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Abstract

We will discuss the algebra of ordered fields, and use this to show that the theory of real
closed fields admits quantifier elimination, and thus, is model complete in the language of
ordered rings.

From this, we prove that the theory of real closed fields is o-minimal, and give proofs of
Hilbert’s 17th problem and the Real Nullstellensatz.

1 Overview of Real Algebra

We begin by discussing the algebra of ordered fields.

Definition 1. A field F is orderable if there is a linear order< such that x < y ⇔ x+z < y+z
and x < y ∧ z > 0⇒ zx < yz for all x, y, z ∈ F .

Definition 2. A field is formally real if −1 /∈ ΣF 2. ΣF 2 = {a21 + . . .+ a2n|n ∈ N, ai ∈ F for
1 ≤ i ≤ n}, the sums of squares in F .

Theorem 1. F is formally real if and only if F is orderable.

Lemma 2. A field F is formally real if and only if for all m ∈ N and a1, . . . , am ∈ F ,
m∑
i=1

a2i = 0 ⇒ ai = 0 ∀1 ≤ i ≤ m.

Proof. ⇐: If m = 1, then a21 = 0 ⇒ a1 = 0. Otherwise, suppose there is i such that a2i 6= 0.

Then
∑

1≤j≤m,j 6=i

(
aj
ai

)2 = −1. ⇒⇐

⇒: Suppose
m∑
i=1

a2i = −1 for some a1 . . . am ∈ F . Then
m∑
i=1

a2i + 1 = 0 ⇒ 1 = 0. ⇒⇐

So F is formally real.

Lemma 3. If F is formally real and a ∈ F with −a /∈ ΣF 2, then there is an ordering < of
F in which a > 0.

1



Proof. Note that if x ∈
∑
F 2, then x ≥ 0 in any ordering of F .

Also note that if −a is not a sum of squares, a 6= 0.
If
√
a ∈ F , then a ∈ F 2 ⊂

∑
F 2, so in any ordering, a > 0.

We will show that F (
√
a) is formally real. Then, since in this field a is a square, any

ordering will be such that a > 0, so we get the desired ordering of F by restricting this
ordering to F .

Suppose −1 =
∑

(bi+ci
√
a)2, that is, −1 is a sum of squares in F (

√
a). Then 0 =

∑
b2i +

1+
∑
c2i a+

√
a
∑

2bici. So since 1,
√
a are a basis of F (

√
a), we must have

∑
b2i +1+

∑
c2i a = 0

and
∑

2bici = 0. In particular, −a =
∑

b2i+1∑
c2i

=
∑

b2i
∑

c2i
(
∑

c2i )
2 +

∑
c2i

(
∑

c2i )
2 which is the sum of squares

⇒⇐.
Thus, F (

√
a) is formally real, as required.

Definition 3. A formally real field is real closed if it has no proper formally real algebraic
extensions.

Proposition 4. For a formally real field F , TFAE

(1) F is real closed.

(2) F (i) is algebraically closed, where i =
√
−1.

(3) For all a ∈ F , one of ±a is a square and every polynomial of odd degree has a root.

The third condition is nice because it can be expressed by first order sentences, so we’ll
use it when we axiomatize RCF (the theory of real closed fields). An ordered field (F,<)
is real closed if and only if for all p(x) ∈ F [x], a < b, p(a) < 0 < p(b) ⇒ ∃c such that
a < c < b ∧ p(c) = 0.

Definition 4. If F is formally real, R ⊃ F is a real closure if R is a real closed algebraic
extension of F .

In general, we can extend orderings in different ways. Considered Q(x) ⊂ Q(
√
x) ⊂ R1

and Q(x) ⊂ Q(
√
−x) ⊂ R2 where R1, R2 are the respective real algebraic closures. In R1,

x = (
√
x)2 > 0 and in R2, −x = (

√
−x)2 > 0, and ∀a ∈ F∃z ∈ F (z2 = a ∨ z2 = −a).

Theorem 5. If (F,<) is an ordered field

(1) There is a real closure, R, with (F,<) ⊂ (R,<).

(2) Any two such real closures are isomorphic.

2 Quantifier Elimination in RCF

Definition 5. A theory T admits quantifier elimination if for every formula φ there is a
quantifier free formula ψ such that T � φ↔ ψ.
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Let L denote the language of rings, {+, ·, 0, 1,−}. As it turns out, RCF does not admit
quantifier elimination in L. Suppose it did, and let φ(x, y) be a quantifier free formula
equivalent to ∃z(z 6= 0 ∧ y − x = z2). That is, φ(x, y)↔ x < y.

Consider R � RCF , and x, y algebraically independent over R. We will see below in
Lemma ?? that R(x, y) is formally real. Since x− y and y − x are not sums of squares (or
else we would have a non-zero polynomial in x, y which is equal to 0, contradicting that x
and y are algebraically independent), we can order R(x, y) in two ways, <1 and <2 such
that x <1 y and y <2 x. Then, if we consider K1 ⊃ (R(x, y), <1) and K2 ⊃ (R(x, y), <2)
the real algebraic closures extending these orderings, we get K1 � ∀a, bφ(a, b)↔ a <1 b and
K2 � ∀a, bφ(a, b)↔ a <2 b. In particular, K1 � φ(x, y) and K2 � φ(y, x), so K2 � ¬φ(x, y).

