (T − β)p for β any pth root of a in
K, hence, a factorization of P in K[T ] must be (T − β)i(T − β)p−i = (T i − βi)(T p−i − βp−i)
which means βi or βp−i is in K. If i 6= 0, p, then i ∈ Z/p is invertible ⇒ ∃k such that
p| − ik + 1, so β = βikβ1−ik ∈ K since βik, β1−ik ∈ K, which is a contradiction.

Hence, P is irreducible, and P ′ = pT p−1 = 0, so by the previous proposition, P is not
separable.
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Proposition 30. Let L/K be an algebraic extension. The extension is separable if and only
if for every x ∈ L we have x ∈ K(xp) ⊂ L.

Proof. Suppose L/K is separable. Let x ∈ L and M = K(xp). Then the extension L/M is
still separable (since the minimal polynomial over K divides the minimal polynomial over
M , so if that has only simple roots, the other only has simple roots). So, x is separable over
M . But, x is a root of P (T ) = T p − xp ∈ M [T ]. Since P is not separable, P cannot be
the minimal polynomial of x ⇒ P is irreduicble ⇒ (by the previous proposition) xp ∈ M ⇒
since the pth root is unique, x ∈ M .

Conversely, suppose x ∈ K(xp) for every x ∈ L. Let x ∈ L. Suppose for the sake of
contradiction that x is not separable over K. Then, let P be the minimal polynomial of x,
it has the form P (T ) = Q(T p) with Q irreduicble. Then Q is the minimal polynomial of xp,
since Q(xp) = P (x) = 0 and Q is irreducible. So, K(xp)/K has degree equal to the degree

of Q, which is strictly less than the degreep of P (specifically, it is deg(P )
p

), but x ∈ K(xp),

so the degree of the minimal polynomial of x is less than or equal to [K(xp) : K] < deg(P )
which is a contradiction.

Remark 4. In this proof we used the fact that if L/K is separable and L/M/K is an
intermediate extension, then L/M and M/K are separable. This is because for x ∈ L, if
p ∈ K[T ] is the minimal polynomial of x over K, and Q ∈ M [T ] is the minimal polynomial
of x over M , then Q|P in M [T ] since P (x) = 0, so if P is separable, Q must be separable.
And since x ∈ M ⊂ L has a separable polynomial in K[T ]. This is Corollary 35.

Definition 23. Let L/K be an algebraic extension and let K/K be a given algebraic closure.
The separable degree is [L : K]S := #(HomK(L, K)). This could be ∞. Note that it is
enough to have σ0 : K ↪→ K and define HomK(L, K) = {σ : L → K|σ|K = σ0}. This does
not depend on σ0.

If E1/L and E2/L are algebraic extensions of L, and thus, of K, and E1, E2 are both alge-
braically closed, then #(HomK(L, E1)) = #(HomK(L, E2)) where HomK(L, E) is the set of
K homomorpshisms from L ↪→ E. To see this it is enough to show that #(HomK(L, E1)) =
#(HomK(L, K)) for any algebraic closure K of K. By Theorem 20 there is τ : K ↪→ E1

which is K-linear and since τ(K) is algebraic over K, it is contained in the algebraic closure
of K in E1, so τ(K) is an algebraic closed algebraic extension of K in E (so it is an algebraic

closure of K in E). Thus, HomK(L, E1)
∼=→ HomK(L, K) via σ 7→ τ−1 ◦ σ and σ′ 7→ τ ◦ σ′.

E1

L

σ
>>}}}}}}}} ∃!σ //___ τK K

∼
τ

oo

K

alg

AAAAAAAA

||||||||

Proposition 31. If M/L/K is algebraic, then [M : L]S[L : K]S = [M : K]S.

Proof. Suppose M/L/K is algebraic and let K be an algebraic closure of K. Note that
K = M = L. Fix σ0 : K ↪→ K. It admits [L : K]S extensions, that is, σ1 : L → K such that
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σ1|K = σ0. Each σ1 : L → K admits [M : L]S extensions σ2 : M → K such that σ2|L = σ1.
We have a partition (just by restricting from M to L),

{σ2 : M → K|σ2|K = σ0} =
⊔

σi:L→K
s.t. σ1|K=σ0

{σ2 : M → K|σ2|L = σi}.

Since there are [L : K]S many σi : L → K such that σi|K = σ0 and for each such σi there
are [M : L]S many σ2 : M → K|σ2|L = σi, we see that [M : K]S = #{σ2 : M → K|σ2|K =
σ0} = [M : L]S[L : K]S.

Definition 24. An algebraic extension L/K is simple if there exists x ∈ L such that
L = K(x). Such an x is called a primitive element. In this case, L ∼= K[T ]/p where
p ∈ K[T ] is the minimal polynomial of x, via T 7→ x.

Proposition 32. Let P ∈ K[T ] be irreducible and let L = K[T ]/P . Then the separable
degree of [L : K]S is the number of distinct roots of P in K. Hence, [L : K]S ≤ deg(P ) =
[L : K].

Proof. HomK(K[T ]/P, [K]) is in bijective correspondence with the set of roots of P via
α 7→ (φ : K[T ]/P → K) defined by Q 7→ Q(α) and f 7→ f(t) where t = T ∈ L.

