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Abstract

Keisler first introduced the notion of the randomization of a structure M: a new structure
whose universe is a set of “random elements” of M. It was later discovered that it is natural
to consider Keisler’'s randomizations in the framework of continuous logic, and in this way,
a class of continuous structures arises naturally from existing first order structures. As
such, for a classical first order theory T, we get a continuous theory 7%, whose models are
essentially spaces of M-valued random variables, where M is a model of T.

In this talk we will discuss the technical considerations required to consider randomiza-
tions as continuous structures and some of the properties of theories which are preserved. If
time permits, we will discuss Ben Yaacov’s proof that randomizing a theory preserves (the
continuous analog of) NIP.

1 Atomless Probability Algebras

We let (€2, B, 1) denote a probability space, where () is the sample space (possible outcomes),
B is a collection of subsets of outcomes (events), and pu assigns probabilities to events, so
B —[0,1].
We say that B € B is an atom if u(B) > 0 but there is no C' € B with C' C B such that
0 < u(C) < u(B). Bis atomless if it contains no atoms. (2, B, i) is atomless if €2 is.
Axioms of APA (Atomless Probability Algebras):

1. Boolean Algebra Axioms (e.g. supsup d(z Uy, yUz) = 0).
Ty

2. Measure Axioms: u(0)) =0, u(Q) =1, wW(XUY)+pu(XNY) = u(X)+p(Y). Technical
note: we don’t actually have addition, it’s truncated addition, so we would actually
need to write this out in terms of truncated subtraction.

3. p and d agree, that is, the metric is the one given by the measure: supsup |d(z,y) —
Ty
p(zAy)| = 0.
4. Atomless

Here are some facts about APA:



Fact 1 (Proposition 16.9 in [2]). APA is w-stable.
Corollary 1. APA is complete.
Corollary 2. APA is NIP.

2 Continuous Logic

We will not go into much detail here, other than that the signature of continuous structures
is similar to that of classical structures, except that predicates become functions from M™
to [0, 1], and functions and predicates have certain continuity requirements.

Logical symbols are d, for the metric on the underlying space, variables, a symbol for
each continuous function w : [0,1]" — [0, 1] of finitely many variables n > 1, and sup and
inf, which play the role of quantifiers. Note that this is a positive language, in that we
don’t have negation. Further note that inf may not necessarily provide a witness, just an
approximation.

Fact 2 (Proposition 6.6 in [1]). {0,1,%,—} is a full set of connectives, meaning that any

formula can be approximated by a formula only using these connectives.

3 Randomizations

Let T be a classical £-theory. We are interested in considering T, the randomization of T.
Note: we can actually define randomizations more generally for T" a continuous theory, then
consider classical theories as continuous ones with the discrete metric. For the purposes of
this talk though, we will restrict our attention to the case when T is classical.

3.1 Language

T is an L% theory, where £® has two sorts:
e K, the “random variable” sort
e BB, the “event” sort

LF has the following signature:
e Constants T, L of sort B

NU:B*>*— B

e -:B—B

[o()] : K™ — B where ¢(xy,...,2,) € L

w:B—10,1]

dg : B? — [0, 1]

dic - K2 = [0,1]



For M E T, a randomization of M is (K,B), the L? structure resulting from a pre-
structure (K',B’) where (€, B’, 1) is an atomless, finitely additive probability space, and
K' c M“.

Note that (K,B) = (K',B') and (2,8, 1) E APA.

View (K, B) as an L® structure as follows:

e For ¢(T) € L and f € K,

[6(F)] = {w € AM F é(fr(w),..., fulw))} € B

For all B € B, € > 0, there are f,g € K such that

w(BA[f =4]) <e

For all (z,7) € £ and g € K, for all € > 0 there exists f € K such that

p(IE0)0(z, 9)IALB(f, 9)) < e

dic(f,9) = ulf # 9]
ds(A, B) = n(AAB)

Fact 3 (Proposition 2.2 in [1]). If T" is the complete theory of M, every randomization
(K, B) of M is a pre-model of T%.

Fact 4 (Theorem 2.3 in [1]). If T is the complete theory of M, every pre-model of T% is

represented by some randomization of M.

3.2 Terms

Note that the terms of £ are
e | . TinB
e B, variable in B
e ANB, AU B, —A in B, where A, B are terms in B
o [o(f1,..., fr)] in B where fi,..., fr are variables in K and ¢(z1,...,2,) € L
e f wvariable in K

3.3 Atomic Formulas

So the atomic formulas are
e di(f,g) where f, g are variables in K
e (B) where B is a term in B
e dz(A, B) where A, B are terms in B



4 Facts about T

The following fact is important in proofs about T'® which use induction on formulas:

Fact 5 (Theorem 2.9 in [1]). T® admits strong quantifier elimination. That is, for A" F T%,
for every formula ¢ there is a quantifier free formula 1) such that N'E “|¢ — | = 0.

Fact 6 (Theorem 2.1 in [1]). If T is complete, T'® is complete.
Theorem 3. If T, a complete theory, then T is __ if and only if T® is
e w-categorical
e w-stable
e stable
e NIP

Theorem 4. If T is simple and unstable, T® is not simple.
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