Now consider K1, K2 as L structures. So, since φ is in L, we still have K1 � φ(x, y) and
K2 � ¬φ(x, y). But since R(x, y) ⊂ K1, K2, φ is quantifier free, and x, y ∈ R(x, y), we get
R(x, y) � φ(x, y) and R(x, y) � ¬φ(x, y). ⇒⇐.

To avoid this, we expand the language to Lor = L ∪ {<}, the language of ordered rings.
Since the relation < is definable in real closed fields (via ∃z 6= 0(y − x = z2)), by adding <
to the language, we still have the same definable sets.

We will use the following test for quantifier elimination.

Theorem 6. Let T be an L-theory. Suppose that for all quantifier free formulas φ(v, w), if
M,N � T , A is a common substructure of M and N , a ∈ A, and there is b ∈M such that
M � φ(a, b), then there is c ∈ N such that N � φ(a, c). Then, T has quantifier elimination.

Theorem 7. RCF admits quantifier elimination in Lor.

Proof. Begin with K,L � RCF and A ⊂ K,L a common substructure. Then A is an ordered
integral domain. Extend the ordering of A to its fraction field F0 ⊂ K ∩ L, and let F be
the real algebraic closure of F0. By the uniqueness of F (Theorem 5), we may wlog assume
F ⊂ K∩L. So it will suffice to show that if φ(v, w) is a quantifier free formula, a ∈ F , b ∈ K,
K � φ(b, a), then there is b′ ∈ F , and thus, K, such that F � φ(b′, a) (so K � φ(b′, a)).

Note that for a polynomial p(x) ∈ F [x], p(x) 6= 0 ↔ (p(x) > 0 ∨ −p(x) > 0) and
p(x)6>0↔ (p(x) = 0∨−p(x) > 0), so we may replace negative atomic formulas with positive
ones.

So there are polynomials p1, . . . , pm, q1, . . . , qm ∈ F [x] such that φ(v, a) is equivalent to

a finite disjunction of formulas of the form
m∧
i=1

pi(v) = 0 ∧ qi(v) > 0. It will be enough to

consider one such disjunct.
If one of the pi’s is not identically 0, then b is algebraic over F . Since F has no real proper

algebraic extensions, we can’t have b ∈ K \ F , so we must have b ∈ F , as required. If not,

then the disjunct is of the form
n∧

i=1

qi(v) > 0. Each polynomial qi(x) has only finitely many

zeros, and thus, can only change signs finitely many times. So we can choose ci < b < di such
that qi does not have any 0’s on (ci, di). Let c = max(c1, . . . , cn) and d = min(d1, . . . , dn).

Then c < d, and
n∧

i=1

qi(x) > 0 whenever c < x < d. Thus, there must be b′ ∈ F such that

F � φ(b′, a).
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Corollary 8 (Model Completeness). If R1, R2 � RCF and R1 ⊂ R2, then R1 ≺ R2.

Definition 6. For R � RCF , X ⊂ Rn is semialgebraic if it is a finite boolean combination
of sets of the form {x ∈ Rn|f(x) = 0} and {x ∈ Rn|g(x) > 0}, f, g ∈ R[x].

The semialgebraic sets are exactly those defined by quantifier free formulas, so by quan-
tifier elimination, these are exactly the definable sets.

Theorem 9. RCF is an o-minimal theory.

Proof. Let R � RCF and X ⊂ R be definable. Let φ(x) define X. φ(x) is equivalent to a

formula of the form φ(x) =
n∨

i=1

m∧
j=1

pij(x) = 0 ∧ qij(x) > 0. (As before, the negation of = and

< can be expressed with = and <, so it is enough to consider formulas of this form).
To see that RCF is o-minimal, it will be enough to show that each of these disjuncts is

a finite union of points and intervals.
But this is clear, since pij and qij have only finitely many zeros, so we can express the set

of x on which qij is positive with finitely many intervals, and there are only finitely places
where pij(x) = 0. And an intersection of finitely many finite unions of points and intervals
is itself also a finite union of points and intervals.

3 Consequences of Model Completeness in RCF

3.1 Hilbert’s 17th problem

For this, we will consider a real closed field R and its field of rational functions, R(x). The
problem was originally stated for R, but the result holds for any real closed field.

Lemma 10. R(x) is formally real.

Proof. Suppose 0 =
n∑

i=1

(
fi(x)

gi(x)
)2 where fi, gi ∈ R[x], gi 6= 0. So if we letGi(x) =

∏
1≤j≤n,i6=j

gi(x),

then 0 =
n∑

i=1

(Gi(x)fi(x))2, contradicting that x is transcendental over R. Thus, we must

have fi = 0 for each 1 ≤ i ≤ n.
Hence, by Lemma 2, R(x) is formally real.