Proposition 33. If L/K is finite then [L : K]S ≤ [L : K].

Proof. This follows from induction from the previous proposition, since we know that [L :
K]S ≤ [L : K] when L = K(x), and thus, is also true when L = K(x1, . . . , xn+1) =
K(x1, . . . , xn)(xn+1) and since [L : K]S and [L : K] are both multiplicative.

Remark 5. 1. If L = K(x) is a simple extension with x separable, then [L : K]S = [L :
K] since both are equal to the degree of the minimal polynomial of x over K.

2. If charK = p > 0, L = K(x) with xp ∈ L (not separable), if a := xp ∈ L, if x ∈ K,
then L = K. So if x /∈ K, L 6= K, so the minimal polynomial of x is T P − a ∈ K[T ]
which is equal to (T − x)p ∈ L[T ] where xp = a. We have seen previously that this is
irreducible, so [L : K]S is equal to the number of roots of P , which is 1 (P has only
one root).

Theorem 34. Let L/K be a finite extension. Then L/K is separable if and only if [L :
K]S = [L : K]. That is, for every σ0 : K ↪→ K, there is exactly [L : K] many σ1 : L → K
such that σ1|K = σ0.

Proof. ⇒: By induction on [L : K]: Let x ∈ L and M be such that L = M(x), x /∈ M . Then
by the first remark, [L : M(x)]S = [L : M(x)]. Then, we will assume that [M : K]S = [M :
K] for L/M/K and we see that [L : K]S = [L : M ]S[M : K]S = [L : M ][M : K] = [L : K].

⇐: Suppose L/K is not separable. By Proposition 30 there exists x ∈ L such that
x /∈ K(xp) where p = char(K) > 0. Consider
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L

K(x) = M(x)

6=

M := K(xp)

K

The middle extension (K(x)/K) is like the extension in teh second remark, so [K(x) :
K]S = 1 < [K(x) : K].

[L : K]S = [L : K(x)]S[K(x) : K(xp)]S[K(xp) : K]S < [L : K(x)][K(x) : K(xp)][K(xp) :
K] = [L : K].

Corollary 35. Suppose M/L/K is algebraic. M/L and L/K are both separable if and only
if M/K is separable.

Proof. ⇒: If M/L and L/K are both separable, then [M : L]S = [M : L] and [L : K]S =
[L : K], so [M : K]S = [M : L]S[L : K]S = [M : L][L : K] = [M : K].

⇐: [M : K]S = [M : K] = [M : L][L : K] ≥ [M : L]S[L : K]S = [M : K]S. Thus, we
must have [M : L]S = [M : L] and [L : K]S = [L : K], so they are both separable.

Theorem 36. Let L/K be an extension. Let xi ∈ L, i ∈ I, be a collectoin of (algebraic and)
separable elements. Then the K-field generated by K({xi}i∈I) ⊂ L is a separable extension
of K.

Proof. It is enough to show that K(x1, . . . , xn)/K is separable if x1, . . . , xn are separable
(since the infinite case is just a union of these). Then, it is enough to show that K(x)/K is
separable if x is separable over K, then the rest follows by induction on n. We have seen
though (Remark 5.1) that if [K(x) : K]S is the degree of the minimal polynomial of x, which
is [K(x) : K], then K(x)/K is separable.

Definition 25. If L/K is an algebraic extension, M = {x ∈ K|x is separable over K} is
called the separable closure of K in L. If L is not specified, we mean in K. We use Ksep ⊂ K
to denote hte separable closure of K in K.

Corollary 37. Let L/K be algebraic. Then, M = {x ∈ K|x is separable over K} is a
subfield of L and M/K is separable.

Proof. Pick x, y ∈ M . By the previous theorem, K(x, y) is separable over K, and this
contains x + y, xy and x−1 if x 6= 0.

Theorem 38. Let L/K be a finite extension. There exists an element α ∈ L such that
L = K(α) (that is, L is a simple extension of K) if and only if there exist only a finite
number of fields M such that K ⊂ M ⊂ L.
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Proof. Let L/K be a finite extension. If K is finite, the multiplicative group of L is cyclic,
and thus, is generated by one element α. So, since 0 ∈ K, L = K(α).

Also, there can only be finitely many fields between K and L, if char(K) = p > 0, there
can only be as many K ⊂ M ⊂ L as there are powers of p between |K| and |L|.

Hence, the claim holds for finite fields. Assume K is infinite.
⇐: Suppose there are onyl finitely many fields M such that K ⊂ M ⊂ L. Let α, β ∈ L

be givein. Since there are onyl finitely many fields between K and L, there are finitely many
c ∈ K such that K(α + cβ) are distinct. Thus, since K is infinite, we can choose c1, c2 ∈ K,
c1 6= c2, such that K(α + c1β) = K(α + c2β) =: M . So, since α + c1β and α + c2β are both
in M , (c2 − c1)β ∈ M , and since c2 − c1 6= 0, β ∈ M . Thus, c1β ∈ M , so α ∈ M .

