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Real Closed Fields

Exercise 1

Let x and y be algebraically independent over R.

(a) Show that R(x,y) is formally real and that we can find orders <; and <, of R(z,y)
such that x <; y and y <5 x.

(b) Use (a) to show that the ordering < is not quantifier-free definable in R in the language

of rings.
Solution:
. - fl(x7y) 2 . .
(a) Suppose 0 = Z( ( )) where f;,g; € Rlz,y], gi # 0. So if we let G;(z,y) =
; gi\xr, Yy
i=1

n

H gi(z,y), then 0 = Z(Gi(x, y) fi(x,1))?, contradicting that x, y are algebraically
1<j<n,ij i=1
independent.

Note that (x — y) is not a sum of squares in R(z,y), since we would get x —y =

D—f"(x’y))? where f,,g; € Rlz,y), g; # 0. So if Gi(z,y) =[] gilwy), 0 =
9i(,y) 1<j<n it

ZG2 x,y) fi(z,y) — (x — y)Hgf(a:, y), contradicting that x,y are algebraically inde-
i=1
pendent Similarly, (y — x) is not a sum of squares in R(z,y).

Proposition 1. If F' is formally real and a € F, —a not a sum of squares in F', then
there is an ordering of F' where a > 0.

Proof. Let Y F? denote the sums of squares in F', and note that if x € > F? then
x > 0 in any ordering of F.

Also note that if —a is not a sum of squares, a # 0.



If /a € F, then a € F?2 C Y F?, so in any ordering, a > 0.

We will show that F'(y/a) is formally real. Then, since in this field a is a square, any
ordering will be such that a > 0, so we get the desired ordering of F' by restricting this
ordering to F.

Suppose —1 = >_(b; + ¢;v/a)®. Then 0 = > b7 + 1+ > c?a + v/ad_ 2b,c;. So since
1,1/a are a basis of F(y/a), we must have > 0? + 1+ > c?a =0 and >_ 2b;c; = 0. In

e YRS | $d
Xf T (2P XCed)?

Thus, F(y/a) is formally real, as required.

particular, —a = which is the sum of squares =<«.

]

Hence, we get an ordering <; in which y —x >; 0 so z <; y and an ordering <, in
which z —y >5 0, so y <5 =.

Let ¢ be a quantifier free formula in the language of rings such that for all a,b € R,
a<bs RE ¢(a,b). So (R, <) E Va,bp(a,b) <» a < b. Let M; be the real algebraic
closure of (R(z,y),<;) for i = 1,2 (since (R(z,y),<;) is formally real by part (a),
and thus, has a real algebraic closure whose order extends <;). Since (R, <) C M,,
by model completeness of RCF, (R, <) < M,;. So M, E Va,bp(a,b) <> a <; b. So
M E ¢(z,y) and My E =¢(x,y). Now consider M; and M, in the language of
rings. R(z,y) C My, Ma, so since ¢ is quantifier free and in the language of rings,
R(z,y) F ¢(z,y) and R(z,y) F ~¢(z,y). =<

So < is not quantifier free definable in R in the language of rings.

Exercise 2

Let F' be a real closed field. We say that a function g : F* — F'is algebraic if there is a
nonzero polynomial p(Xy,...,X,,Y) over F such that for all a« € F", p(a,g(a)) = 0.

(a)
(b)

Use quantifier elimination to show that every semialgebraic function is algebraic.

Show that if f : R — R is semialgebraic, then there are disjoint intervals I,..., I,
and a finite set X such that R=1U... U, UX and f is analytic on each ;. (Hint:
Use the Implicit Function Theorem for R.)

Solution:

(a) Let g : F™ — F be semialgebraic. So {(z,v)|¢(T) = y} = {(7, y)|\/ /\pij(f, y) =

i=1j=1
0 A ¢ij(Z,y) > 0} for some polynomials p;;,¢;; € FZ,yl, 1 <i<m, 1< j <n.