Theorem 11 (Hilbert’s 17th Problem). For R � RCF , let f ∈ R(x1, . . . , xn) be such that

∀xf(x) ≥ 0. Then there are g1(x), . . . , gm(x) ∈ R(x) such that f =
m∑
i=1

g2i .

Proof. Suppose not. By Lemma 3, since f is not a sum of squares, there is an ordering of
R(x) in which f(x) < 0. Let K be the real algebraic closure of R(x). So since R ⊂ R(x) ⊂ K,
by model completeness, since R,K � RCF , R ≺ K. K � ∃xf(x) < 0 (namely, x ∈ K itself).
So R � ∃xf(x) < 0 ⇒⇐.
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3.2 Real Nullstellensatz

Theorem 12 (Real Nullstellensatz). Let F be a real closed field and let J ⊂ F [X1, . . . , Xn]
be an ideal. We say that J is real if for any p1, . . . , pm ∈ F [X1, . . . , Xn] such that

∑
p2i ∈ J ,

then pi ∈ J for 1 ≤ i ≤ m. I(V (J)) = J if and only if J is real.

Proof. ⇒: If V (J) = ∅, then J = I(V (J)) = F [X1, . . . , Xn], so J is real. Otherwise, let
x ∈ V (J).

Suppose for some p1, . . . , pm,
m∑
i=1

p2i ∈ J . Then
m∑
i=1

(pi(x))2 = 0 since x ∈ V (J), so by

Lemma 2, pi(x) = 0 for all 1 ≤ i ≤ m since F � RCF . Thus, pi ∈ I(V (J)) = J .

⇐: We will need a few lemmas for the other direction.

Lemma 13. If P is a real prime ideal of F [X1, . . . , Xn], then if K is the field of fractions
of F [X1, . . . , Xn]/P , K is formally real.

Proof. Let
m∑
i=1

(
ai + P

bi + P
)2 = P where ai, bi ∈ F [X1, . . . , Xn], bi /∈ P , (so, a sum of squares in

K which is equal to 0). Let ci =
∏

1≤j≤m,j 6=i

bj+P . Then
m∑
i=1

(ciai+P )2 = P . So
m∑
i=1

(ciai)
2 ∈ P ,

and thus ciai ∈ P since P is real. We know that ci /∈ P , or else we would get some bj ∈ P
since P is prime. So we must have ai ∈ P . Thus, ai + P = P , so ai+P

bi+P
= P , that is, 0 in K.

Hence, by Lemma 2, K is formally real.

Lemma 14. If J =
m⋂
i=1

Pi where the Pi’s are prime and J is real, then each Pi is real.

Proof. Let P1, . . . , Pm be such that J =
m⋂
i=1

Pi, and no Pi ⊂ Pj for i 6= j. If m = 1, then

P1 = J is real. If not, consider Pi and let cj ∈ Pj \ Pi for all j 6= i, c =
∏

1≤j≤m,i 6=j

cj. Let

q∑
k=1

a2k ∈ Pi. Then c2
q∑

k=1

a2k =

q∑
k=1

(cak)2. Since,

q∑
k=1

a2k ∈ Pi, this is in Pi, and since c2 ∈ Pj

for all j 6= i, it is in Pj. Thus,

q∑
k=1

(cak)2 ∈
m⋂
i=1

Pi = J . So since J is real, cak ∈ J , and thus,

cak ∈ Pi for each 1 ≤ k ≤ q. So since Pi is prime, c ∈ Pi or ak ∈ Pi. But if c ∈ Pi then
cj ∈ Pi for some j 6= i. Thus, we must have ak ∈ Pi for all 1 ≤ k ≤ q. Hence, each Pi is
real.

Since J is real, it is radical: let f ∈
√
J , and n be such that fn ∈ J . Let m be such that

m+ n = 2k for some k. then fmfn ∈ J , so f 2k ∈ J . Thus, since J is real, f ∈ J .

So by the primary decomposition theorem, J =
m⋂
i=1

Pi for some prime ideals P1, . . . , Pm ∈

F [X1, . . . , Xn]. And by Lemma 14, each of these are real ideals.
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Clearly, J ⊂ I(V (J)), so let f ∈ I(V (J)). To show that f ∈ J , we will show that f ∈ Pi

for each i. Since F is a field, F [X1, . . . , Xn] is Noetherian, so Pi = 〈g1, . . . , gk〉. For any v
, if g1(v) = . . . = gk(v) = 0, then v ∈ V (J). So for such a v, since f ∈ I(V (J)), f(v) = 0.
Thus, F � ∀v(

∧
gi(v) = 0→ f(v) = 0). Let K be the field of fractions of F [X1, . . . , Xn]/P .

K is formally real by Lemma 13, so let L be its real closure. F ⊂ L, so by model complete-
ness, F � L, so L � ∀v(

∧
gi(v) = 0 → f(v) = 0). L �

∧
gi(X1/Pi, . . . , Xn/Pi) = 0 since

g1, . . . , gk ∈ Pi, so L � f(X1/Pi, . . . , Xn/Pi) = 0. Thus, f ∈ Pi.
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