Hence, K(α, β) can be generated by one element. So, by induction, if M = K(α1, . . . , αn),
there is z ∈ M such that M = K(z). Thus, since L/K is finite, there is α ∈ L such that
L = K(α).

⇒: Now assume L = K(α) for some α ∈ L. Let f be the minimal polynomial of α over
K. Let L be a fixed algebraic closure of L (and thus, of K). We see that since f is monic,
it factors uniquely into linear terms in L[T ]. Thus, since any g ∈ L[T ] which divides f will
also factor into linear terms in L[T ], and these must be among the terms in the factorization
of f . Hence, there are only finitely many monic polynomials in L[T ] which divide f .

Let M be a field between K and L. Then there is a monic polynomial g ∈ M [T ] ⊂ L[T ]
which is the minimal polynomial of α over M . This clearly divides f . So in this way we can
associate each intermediate field of L/K with a polynomial in L[T ] which divides f .

Now let K ⊂ M ⊂ L be given and let g be the corresponding divisor of f . Let N be
the subfield of M generated by the coefficients of g over K. Thus, g ∈ M [T ], and since g is
irreducible in M ⊃ N , g is irreducible in N [T ], and since g(α) = 0, g must be the minimal

polynomial of α over N . But then, we know that [M : N ] = [L:N ]
[L:M ]

= 1 since the degree of
the minimal polynomial of α over M and N is the same. Thus, M = N . So, for any field E
with the same minimal polynomial over α as that in M , E = N = M .

Hence, we see that associating each intermediate field of L/K with a polynomial in L[T ]
in this way gives us a bijective correspondence, and thus, since there are only finitely many
such polynomials, there can only be finitely many intermediate fields.

Theorem 39 (Primitive Element Theorem). Let L/K be finite and separable. Then L is
simple.

Proof. First suppose K (and hence, L) is finite. Then, by Corollary 45, L× is a cyclic group,
so L× = 〈x〉 for some x ∈ L, and thus, since 0 ∈ K and L \ {0} = L×, L = K(x).

Now suppose K is infinite (note that this does not imply char(K) = 0, for example,
Fp(T ) is infinite and has characteristic p > 0).

Suppose L = K(x, y) is separable over K. Let n = [K(x, y) : K] = [K(x, y) : K]S (by
assumption). Thus, there are n distinct K-homomorphisms σ1, . . . , σn : K(x, y) → K (where
K is a fixed algebraic closure of K, and thus, of K(x, y)). Consider P (T ) ∈ K[T ] defined

by P (T ) =
∏
i6=j

((σi(x) + Tσi(y)) − (σj(x) + Tσj(y))). This P (T ) is non-zero, or else there

would be i 6= j such that σi(x) = σj(x) and σi(y) = σj(y), but since σi|K = σj|K = idK , this
implies that σi = σj, which contradicts our assumption that σ1, . . . , σn are distinct.
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P has finitely many roots, which means that since K is infinite, we can choose t ∈ K
such that P (t) 6= 0. Let z = x + ty ∈ K(x, y). Then, for each 1 ≤ i ≤ n, σi(z) =
σi(x + ty) = σi(x) + tσi(y) since t ∈ K. Thus, since P (t) 6= 0, we know that for every
i 6= j, σi(x) + tσi(y) 6= σj(x) + tσj(y), and hence, σi(z) 6= σj(z). Thus, for each i 6= j,
σi|K(z) 6= σj|K(z) and {σ1|K(z), . . . , σn|K(z)} ⊂ HomK(K(z), K), so #HomK(K(z), K) ≥ n.

Since K(z) ⊂ K(x, y), [K(z) : K] ≤ [K(x, y) : K], so n ≤ [K(z) : K]S ≤ [K(z) :
K] ≤ [K(x, y) : K] = [K(x, y) : K]S = n. Thus, [K(z) : K] = [K(x, y) : K] = n ⇒
[K(x, y) : K(z)] = n

n
= 1 ⇒ K(z) = K(x, y).

Then, assume that for some fixed arbitrary n ≥ 2, if m ≤ n and L = K(x1, . . . , xm)/K
is separable, then there is z ∈ L such that L = K(z).

Let L = K(x1, . . . , xn, xn+1)/K be a separable extension. Then, K(x1, . . . , xn)/K is
separable, so by the induction hypothesis, ∃y ∈ K(x1, . . . , xn) such that K(x1, . . . , xn) =
K(y). So, since K(x1, . . . , xn)(xn+1)/K is separable, that is, K(y, xn+1)/K is separable,
there is z ∈ K(y, xn+1) such that K(z) = K(y, xn+1) = K(x1, . . . , xn, xn+1).

Thus, by induction, we see that for any finite separable extension L/K, there is z ∈ L
such that L = K(z).

Corollary 40. In characteristic 0, any finite extension is simple.

Proof. In characteristic 0, all extensions are separable.

Remark 6. If L/K is separable and finite, then L ∼= K[T ]/P for some P ∈ K[T ] which is
irreducible and separable.

Definition 26. A field is perfect if any algebraic extension is separable. So all fields of
characteristic 0 are perfect.

Proposition 41. Any algebraic extension of a perfect field is perfect.