Suppose for some ¢ that p;; = 0 for all j = 1..n. Then {(7, y)|/\ ¢;j(T,y) > 0} C
j=1
graph(g). If this is empty, we can remove this whole disjunct for an equivalent defining

formula. Otherwise, let (Z,y) be such that /\qij(f, y) > 0. Then, since the gj;s are
j=1
polynomials, they are continuous, so by choosing ¢’ sufficiently close to but # y, we get



¢;;(T,y’) between 0 and ¢;;(T,y), so /\qij(f, y') > 0. Thus, (Z,y), (Z,y') € graph(g),
j=1

contradicting that ¢ is a function. So, let p(Z,y) H Z pij(Z,y))". Then for all 7,

=1 j= 1
p(T, g(T)) = 0, since for some i, /\j i (T, g(T)) =0, so Z pi; (T, 9(T)))" = 0.
(b) By part (a), there is a polynomial p such that p(x, f(z)) =0forallz. p=p;-... py
where pq, ..., pn are irreducible polynomials and wlog, are all distinct (since if we have

a repeated root, if we divide by it, the result will still witness that f is algebraic).
Thus, since they are irreducible, p; 1 p; for 1 <i # j < m.

Let X = {a € R|$(a, f(a)) = 0}. We will show that X is finite.

Note, if a € X, then (a, f(a)) € pN g—’;, so it will be enough to show that this is finite.

g_z = Z( H p])(a—Z) Since the degree of 8’; is strictly less than that of p;,
i=1 1<5<m,j#i

pif 3 i and apl J( pi since it is irreducible.

8?’; C U p; N =), so it is enough to show that each of these are finite. g—z =
Z Hp Hpk p; divides the first summand, but not the second,

JF#i k#j
since p; 1 py for k 7& 1 and Di p’, and p; is irreducible. 3—5 { ps, since then it would
divide p, which would give us a repeated factor.

Thus, by Bezout’s Theorem, p; N g—;’ is finite for each 1 < i < m. Hence, X is finite.

SoX ={a1,...,ap_1} witha; < ... <a,. Let ag = —00, a,,, = 00, and I; = (a;_1, q;)
for1<j<m. Thatis, R=LU...UIL,UX.

We will show, using the implicit function theorem, that f is analytic on each I;.

Theorem 2 (Implicit Function Theorem). Suppose F : W — R is analytic, W C R?
open, (a,b) € W such that F(a,b) = 0 # %—g(a,b). Then there is a unique analytic
function ¢ : U — R for U C 111 (W) open such that F(z,¢(x)) =0 and ¢(a) =

Let W = I; x R. So W is open in R?. Then p : W — R is analytic since it is a
polynomial. Then pick any a € I}, let b = f(a), so (a,b) € W, p(a,b) =0 # g—i(a,b).
Then there is a unique analytic function ¢ : I; — R such that p(z,¢(x)) = 0 and
¢(a) =b. Thus, f = ¢ on I;, so f must be analytic on I;, as required.

Exercise 3*

(Real Nullstellensatz) Let F' be a real closed field and let J C F[X;,...,X,] be an ideal.
We say that J is real if for any py,...,p, € F[X,..., X,] such that > p? € J, then p; € J
for 1 <4 < m. Show that I(V(J)) = J if and only if J is real.



S olution:m

= Let pr € J. fV(J) =0, then J=I1(V(J)) = F[Xy,...,X,], so J is real. Otherwise,
i=1

let x € V(J).

Lemma 3. A field F is formally real if and only if for all ay,...,a, € F, Zaf =0=
i=1
a; =0Vl <¢<m.

Proof. <=: If m =1, then aé =0 = a; = 0. Otherwise, suppose there is i such that a? # 0.
Then Z 1<y §mm,j # i(@_Z)Q =—-1. =« .
=: Suppose Za? = —1 for some a; ...a, € F. Then Za?—i—l =0=>1=0 =<«
So F'is formf;l:l;f real. -
O

m

Suppose for some pi, ..., Pm, pr € J. Then Z(pz(x))2 = 0, so by the Lemma,
i=1 i=1
pi(x) =0 for all 1 <i <m. Thus, p; € [(V(J)) = J.
<«: We will need a few lemmas for the other direction.

