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1 PRA®

To define PRAY, we start with a many sorted version of first-order predicate logic with
a sort for each finite type, and an equality relation = at type N only. Finite types are
defined inductively as follows: N is a type, denoting the natural numbers in the intended
interpretation. For types ¢ and 7, ¢ X 7 and ¢ — 7 are types denoting the cross product
of o and 7 and the set of functions from o to 7 respectively. We use 0,7 — p to abbreviate
o— (1= p).

We have variables for all finite types and the following constants:

e 0 of type N

S of type N - N

For types o, T, a constant of type o,7 — o x 7 for paring, (z,y)

For types o, 7 constants of type 0 x 7 — ¢ and o X 7 — 7 for the projections (z)o and

(2)1
R of type N,(N,N — N),N - N

For each type o, Cond, of type N,o,0 — 0.

The set of lambda terms is closed under lambda abstraction, denoted Axt, and applica-
tion, denoted t(s). If t and s are terms and x is a variable of the appropriate type, then
t[s/x] denotes the result of substituting s for = in ¢, renaming bound variables if necessary.

1.1 Axioms of PRAY%

For r[z] a term of type N, z a variale of appropriate type, s and ¢ terms and x a variable,
rl(A.t)(s)] = rlt[s/x]]
For z,y terms of types o, 7 respectively,
r{({z,9))o] = rlx]
r{({z,y))1] = rly]



For x,y of type N,
=S(x) =0

S(x)=Sy) »z=y
For a,z of type N and f of type N,N — N,
R(a, f,0) =a

For r[z] a term of type N and z of type o, n of type N, and z,y of type o
r[Cond, (0, x,y)] = r[z]
r[Cond(S(n), z,y)] = rly]

For ¢ >;, and induction scheme equivalent to

Va(o(0) AVy < z(¢(y) = ¢(y +1)) = ¢(x))

Note that since we have projections and successor, with the axioms for R we can define
all primitive recursive functions, and thus, by identifying relations with their characteristic
functions, we can use primitive recursion to define the relation x < y. For y of type N, we
use y + 1 to abbreviate S(y).

We will use the following in our proof of the main theorem:

Lemma 1. Over PRA“, ¥y -induction is equivalent to the following principle:

2Vy(f(y) < 2) = 3avy(f(y) < f(2)) (1)

which says that every bounded function on N has a least upper bounded, and it attains it.

Proof. Note that for a 3; formula ¢(z), ¥;-induction is equivalent to
Va(p(0) AVE < x(d(k) = ok + 1)) — o(x)).
The contrapositive of (1) is

VoIy(f(y) > f(z)) = V2Ty(f(y) > 2).

=: Suppose Vz3y(f(y) > f(x)). Let ¢(z) be Jyf(y) > 2. Let z be given. ¢(0) =
Jy(f(y) > 0) holds since Jy(f(y) > f(0)) by assumption and f(0) > 0. Let k£ < z and
assume Jy(f(y) > k). By assumption there exists yo such that f(y2) > f(y), so since
F(n) > £(5) > b, flgo) > k+ 1, 50 Fy(f(y) > k+ 1), 50 ok + 1),

Hence, by ¥;-induction, since Vz¢(z) = Vz3y f(y) > z, the claim holds.

<: Let ¢(u,v) be a Ay formula satisfying Jvg(0,v) A Yu(Fvp(u,v) — Jvo(u + 1,v)).
Define f(x) to be the greatest w < x such that Vu < w3v < z¢(u,v).

Claim 1. Va3y(f(y) > f(x)).



Proof of claim: Let = be given. If f(x) = 0, let y be given (by assupmtion) such that ¢(0,y).
Then f(y + 1) > 1 since (Jv <y + 1)p(0,v). So Vu < 1, (Jv < y + 1)¢(u,v) holds.

If f(x) =w >0, then Vu < w3iv < z¢(u,v). Let w = s+ 1. Then Vu < s3v < z¢(u,v).
Let u < s. Jv < z¢(u,v), so by assumption, Jv,¢(u+1,v,). Let v, be such that ¢(0,v,) and
let y = max{v,|u < s} U{v,,x}. Then f(y) > w = s+ 1, since (Vu < s+ 1)(3v < y)o(u, v).