Proof. Let K be perfect and let L/K be algebraic. Let M/L be an algebraic extension of
L. Then M/K is lagebraic, so since K is perfect, M/K is separable. Thus, since M/L/K,
M/L is separable by Corollary 35. Hence, since the algebraic extension M/L was arbitrary,
L is perfect.

Definition 27. In characteristic p > 0, if E/F is a finite extension, a ∈ E is purely insepa-
rable over F if apn ∈ F for some n ≥ 0. E/F is purely inseparable if every element in E is
purely inseparable over F .

Proposition 42. If E/F is a finite extension and L is the separable closure of F in E, then
L/F is separable and E/L is purely inseparable.

Proof. Let L be the separable closure of F in E. We have seen that L/F is separable (by
definition). Since E/F is finite, it is algebraic. Let x ∈ E be given and let G ∈ F [T ] be the
minimal polynomial of x over F . If x is separable over F , then xp0

= x ∈ L (by definition).
If not, then G(T ) = H1(T

p) for some irreducible H1 ∈ F [T ], so g = deg(G) = pn1 where
n1 = deg(H1), so n1 = g

p
. Then, since H1 is irreducible (and monic, since G is monic), it is

the minimal polynomial of xp. So, if H1 is separable, xp ∈ L (by definition). If not, there
is H2 ∈ F [T ] irreducible (and monic) such that H1(T ) = H2(T

P ), so G(T ) = H1(T
p) =

H2(T
p2

). Thus, n2 = deg(H2) = n1

p
= g

p2 . Again, if H − 2 is separable, then since it is the

minimal polynomial of xp2
, xp2 ∈ L. If not, we repeat this process.
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Let m be such that pm+1 ≥ g (such an m exists since g is finite). So, for i < m, if
Hi is separable, xpi ∈ L. If not, choose Hi+1 ∈ F [T ] irreducible (and monic) such that

Hi(T ) = Hi+1(T
P ), so G(T ) = Hi(T

pi
) = Hi+1(T

pi+1
). Thus, deg(Hi+1) = deg(Hi)

p
=

g
pi

p
= g

pi .
Then, suppose we have continued this process until we get a monic irreducibile polynomial

Hm ∈ F [T ] with degree g
pm which is not separable. deg(Hm) ≤ p since g ≤ pm+1. Again,

we see that Hm is the minimal polynomial of xpm
. Then, we see that for any irreducible

Q ∈ F [T ], deg(Q(T p)) = deg(Q)p ≥ p ≥ g
pm = deg(Hm) and equality can only hold

if deg(Q) = 1 and deg(Hm) = p, in which case Hm(T ) = T p − a for some a ∈ F , so
0 = Hm(xpm

) = xpm+1 − a ⇒ xpm+1
= a ∈ F ⊂ L.

Otherwise, there is no irreducible Q such that Q(T p) = Hm(T ), and thus, Hm is separable,
which means that xpm ∈ L.

Thus, since x ∈ E was arbitrary, E/L is purely inseparable.

Proposition 43. If char(K) = p > 0, K is perfect if and only if for every a ∈ K, there is
x ∈ K such that xp = a.

Proof. ⇒: Suppose K is perfect. Let a ∈ K be given and let L/K be the splitting field of
T p − a ∈ K[T ]. Let x ∈ L be a zero of T p − a. Then, xp − a = 0 ⇒ xp = a, so we can write
this as T p − xp = (T − x)p (since char(L) = p). Since K is perfect and L/K is algebraic,
the minimal polynomial of x has simple roots and divides (T − x)p, so it must be T − x ⇒
x ∈ K.

⇐: First of all, from Proposition 27, a polynomial f is separable if and only if f ′ 6= 0.
Let f ∈ K[T ] be irreducible. Since we have assumed K = Kp and char(K) = p, f ′ = 0 if
and only if f is a power of p. To see this, if f(T ) = (g(T ))p, f ′(T ) = p(g(T ))p−1 − 0, and
if f ′ = 0, then for f = xn + an−1x

n−1 + . . . + a0, aii = 0 for every ai, which, if f 6= 0, is
only possible if each i is a multiple of p. Thus, f(T ) = g(T p), and hence, since Kp = K,
f(T ) = (g(T ))p. But if this is the case, then f is not irreducible. Thus, every irreducible
polynomial over K must be separable.

Let L/K be an algebraic extension and let x ∈ L. Then the minimal polynomial of x
over K is irreducible, and thus separable, and hence, x is separable. Thus, since this is true
for every x ∈ L, L/K is separable, and since L was arbitrary, K is perfect.
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§5.7 Finite Fields

We have seen that a finite field K must have pn elements where p = char(K) is prime and
n ≥ 1. Conversely, for any q ∈ N of the form q = pn for p-prime and n ≥ 1, there exists
exactly one field with q elements denoted by Fq. Explicitly, it is {x ∈ Fp|xq = x} where Fp

is any algebraic closure of Fp = Z/p.
Recall that if K is a field and char(K) = p > 0, the Frobenius Homomorphism Fp : K →

K is given by x 7→ xp. It is additive since
(

p
j

)
= p!

j!(p−j)!
is divisible by p for every 0 < j < p,

so (x + y)p =

p∑
j=0

(
p

j

)
xjyp−j = xp + yp (since all of the terms are 0 except when j = 0 and

j = p).