Lemma 4. If P is a real prime ideal of F[X1,...,X,], then if K is the field of fractions of
F[Xy,...,X,]/P, K is formally real.

i+ P :
Proof. Let Z(a + ) = P where a;,b; € F[X1,...,X,], b; ¢ P, (so a sum of squares in K
i=1 bi+ P
which is equal to 0). Let ¢; = H b; + P. Then Z(ciai +P)>=P. So Z(Ciai)g e P,
1<j<m,j#i i=1 i=1

so ¢;a; € P. We know that ¢; ¢ P, or else we would get some b; € P since P is prime. So
we must have a; € P. Thus, a; + P = P, so ’;’_"Ig = P, that is, 0 in K.
Thus, by Lemma 3, K is formally real.

Lemma 5. If J = ﬂR— where the P;’s are prime and J 1is real, then each P; is real.

=1

Proof. Let Py,..., P, be such that J = ﬂB, and no P, C P for i # j. If m = 1, then
i=1
Py = J is real. If not, consider P; and let ¢; € P;\ P, for all j # i, ¢ = H c;. Let

1<j<m,i#j
q

q q q

Zaz € P;. Then C2Z(li = Z(cak)Q. Since, Zai € P, this is in P;, and since ¢ € P;

k=1 k=1 k=1 k=1
q m

for all j # 4, it is in P;. Thus, Z(cak)2 € ﬂR- = J. So since J is real, ca;, € J, and thus,

k=1 i=1
cap € P; for each 1 < k < ¢. So since P; is prime, ¢ € P; or a;, € P;. But if ¢ € P; then

4



c; € P, for some j # 4. Thus, we must have a, € P, for all 1 < k < ¢. Thus, each P is
real. O

Since J is real, it is radical: let f € v/J, and n be such that f* € J. Let m be such that
m+n = 2% for some k. then f™f" € J, so f2" € J. Thus, since J is real, f € J.

So by the primary decomposition theorem, J = UR- for some prime ideals Py, ..., P, €
i=1
F[Xy,...,X,]. And by Lemma 5, each of these are real ideals.

Clearly, J C I(V(J)), so let f € I(V(J)). To show that f € J, we will show that f € P,
for each 7. Since F is a field, F[Xy,...,X,] is Noetherian, so P; = (g1,...,gx). For any
T, ifg(0) = ... = g&(¥) = 0, then & € V(J). So since f € I(V(J)), f(¥) = 0. Thus,
F EVYo(Agi(v) =0— f(v) =0). Let K be the field of fractions of F[Xy,...,X,|/P. K
is formally real by Lemma 4, so let L be its real algebraic closure. F C L, so by model
completeness, F' < L, so LEYu(A\gi(v) =0— f(v) =0). LE Ngi(Xy/P;,..., X,,/P;) =0
since g; € P, so LE f(Xy/F;,...,X,/P;) =0. Thus, f € P,.

Note: the original exercise said: Let F' be a real closed field, and let P be a prime ideal in
F[Xy,...,X,]. Then, there is x € F™ with f(z) = 0 for all f € P if and only if whenever
Py Pm € FIX1,...,X,] and Y p? € P, then all the p; € P.

This has a counterexample: Consider the ideal (z? 4+ y?) C R[z,y]. This is prime since
z? + y? is irreducible over R. (0,0) € V((2* + y?)). But z,y ¢ (2> + y?).

Exercise 4

Prove that for all n and d there are M and D such that if f(Xi,...,X,) = { where g and
h are real polynomials of degree at most d and f is positive semidefinite, then there are
polynomials gy, ..., ga, b1, ..., hy of degree at most D such that

Solution:
Let RF RCF and suppose not. Then let n,d be such that for polynomials g, h in n vari-
ables of degree at most d such that ¥ is positive semidefinite, for all M, D, g1, h1, ..., gm, ha

(9:(T))?
(hi(T))*

For M, D, let ®,; p(a@,b) be a formula expressing the following: If @, b are coefficients of

M
polynomials in n variables of degree at most D, there is T such that % #* Z
i=1

polynomials a(7) and b(Z) in n variables of degree at most d such that for all 7, % > 0 then

for all &1, ..., Car, dy, . . ., dyr coefficients of polynomials ¢y (), ...,y (Z), di(T), . . ., dy(T) in

_ M o (7))2
n variables of degree at most D, there exists x such that % #+ Z ECC; ((:f;; 5
i\
i=1

Then, by assumption, {®y p(a@,b)|M, D > 0} is finitely satisfiable.