O(Claim)

So by assumption, Vz3y(f(y) > z), that is, for all z, there is y such that the greatest w
such that Yu < w3v < yo(u,v) is greater than z.
Let = be given. Then there is y such that (Vu <z + 1)(Fv < y)é(u, v), so for x, there is
some v such that ¢(z,v). So Jvd(zx,v).
O

2 NPRA*¥

Now we look at a nonstandard version of PRA“, which we will call NPRA®.

We start by adding a relation symbol st(¢) ranging over N, and a new constant w of type
N.

We use V*!x¢ and 3F%x¢ to abbreviate Vr(st(z) — ¢) and Jz(st(x) — ¢) respectively. A
formula ¢ is said to be internal if it does not involve st, and external otherwise.

2.1 Axioms of NPRAY
We add to the axioms of PRA®“ the following:
—st(w)

For z,y of type N,
st(x) Ny < x — st(y)

For xy,...,x; of type N and f of type N,...,N — N,
st(xy) A ...st(xg) — st(f(ze, ..., z8))
For (&) quantifier-free, internal and not involving w, with only the free variables shown

Vo (F) — VI(T)

3 Proving the Theorem

The interpretation and lemmas of this section will be used to prove the following theorem

Theorem 2. Suppose NPRAY proves V¥'x3yg(x,y), where ¢ is quantifier-free in the lan-
guage of PRAY with the free variables shown. Then PRA“+Y-induction proves VxIyo(x,y).

The interpretation of NPRA“ in PRA“ uses a forcing argument, described entirely in
the language of PRA“. Let L denote the language of PRAY and L' denote the languae of
NPRA®.



First, we need to translate terms of L to terms of L. Let w be a type N variable in
L corresponding to the constnat w in L. For each variable z of type o in L%, let 7 of
type N — o in L. Finally, if ¢[xy,...,x,] is a term of L* with free variables shown, let t
denote the term t[Z;(w), ..., Zx(w)] of L where the constant w of L is also replaced by the
corresponding variable of L.

For a unary predicate p on N in L, define Cond(p) = Vz3w > zp(w). For a predicates ¢
and a condition p, let ¢ < p be defined by Vu(q(u) — p(u)) A Cond(q).

Now for a predicate p and a formula ¢ of L**, we define the forcing relation p IF ¢ as
follows:

o pl-t; =ty = IVw > 2(p(w) — £, = t5)

plFt <ty =32Vw > z(p(w) — 1 < t3)
plF st(t) = 3zVw > z(p(w) = £ < 2)
plr¢ = =Vgp(gl-¢—ql-1p)
plrol-ond =(pl-¢)Apl-)

p Ik Voo =Vi(p Ik ¢)

Lemma 3. For a predicate p, Cond(p) < p ¥ L.

Proof. plF_L
& J2Vw > z(p(w) —1)
< 2Vw > z(—p(w))
& —Vz3aw > z(p(w))
< =Cond(p)

Let I ¢ denote Vp(Cond(p) — pIF ¢).

Lemma 4. Suppose t and s are terms of L™, r[z] is a type N term of PRA“, and z has the
same type ast. Then PRA® proves

rlfws/E)) = rl[s/]).

Proof. The proof is by induction on terms. If ¢ = x, then

[t ws/Z]]

= r[\w8/i]]

= r[t[s/x]]

If t = y is a variable or constant other than x, then
rtAws/Z]]

= rly[\ws/z]]

= r[y] since Z does not appear in y



=]

= [ fB/E] (6 MBS/, . T MwB/7))]
=r[f[s /x](/tl\[s/x] ..... tn]s/x])] by induction
=rlfts, ... ta)[s/a]]

= rt[s/x]].

]

Lemma 5 (Substitution). For each forrmula ¢ and terms s in the language L, PRA®
proves p Ik ¢[s/x] <> (p IF ¢)[M\wS/Z].