Theorem 44 (Kronecker). Let K be a field and let G ⊂ K× be a finite subgroup of the units
of K (with respect to multiplication). Then G is cyclic.

Proof. G is a finite abelian group, so by the results on finitely generated modules over PIDs,
we know that G ∼= Z/a1⊕. . .⊕Z/as with a1|a2| . . . |as. We will write this as G ∼= Ca1×. . . Cas

where Cr = 〈σ|σr = 0〉 is the cyclic gorup with r elements. For any x ∈ G, we have
xas = 1(since as is the lowest common multiple of the ai’s). In K, G ⊂ {x ∈ K|xas = 1}
which is the set of roots of T as − 1, and there are at most as many elements. SO, |G| ≤ as,
but |G| = a1 . . . as ⇒ a1 = . . . an−1 = 1, so s = 1 ⇒ G is cyclic. Specifically, G = Cas .

Corollary 45. If K is finite with q elements, then xq = x for every x ∈ K.

Proof. K× is a finite subgroup of itself, and thus, is cyclic with q − 1 elements, so for every
x 6= 0, xq−1 = 1.

Proposition 46. There is exactly one finite field with q elements where q = pn for some
prime p and some n ≥ 1.

Proof. Let Fq be the set of roots of T q − T in Fp

The derivative of T q − T is qT q−1 − 1 = −1 6= 0, so this polynomial is separable over Fp.
Thus, it has q distinct roots, so |Fq| = q.

Then, for x, y ∈ Fq, (x + y)pn − (x + y) = xpn
+ ypn − (x + y) since the characteristic is

p, which is equal to (xpn − x) + (ypn − y) = 0 since x, y are solutions of T pn − T .
Let Fp denote the Frobenius homomorphism. Then, since xpn

= x for all x ∈ Fq, x =
F n

p (x), where F n denotes n applications of the homomorphism. So, F n(xy) = F n(x)F n(y) =
xy, and since F n(xy) = (xy)pn

, (xy)pn − (xy) = 0, so xy ∈ Fq.
Let x 6= 0. Then, xpn − x = 0, so x(xq−1 − 1) = 0, and since x 6= 0, xq−1 − 1 = 0, so

xq−1 = 1. So, since q ≥ 2, xq−2 is x−1. Then, (xq−2)q = F n(xq−2) = (F n(x))q−2 = xq−2, so
xq−2 ∈ Fq.

And clearly, Fq ⊂ Fp since each element of q is the solution of T q − T ∈ Fp[T ]. Thus, Fq

is a subfield of Fp.
Finally, let K be a field of order q = pn. Then, let x ∈ K be such that K× = 〈x〉 (this

exists by Corollary 45). Then, we can define an isomorphism to Z/pn via 0 7→ 0 and 1
mapping to the generator of (Z/q)× (which is a cyclic group). Hence, since this is clearly
an isomorphism (since 0 7→ 0, the generator of Kx maps to the generator of (Z/q)×, and
|K×| = |(Z/p)×|), we see that fields with q elements are unique up to isomorphism.
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Proposition 47. Any finite extension of a finite field is normal.

Proof. First note that it is enough to show that for any prime p, if q = pn for some n ≥ 1,
then Fq/Fp is normal since for v = pm with m ≤ n, this implies that Fq/Fv is normal.

Let σ : Fq → Fp which is Fp-linear be given. Let x ∈ Fq. Then x is a solution to T q − T
(from the previous problem).

0 = σ(xq−x) = (σ(x))q−(σ(x)), and thus, σ(x) ∈ Fq. Hence, since x ∈ Fq was arbitrary,
σ(Fq) ⊂ Fq. Thus, the extension is normal.

Proposition 48. Any finite extension of a finite field is separable.

Proof. Again, we need only consider the case Fq/Fp where q = pn for some n ≥ 1 and p is
prime, since this being separable implies that Fq/Fv where v = pm for m ≤ n is separable.

Let x ∈ Fq be given. Then, by definition we know that x = xq = xpn
. And we know that

xpn ∈ Fp(x
p), since (xpn

) = (xp)pn−1
(and n ≥ 1). Thus, x ∈ Fp(x

p) for all x ∈ Fq, so Fq/Fp

is separable.
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§5.8 Galois Theory

Definition 28. An algebraic extension L/K is Galois if it is normal and separable. The
Galois Group of the extension Gal(L/K) = GalK(L) = AutK(L) is the group of K-
automorphisms of L, i.e., the group (for composition) of σ : L

∼→ L which are isomorphisms
of rings (or fields) such that σ|K = idK (that is, σ is K-linear).

For example, K/K is Galois, with Gal(K/K) = 1. C/R is galois since it is normal (and
separable since the characteristic is 0), and Gal(C/R) = Z/2 = {1, σ} where σ : C → C is
defined by conjugation, z 7→ z. In general, in characteristic 0, K/K is Galois. Even more
generally, Ksep/K is Galois. In fact, Ksep is the union of all L/K with K ⊂ L ⊂ K and
L/K Galois.