So let S = R have realizations @, b of this. Then, S E RCF, and the corresponding %
is a positive semi-definite functions which cannot be expressed as a sum of squares. This
contradicts Hilbert’s 17 Problem.




Theorem 6 (Hilbert’s 17" Problem). If R is a real closed field, T € R™, and f € R(T) is

2

5

positive semidefinite, then there are gy, ..., gm € R(T) such that f = Zg
i=1

Exercise 5

If K is a field, let K[[t]] denote the field of formal power series over K in variable ¢, and let
K((t)) denote its fraction field, the field of formal Laurent series over K. Let

be the field of formal Puiseur series over K. Series in K((t)) are of the form Zait% for

some m,n € Z with n > 0. An important theorem is that if K is algebraically cllj)ged, then
K ((t)) is also algebraically closed. It follows that if R is real closed then R((t)) is real closed.

(a) Show that R < R((t)), and t is a positive infinitesimal element of R{(t)).

(b) Suppose that » € R and f : (0,7) — R is definable. Show that there is u € R({(t))
such that R((t)) F f(t) = p. Suppose that p = at?+ higher-degree terms. Show that
f is asymptotic to ax? at 0. In other words, show that
R|=V6>035>O(O<x<5—>]LJ;)—1|<e).
ax

Solution:

(a) Since R, R((t)) E RC'F, by model completeness, since R C R((t)), R < R((t)).
We know that ¢ > 0 in R((t)) since ¢t = (t2)2, and ¢ # 0. Let r € R, r # 0 be given.

1
r?—t = (Z(—l)”(r12"<2))t")2 (by taking the Taylor expansion of /72 —1t). So
n

n=0
since their difference is a non-zero square in R{(t)), r? > t.

(b) Let f : (0,7) — R be defined by ¢(a,b). That is, f(a) = b < R FE ¢(a,b). So
R EVa(0 < a <r — Jb(¢(a,b))), and by elementarity, R{({(t)) F Va(0 < a < r —
Alb(¢(a,b))). Thus, since R((t)) F 0 <t <r by part (a), R((t)) F Iu(f(t) = n).

Then, note that £ = 1 + g(x) where each power of z is strictly positive, since every
term after az? in p has degree strictly greater than ¢. Thus, as x — 0, g(x) — 0. So

for any € > 0, we can choose 6 > 0 such that 0 < 2 < § = |7 — 1| < e. So, since
_ f() ;
R{(t)) F n = f(t), R{(t)) F |~5 — 1| < e. Thus, since R = R((t)), and € > 0 was

arbitrary, RE Ve > 030 > 000 <z < § — |[L{& — 1] < o).

axd



Basic o-minimality

Exercise 15*

Suppose (M, <,...) is o-minimal, a < b € M and f : (a,b) — M is strictly increasing. Prove
that f|I is continuous for some interval I C (a,b).

Solution:

Since f is injective and (a,b) is infinite, f((a,b)) is infinite, so let (r,s) C f((a,b)) be
an interval. Again, since f is injective, there are unique ¢, d € (a,b) such that f(c) = r and
f(d) = s. So, since f is strictly increasing, ¢ < d and f((¢,d)) = (r,s). So let (u,v) C (r,s)
be an interval. Then there must be e, g with ¢ < e < g < d such that f(e) = v and f(g) = v.
For any t € (u,v), f(e) <t < f(g), so for (the unique) h € (a,b) such that f(h) = t,
e <h<g. So f~'(u,v)) = (e,g) is open. Thus, f is continuous on (r, s).

The problem originally said to prove that f is continuous on (a,b), which is not always
true. This is Lemma 3 in Chapter 3 of van den Dries. It is also the exercise from the
o-minimality lecture on Tuesday 7/24.

However, we can further prove that the number of points at which f is not continuous is
finite.

Let ¢(z) be Ve, d(c < f(x) <d— Trs(r <z <sAVo(r<v<s—c< f(v) <d))). Let
X ={z € (a,b)|f is not continuous} = {z|~¢(x)}. X is definable, so by o-minimality, if X
is infinite, then there is some interval J C X. But then f : J — M is strictly increasing,
so by the above argument, there is an interval I C J on which f is continuous =<=, since
I C X. So X must be finite.