Proof. By induction on formula.s Suppose ¢ is t; = t5 for some terms t1,ty of type IV.
plE¢[s/z] < plk (t; = to)[s/x]
< plkty[s/z] :tg[s/x]/\ -
& J2Vw > z2(p(w) — ti[s/z] = ta[s/x])
& J2Vw > z2(p(w) — 8 [Aws/T] = ta[Aws/T])
& (F2Vw > z(p(w) — t; = t2))[I\ws/T]
< (plkty =to)[M\ws/T).
Now let ¢ be t; < ty for terms tq, 5 of type N.
plE¢[s/z] & plk (11 < ty)[s/z]
< plkty[s/z] <t2[s/x]/\ -
& J2Vw > z(p(w) — ti[s/z] < ta[s/x])
& J2Vw = 2(p(w) = 61 [Mws /7] < [ Aws/1])
& (FVw > z(p(w) — t1 < t2))[Aws/ 7]
< (plFt < to)[Mws/7].
Let ¢ be st(t) for a term ¢ of type N.
p I ¢[s/x] & pl- st[s/z](t]s/z])
< p b st(t[s/x]) -
< J2Vw > z(p(w) — t[s/z] < 2)
< I2Vw > z(p(w) — f[/f\wfs\/iz] < 2)
& (FVw > z(p(w) — t < 2))[\wS/ ]
< (plk st(t)) [ ws/Z].
Finally, suppose the claim holds for ¢ and .
pl- (¢ = ¥)[s/z] & pl- @[s/x] — P[s/x]
& Vg 2 plq k- ¢[s/z] = qIFP[s/x])
< Vg 2 p((q - 9)[Aws/7] — (qIF ¥)[Mws/T])
& (Vg 2 p(glF ¢ — qlF ) Aws/1]
< (plk ¢ = ) [Aws/T].
plE (@ AY)[s/z] < plk ¢ls/x] Als/x]
< (plF o[s/z]) A (p Ik 1ls/x])
& (plk @) [Mws/z] A (p IF ) [AwS/Z]
< (plF o Apl- ) [Aws/z]
< (plk o AY)[Aws/z].



p - (Vyo)[s/z] < p Ik Vyo[s/z]
& Vi(p Ik ¢[s/z])
< Vi((p IF ¢)[Mws/7])
< (Vy(p Ik ¢))[Aws/ 7]
< (p Ik Yyo) [ ws/Z]. O

Lemma 6. For each formula ¢ of L', PRA“ proves plk ¢ Aq < p — q I+ ¢ for conditions
.

Proof. By induction on formulas.

Suppose ¢ is t; = to for terms ¢4, t5 of type N. Assume p IF ¢ and ¢ < p. Thenp -t =t
and Vz(q(z) = p(x)) A Cond(q). p - t; =ty — F2Vw > z(p(w) — 11 = £,). Choose z such
that Yw > z(p(w) — {1 = 15). Then, since Yw > z(q(w) — p(w), Yw > z(q(w) = 1 = t3),
so q IFt; = to, that is, g I ¢.

If ¢ is ty < ty for terms tq, t5 of type N. Again, assume p IF ¢ and ¢ < p. Then p Ik t; < t5
and Vz(q(z) — p(x)) A Cond(q). pIF t; < ty — F2Vw > z(p(w) — t; < £5). Choose z such
that Yw > z(p(w) — f1 < f3). Then, since Yw > z(g(w) — p(w), Yw > z(g(w) = 1 < t3),
so q IFt; < to, that is, q I ¢.

Now suppose ¢ is st(t). Assume p |- ¢ and ¢ < p, so p IF st(t) and Vz(q(x) — p(x)) A
Cond(q). p - st(t) — 3zVw > z(p(w) — t < z). Choose z such that Yw > z(p(w) — < 2).
Then, since Yw > z(g(w) — p(w), Yw > z(q(w) =t < z), so q |- st(t), that is, ¢ IF ¢.

Suppose the claim holds for formulas ¢ and .