Definition 29. The absolute Galois group of K refers to Gal(K
sep

/K). If K is perfect, this
is just Gal(K/K) (this is the case when char(K) = 0).

Theorem 49. Any extension of a finite field is Galois.

Proof. By Proposition 47, any finite extension of a finite field is normal and by Proposition
48, any finite extension of a finite field is separable. Thus, any finite extension of a finite
field is Galois.

Let L/K be an extension of a finite field K, and let K be a fixed algebraic closure of K.

Then, L =
⋃

L⊂M⊂K
M finite

M . As we have seen, each M/K is both separable and normal, and thus,

L/K is separable and normal, and hence, is Galois.

Theorem 50. Let L/K be finite (and thus, algebraic). The following are equivalent:

1. L/K is Galois.

2. L is the splitting field of some irreducible P ∈ K[T ] such that P is separable (and
hence, L ∼= K[T ]/P with P separable (and thus, simple)).

3. The group AutK(L) has exactly [L : K] elements.

Proof. 1. ⇒ 2.: By Theorem 39, L = K(x) since L/K is separable and finite. let P be the
minimal polynomial of x over K. Since L/K is normal, P decomposes completely in L, so
since x is a root of P and x ∈ L, L is the splitting field of P (which is separable since x is),
so L ∼= K[T ]/P .
2. ⇒ 1.: If L is the splitting field of a separable polynomial P , then L = K(α1, . . . , αn)
where the αi’s are the roots of P , which are separable. Thus, L/K is separable, since
K(α1, . . . , αn) ⊂ Ksep and Ksep/K is seaprable, so by Corollary 35, K(α1, . . . , αn)/K is
separable. Since L is a splitting field, it is normal. Hence, L/K is Galois.
1. ⇒ 3.: Fix σL ↪→ K. Then, Gal(L/K) = AutK(L) ↪→ HomK(L, K) via τ 7→ σ ◦ τ . By
definition, HomK(L, K) has [L : K]S elements, so |AutK(L)| ≤ [L : K]S = [L : K] since
L/K is separable.

Conversely, for any ρ ∈ HomK(L, K), ρ(L) ⊂ L since L is normal (by Proposition 23).
That is, ρ|L : L → L is an automorphism of L. In other words, the inclusion AutK(L) ⊂
HomK(L, K) is an equality. Hence, |AutK(L)| = [L : K].
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3. ⇒ 1.: Fix σ : L ↪→ K, and consider AutK(L) ⊂ HomK(L, K). By hypothesis, [L :
K] = |AutK(L)| ≤ |HomK(L, K)| := [L : K]S ≤ [L : K]. Thus, [L : K]S = [L : K], so
L/K is separable, and HomK(L, K) = AutK(L), so for every ρ : L → K which is K-linear,
ρ ∈ AutK(L), so ρ(L) ⊂ L, which by Proposition 23 means that L/K is normal. Hence,
L/K is Galois.

Corollary 51. If L/K is finite and Galois, then |Gal(L/K)| = [L : K].

Theorem 52. Let L be a field, let G be a finite subgroupe of the group of field automorphisms
of L. Then let LG = {x ∈ L|σ(x) = x∀σ ∈ G} ⊂ L. The extension L/LG is finite and Galois
with Galois group G.

Proof. Let G be a finite subgroup of the group of field automorphisms of L and let K = LG.
Let x ∈ L be given and consider the finite set Gx = {σ(x)|σ ∈ G}, that is, the orbit of

x under G.
Let Px =

∏
y∈Gx

(T −y) ∈ L[T ]. By construction, PX has only simple roots, and Px(X) = 0

since x ∈ Gx (because x = id(x)). Since G acts on L, it acts on L[T ] by coefficients. The
action of G on L[T ] is by ring homomorphisms.

Then, for every σ ∈ G, σPx =
∏

y∈Gx

(T − σy) = Px since y ∈ Gx, thus the coefficients fo

Px are fixed by σ for every σ ∈ G, which means that Px ∈ LG[T ] = K[T ].
Since Px(x) = 0, the minimal polynomial of x over K divides Px, so sinc ePx has only

simple roots, the minimal polynomail of x can only have simple roots, and thus is separable.
Hence, x is separable over K, and since x ∈ L was arbitrary, L/K is separable.

Also, L is the splitting field of the family {Px|x ∈ L}, which means that L is normal.
Hence, L/K is Galois.
Now let n = |G|, and for the sake of contradiction, suppose there are m linearly indepdent

(over K) elements x1, . . . , xm ∈ L with m > n. Let G = {σ1, . . . , σn}. Consider the matrix
A = (σi(xj)) 1≤i≤n

1≤j≤m
∈ Mn×n(L).

Thus, we have a linear map from Lm A→ Ln.
Since m > n, ker(A) 6= 0. Let λ be  λ1

...
λm


.

in ker(A) \ 0 with the least number of non-zero entries.
We may assume without loss of generality that λ1 6= 0, so λ−1

1 λ is
1

λ2/λ1
...

λm/λ1


and this has the same properties as λ, so without loss of generality we may assume λ1 = 1.
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We have A · λ = 0, so for every 1 ≤ i ≤ n, (A · λ)i =
m∑

j=1

σi(xj)λj = 0.