Definable Closure and Exchange

Exercise 18

[Exchange] Suppose ¢ € del(A U {b}). Then c € dcl(A) or b € del(AU {c}).

Solution:
Let ¢ € dcl(AU{b}). Let ¢(T,y, z) be such that {c} = {z|¢(a,b,z)} for some a € A. Let

B ={ylo(@,y,c) N Nzd(a,y,x)}.

Lemma 7. If a set D is definable over some C and v € 0D (the boundary of D), then
x € dcl(C).

Proof. Since D is definable, by o-minimality, D = I, U...UI;UX where I,..., I} are open
intervals and X is finite. So 0D = XU the set of (non-infinite) endpoints of I, ..., I;. Let
0D ={by,...,b,} with by < ... <b,. Let = b;, and ¥(y) = Ib1, ..., bi_1,bi41,...,b(b1 <
by<...<bi<y<biyi<..<bA N b €dDAy€ID. Then MF ¥(y) >y = .

1<j<m,j#i

So x € dcl(C). O

So if b € 0B, then b € dcl(A U {c}).
If b is not on the boundary of B, then b € I C B for some interval I. Let 0(y) =
Alxg(a,y, ), and let Y be the set defined by 6. Note that I C B C Y.

7



Define f : Y — M by f(y) = x (the unique x guaranteed to exists by #). f is an
A-definable function on [ (since I C Y), and f =con I, since I C B, so fory € I, ¢(a,y,c).

Let ¢¥(z) = Ju < vwWu < y < vf(y) = x. That is, there is an interval on which f has the
constant value x.

Claim 1. ¢(Y) is finite.

Proof. By the Monotonicity theorem, ¥ = I, U...U [, U X where X is finite, I;’s are
intervals, and f is either strictly monotone or constant on each interval. So if x is such that
f is constantly x on some interval J, it must be on the whole I; in which J is contained.
Thus, there can only be m many such z’s, so ¢ (Y) is finite. O

So let ¥(Y) ={ay,...,an}. Sosince c € Y(Y), ¢ = a; for some 1 < i < m.
By Lemma 7, since ¢ € 9(¢(Y")) which is definable over A, ¢ € dcl(A)

Consequences of Cell Decomposition

Exercise 21

Suppose M is o-minimal and N is elementarily equivalent to M. Prove that A is o-minimal.
Solution:

Let S C N be definable and let ¢(Z,y) and @ € N™ be such that S = {y € N|N E
o(a,y)}. We want to show that S is a finite union of intervals and points.

Let A ={(7,y)|é(F,y)}. So for each 7 € M™, A; is definable.

Let B = {(7,¢,d)|(c,d) C Ar AVY(e, ) D (¢, d), (e, f)ZAr}. (We can express this in a
first order way.)

So Br is the set of (¢, d) which are disjoint intervals contained in Az By o-minimality,
Br is finite for all 7 € M™. So by Uniform Bounding, there is N such that |B7| < N for all
reM™.

Similarly, let C' = {(7,¢)|c € A= AV(e, f) 3 ¢, (e, f)ZAr}. Again, by o-minimality, since
C= is the set of isolated points in Az, Cr is finite, so by Uniform Bounding, there is M such
that |CF| < M for all 7 € M™.

Let 0,(7,c) be (—o0,¢) C Ar AVd > ¢(—00,d)Z Ar and 05(7, d) be (d,00) C Ar A Ve <
d(e,00)Z Ar. So
MEVFde, <di < ... <cy <dyIzy,....xMm

(Ar = (c1,dh) U... U (en,dy) U{xy, ... 2 })

V(3cebi(c) N Ar = (—o0,¢c) U (c1,dy) U ... U (en,dy) ULz, ..., 20 })

V(Hd@g(d) VAN AF = (Cl, dl) Uu...uU (CN, dN) U (d, OO) U {.Tl, c. ,QZM})

V(3e,dbi(c) A by(d) N Ar = (—00,¢) U (c1,d1) U ... U (en,dn) U (dy00) U{xy, ... 20 }).
Since N' = M, N satisfies this as well. Thus, since S = Ag, S is a finite union of points and
intervals (¢, d) with ¢,d € N U {£o0}.



