Louise Hay Logic Seminar notes

McKinley Meyer, speaker Noah Schoem, scribe

September 1, 2016

Today, McKinley will give the first of a 2-part talk on forcing: An Overview of the Forcing Apparatus.

Definition 1. A poset is a set \mathbb{P} with a partial order \leq .

We call elements of \mathbb{P} "conditions" and think of \leq as "is stronger than".

Note: in the context of forcing, \mathbb{P} will always have a maximum element denoted 1.

Note: We say p and q are incompatible and write $p \perp q$ if $\not\exists r \in \mathbb{P}r \leq p \land r \leq q$.

Examples

Example 2. $Add(\omega, \lambda) = \{f : \lambda \times \omega \to \{0, 1\} \mid |dom(f)| < \omega\}$, and we say $f \leq g$ if $f \supseteq g$. Here, 1 is \emptyset . This poset will add λ -many reals. More on that in the next talk.

Example 3. $Col(\omega, \delta) = \{f : \omega \rightharpoonup \delta \mid |dom(f)| < \omega\}$ with \leq , 1 same as above. This will "collapse" δ . More on that in the next talk.

Definition 4. A set $\mathcal{A} \subseteq \mathbb{P}$ is an *antichain* if any two elements of \mathcal{A} are incompatible.

An antichain \mathcal{A} is maximal if $\forall p \in \mathbb{P} \exists q \in \mathcal{A}p \not\perp q$.

Here are some examples of antichains:

In $Add(\omega, 1)$, say |f| = |g| = 1 where f(4) = 0 and g(4) = 1. Then $f \perp g$, and additionally any $p \in \mathbb{P}$ is compatible with one of f and g. Thus $\{f, g\}$ is a maximal antichain.

However, if we take f(4) = 0, f(8) = 0, and g(4) = 1, this is not maximal since the partial function h given by h(4) = 0 and h(8) = 1 is incompatible with f and g. Observe that $\{f, g, h\}$ is a maximal antichain.

Definition 5. A $D \subseteq \mathbb{P}$ is dense if $\forall p \in \mathbb{P} \exists q \in Dq \leq p$.

As an example in $Add(\omega, 1)$, say $D = \{f : \omega \to \{0, 1\} \mid 56 \in dom(f)\}$. Clearly D is dense: given any $g \in \mathbb{P}$, if $56 \notin dom(g)$ then $g \cup \{(56, 1)\} \in D$.

Another dense set is $\{f : \omega \rightharpoonup \{0,1\} \mid |f| > 99\}$.

Think of dense sets as being weak restrictions on the conditions.

The Generic

Now we come to the most important definition of the day:

Definition 6 (Generic filters). A $G \subseteq \mathbb{P}$ is an generic filter if

- (Filter 1) $\forall p \in \mathbb{P} \forall q \in \mathbb{G} q$
- (Filter 2) $\forall p, q \in G$, there is a $r \in G$ such that $r \leq p, q$
- (Genericity) For any $D \subseteq \mathbb{P}$ dense, $D \cap G \neq \emptyset$

Generics are big things, in the following sense:

Proposition 7. Suppose $\mathbb{P} \in M \models ZFC$, G is generic, and \mathbb{P} is separative, i.e. $\forall p \in \mathbb{P} \exists q, r \in \mathbb{P} (q, r \leq p \land q \perp r)$. Then $G \notin M$.

Proof. Suppose $G \in M$. Then $\mathbb{P} \setminus G \in M$. Let p,q,r be as above. Then at most one of q,r is in G. So at least one of $q,r \in \mathbb{P} \setminus G$. Since p was arbitrary, we have that $\mathbb{P} \setminus G$ is dense. But $(\mathbb{P} \setminus G) \cap G = \emptyset$ and hence G cannot be generic. This is a contradiction.

So do generic filters even exist?

Proposition 8. Let $\mathbb{P} \in M \models ZFC$ and M be countable. Then there is a \mathbb{P} -generic filter G over M.

Proof. G exists because we can build it. Since M is countable, we can enumerate the dense subsets of \mathbb{P} by $\{D_n \mid n < \omega\}$.

We construct G inductively. Say $p_0 \in D_0$, and take $p_{n+1} \leq p_n$ such that $p_{n+1} \in D_{n+1}$. We know we can do this because D_{n+1} is dense.

Now take $G = \{ p \in \mathbb{P} \mid \exists n < \omega \ p_n \leq p \}$. Clearly G is a filter:

If $p \in G$, $q \in \mathbb{P}$ such that $p \leq q$, then there is some p_n such that $p_n \leq p \leq q$. Hence $q \in G$.

Let $p, q \in G$. Then there is $p_n \leq p$, $p_m \leq q$. WLOG, n < m, hence $p_m \leq p_n$. Hence $p_m \in G$ is a common extension of p, q.

Lastly, by construction $D \cap G \neq \emptyset$ since $D = D_n$ for some n and $p_n \in D_n \cap G$.

The next question is, how do we extend M to include G in a sensible manner?

Names

Definition 9. A \mathbb{P} -name is a set whose elements are of the form (σ, p) where σ is a \mathbb{P} -name and $p \in \mathbb{P}$.

This might look ill-founded, but it's not: clearly \emptyset is a \mathbb{P} -name and you build up from there.

Theorem 10. We can construct a model M[G] such that:

- 1. $M \subseteq M[G]$
- 2. $G \in M[G]$ and $\bigcup G \in M[G]$
- 3. $M[G] \models ZFC$

We're not going to prove this. What we will do is talk about what formulae M[G] will satisfy:

Theorem 11. We can define a relation \vdash entirely within M such that:

- 1. $p \Vdash \phi$ iff $\forall G$ generic with $p \in G$, $M[G] \models \phi$;
- 2. For any G, $M[G] \models \phi$ iff $\exists p \in Gp \Vdash \phi$.

So all of the information we have about M[G] is encoded in M. Hence, if we can prove that Th(M) is consistent, then M and \Vdash gives us the consistency of Th(M[G]).

As for what M[G] actually looks like:

M[G] is the collection of all \mathbb{P} -names interpreted by G, i.e. given τ a name, we say

$$\tau_G = \{ \sigma_G \mid (\sigma, p) \in \tau, p \in G \}$$

and then $M[G] = \{ \tau_G \mid \tau \text{ is a } \mathbb{P}\text{-name} \}.$

If $x \in M$, we have canonical names $\check{x} = \{(\check{y}, 1) \mid y \in x\}$. Then $\check{x}_G = x$.

There's also a name for the generic filter, denoted Γ or G, and it's just $\{(\check{p},p)\mid p\in\mathbb{P}\}$.