Suppose that λj ∈ K = LG for all j. Then 0 =
m∑

j=1

σi(xj)λj =
m∑

j=1

σi(xj)σi(λj) =

σi(
m∑

j=1

xjλj) ⇒
m∑

j=1

xjλj = 0, which would contradict the hypothesis that the xj’s are linearly

independent.
So one of the λj’s must be in L \K. Without loss of generality, we may assume that it is

λ2. λ2 /∈ K = LG means that for some 1 ≤ k ≤ n, σk(λ2) 6= λ2. Consider σk(λ). This is just
σk(1) = 1
σk(λ2)

...
σk(λm)


Then, for 1 ≤ i ≤ n, to compute

m∑
j=1

σi(xi) · σk(λj), not that for some l, σi = σkσl (in

particular, σl = σ−1
k σi), so this sum is just

m∑
j=1

σkσl(xi) · σk(λj) = σk(
m∑

j=1

σl(xi)λj) = 0 since

m∑
j=1

σl(xi)λj = 0. Thus, σk(λ) ∈ ker(A).

Hence, λ− σk(λ) ∈ ker(A) (since ker(A) is a subspace), and we can write λ− σk(λ) as
1− 1 = 0

λ2 − σk(λ2) 6= 0
...

λm − σk(λm)


Then, for every 1 ≤ j ≤ m such that λj = 0, we have λj − σk(λj) = 0. Thus, λ − σk(λj) ∈
ker(A) and has strictly fewer non-zero entries than λ, which contradicts our selection of λ.

Thus, we must have that [L : K] ≤ |G|.
Then, since G ⊂ AutK(L), |G| ≤ |AutK(L)| = |Gal(L/K)| = [L : K].
Thus, |G| = [L : K], and since G ⊂ Gal(L/K), and they have the same number of

elements, G = Gal(L/K).

Corollary 53. If L/K is Galois and finite with Gal(L/K) = G, then K = LG.

Proof. We have K ⊂ LG and [L : LG] = |G| = [L : K] ⇒ [LG : K] = 1.

Definition 30. For G ⊂ Aut(L), the subfield LG = {x ∈ L|σ(x) = x∀σ ∈ G} is called the
fixed field of G.

Theorem 54 (Fundamental Theorem for Finite Galois Extensions). Let L/K be a finite
Galois extension. Let G = Gal(L/K) = AutK(L). Then, there is a bijection of sets between
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{M |L/M/K} and {H|H ≤ G}. That is, between intermediate extension of L/K and sub-
groups of G, defined by M 7→ Gal(L/M) ≤ G and H ≤ G 7→ LH . Note that this bijection
reverses inclusions.

Also, M/K is Galois if and only if M/K is normal and separable, and M/K is nor-
mal if and only if H = Gal(L/M) is normal is G. Thus, there is a natural isomorphism
Gal(M/K) ∼= G/H.

Proof. Let M be an intermediate extension of L/K. We konw that L/M is Galois and
H = Gal(L/M) ≤ Gal(L/K) = G since σ|M = idM → σ|K = idK . By the previous corollary
applied to L/M , we have L = M .

Let H ≤ G. By the previous theorem, applied to L and the group H, we have L/LH is
Galois and Gal(L/LH) = H. Of course, K ⊂ LH since H ≤ G = AutK(L).

Hence, we have the required bijection. Reversing inclusion is obvious, since if H ≤ H ′,
then LH′ ⊂ LH .

Let L/M/K be given. We will show that M/K is normal if and only if H / G. Note
that HomK(L, K) ∼= AutK(L) (using the fact that L is normal), and moreover, that any σ ∈
HomK(M, K) is the restriction of some σ ∈ HomK(L, K), and hence, of σ ∈ Gal(L/K) = G.
Thus, we have σ(M) ⊂ L. By the bijection, σ(M) corresponds to some subgroup. We see
that this must be σHσ−1. Thus, M is normal if and only if σ(M) ⊂ M for every σ ⇔
σ(M) = M for every σ ⇔ σHσ−1 = H for every σ ⇔ H / G.

The restriction G = Gal(L/K) → Gal(M/K) is surjective by the discussion above and

has kernel Gal(L/M) = H. Hence, G/H
'→ Gal(M/K).

Thus, we see that Galois theory connects fields to groups, and thus we have the following
terminology.

Definition 31. An extension L/K is called abelian if it is Galois with an abelian Galois
group, G = Gal(L/K). It is called cyclic if G is cyclic.

25



§5.9 Galois Groups and Polynomials

Definition 32. Let P ∈ K[T ] be a polynomial of degree d and α1, . . . , αd be the roots of P
is K (repitition in roots is okay). Then the discriminant of P is the following number:

∆(P ) = ∆ =
∏
i<j

(αi − αj)
2.

P has multiple roots if and only if ∆P = 0.

Consider δ =
∏
i<j

(αi−αj). If σ ∈ Sd, σ acts on δ by permuting the αi’s, so σ(δ) = sgn(σ)δ.

Hence, σ(∆) = sgn(σ)2∆ = ∆. So ∆ does not depend on the order of the roots.
Since ∆ is a symmetric polynomial in the roots of P , it must be a polynomial of the

coefficients of P .