Ifpl-¢oANYpANg = p, then p I ¢ and p IF 1, so by induction, ¢ IF ¢ and ¢ I+ 9, so
ql- o NY.

Ifplk¢ — Y Ag=p, then Vir <X p(rlk ¢ — rl- ). So, if r < g, since ¢ < p, r < p, so
Vr < q(rIF ¢ — rIF ). That is, r IF ¢ — ).

If plkVzp A g < p, then VZ(p I ¢), so by induction, VZ(q IF ¢). Thus, ¢ IF Vxe.

Lemma 7. For each formula ¢ in the language of L', PRA“ proves I (L— ¢).

Proof. Let p be a condition.
plFl— o< Vg 2plglFL— ql- @)
& Vg = p(—Cond(p) = q I+ (¢))
< Vg = p(Cond(p) V q I ()
which is true since Yq < p(Cond(p)) by definition of <.
[l

Lemma 8. For each formula ¢ in the language of L, if ¢ is provable in intuitionistic logic,
then PRAY proves I+ ¢.

Proof. O



Lemma 9. Let t be any term. PRAY + X-induction proves the following: Let p be any
condition and let q be the predicate defined by

~ ~

q(w) = p(w) AVu < w(p(u) — t(u) < t(w)).
Then, if q is a condition, q |- —st(t).

Proof. Suppose ¢ is a condition and let r be a predicate such that Vu(r(u) — q(u)). It
suffices to show that if r I st(¢) then r is not a condition. This is because ¢ IF —st(t) < ¢ IF
st(t) »Le Vr < q(rlk st(t) — r kL) < Vr < q(r IF st(t) — =Cond(r)).
Suppose r | st(t), i.e
J2Vw > z(r(w) = t(w) < 2). (2)

Since r < ¢, we know Yu(r(u) — ¢(u)), so for all w, r(w) — q(w) — p(w) A Vu <
w(p(u) — t(u) < t(w)). Thus, since r(u) — p(u) for all u,

Vuvo(r(u) Ar(v) Au < v — t(u) < t(v)). (3)

Define f by f(v) = u<nvl/£\lr)%u) t(u). By (2) f is bounded by some z. Since we are assuming

¥ induction, by Lemma 1, 32Vy(f(y) < 2) — FaVy(f(y) < f(z)). So FxVy(f(z) > f(y)).
Let 2 witness this and u be such that f(x) = £(u) (note that (u) holds). Then for any v
with r(v), take y > v and note that f(y) = (max,<ynr@t(u)) > t(v). So t(v) < #(u).

Let w > u be given. By (3), r(w) Au < w — t(u) < t(w). Thus, Yw > u—r(w), so 7 is
not a condition.

[
Lemma 10. PRA® + ¥ -induction proves that ~—st(t) — st(t) is forced.

Proof. Let p be a predicate and suppose p |- =—st(t). Then Vq < p(q Ik —st(t) = ¢ lIF-L1) <
Vg < p(q IF —st(t) - —Cond(q)), so for all ¢ < p, since ¢ is a condition, then g ¥ —st(t). Let
g be as in the previous lemma. Clearly, Yu(q(u) — p(u)), so if ¢ is a condition, ¢ IF —st(t).
Thus, ¢ is not a condition.
So JzVw > z-q(w), ie., for some z, Yw > z(p(w) = Ju < w(p(u) Atw) < Hu))).
v

Since p is a condition, pick w > z such that p(w) holds. Let v = max( )t(u). Then
u<wAp(u

Yw > z(p(w) = t(w) < v). So Yw > z(p(w) — t(w) < v). Thus, pIF st(t).
Hence, for any condition r, for any p < r, p Ik ==st(t) — p Ik st(t), so r Ik ==st(t) —
st(t). Thus, since r is arbitrary, =—st(t) — st(t) is forced. O

Lemma 11. For each formula ¢ of L, PRA% proves Ik —=—¢p — ¢.
Proof. O]



Lemma 12. For each formula ¢ in the language of L, if ¢ is provable classically, then
PRA® proves I ¢.

Proof. Follows from Lemma 8 and Lemma 11. O]