Definition 33. Let P ∈ K[T ] be a separable polynomial (a product of irreducible separable
polynomials). Its Galois group is Gal(L/K) where L is the splitting field of P over K (which
is a Galois extension).

Remark 7. If P = (T − α1) . . . (T − αn) ∈ K, then for any σ ∈ G = Gal(L/K) (where L is
the splitting field of P ), σ(αi) = αj for some j. That is, σ permutes the roots, so G ↪→ Sn.
This is a monomorphism of groups, injectivity comes from the fact that L = K(α1, . . . , αn) In
particular, [L : K] = |G|, and |G| divides |Sn| = n!. If P is also irreducible, K(αi) = K[T ]/P
is a subfield of L of degree n, so n|[L : K]|n!.

Remark 8. Since σ(∆) = ∆ for all σ ∈ G ⊂ Sn, ∆ ∈ LG = K. Also, K(δ) ⊂ L corresponds
to the subgroup G ∩ An of G (with G ↪→ Sn as above), since if σ ∈ An, sgn(σ) = 1, so
σ(δ) = sgn(σ)δ = δ.

Corollary 55. If P ∈ K[T ], char(K) 6= 2, P is degree 3, irreducible, and separable, and L
is the splitting field of P , then [L : K] = 3 if and only if ∆ ∈ K2 (i.e., δ ∈ K), in which
case Gal(L/K) = Z/3Z. Otherwise, if ∆ /∈ K2, then [L : K] = 6 and Gal(L/K) = S3.

Remark 9. Let P ∈ K[T ] be separable and irreducible. Let L = SplitK(P ). The extension
L/K is Galois. Let α1, . . . , αn ∈ L be the roots of P . The αi’s are called conjugates, i.e.,
the conjugate of α means another root of mα(x). The point is that the αi’s are permuted
by Gal(L/K), in fact, they are permuted transitively.
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§5.10 Cyclotomic Extensions and Cyclic Extensions

Definition 34. Let n ∈ N. An nth root of unity in a field K is an x ∈ K such that xn = 1.
By Kronecker, they form a cyclic subgroup of K×. A primitive nth root of unity is an x ∈ K
such that xn = 1 and xm 6= 1 for every m < n.

For example, if char(K) = p > 0, then T p − 1 = (T − 1)p, so there is only one pth root
of unity, namely, 1.

As such, when considered nth roots of unity, we usually assume char(K) does not divide
n. In this case there are exactly n nth roots of unity in K. These roots form a subgroup of
Ktimes, generated by any primitive nth root.

In Q, ζ = e2πi/n ∈ Q ⊂ C is a primitive nth root of unity.

Definition 35. The polynomial Φn(T ) given by Φn(T ) :=
∏

gcd(j,n)=1

(T − ζ i) is the nth cyclo-

tomic polynomial. Φn ∈ Z[T ] is irreducible, and T n − 1 :=
∏
d|n

Φd(T ).

For a prime p, Φp(T ) = T p−1
T−1

= T p−1 + . . . + T + 1. This is irreducible.

Remark 10. For any n ∈ N, deg(Φn) = #(Z/nZ)× = φ(n) where φ(mn) = φ(m)φ(n) if
(m,n) = 1 and φ(pl) = (p− 1)pl−1.

Theorem 56. The so-called cyclotomic extension Q(ζ)/Q where ζ = e
2πi
n (or any primitive

nth root of unity) is Galois of degree φ(n). Moreover, Gal(Q(ζ)/Q)
∼=→ (Z/nZ)× via σ 7→ j

such that σ(ζ) = ζj and j 7→ (ζ 7→ ζj).

Proof. Let L = Q(ζ). This containes ζj for every j, and thus, it is the splitting field of Φn(x)
which has degree φ(n). For σ ∈ Gal(L/Q), σ(ζ) is another primitive nth root of unity, and
hence, σ(ζ) = ζj for some j ∈ (Z/nZ)×. Thus, the map Gal(L/Q) → (Z/nZ)× which is
clearly injcetive (since L = Q(ζ)) is a group homomorphism. Hence, it is an isomorphism
since they have the same number of elements.

Theorem 57. Let K be a field and n ∈ Z such that char(K) does not divide n and K
contains all nth roots of unity (i.e., contains a primitive nth root). Let a ∈ K and consider
T n − a ∈ K[T ], a 6= 0. Let L′ be a splitting field of T n − a. Let α ∈ L′ such that αn = a.
Now, let L = K(α). Then, L is cyclic of order d|n, and αd ∈ K.

Proof. First we have the decomposition T n − a =
∏

0≤j≤n−1

(T − ζ iα). For σ ∈ Gal(L/K), we

have σ(α) is some othe rroot of T n − a, hence, σ(α) = ζjα for j ∈ Z/nZ. As before, this
gives an embedding of Gal(L/k) ↪→ Zn. Then, G := Gal(L/K) is a subgroup of Zn, which

implies G ∼= (Z/dZ) for some d|n. Finally, N(α) =
∏
σ∈G

σ(α) is fixed by G, hence, belongs in

K. So, αdζk ∈ K, which implies that αd ∈ K.

27


