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1 A Blazing-Fast Recall of the First Lecture, and Names

We begin by recalling the essential components of forcing: posets, antichains, maximal antichains, dense
sets, and generic filters. We also recall that throughout, we have that M is a countable transitive model of
ZFC and that we have something called the generic extension M [G] which also is a countable transitive
model of ZFC.

We also had the relation  and mentioned that for any p ∈ P and any formula φ, we have the statement
p  φ and the Forcing and Generic Model Theorems:

Theorem 1.

1. (Forcing Theorem) p  φ ⇐⇒ ∀G P-generic over M with p ∈ G, M [G] |= φ.

2. (Generic Model Theorem) If G is P-generic over M , then M [G] |= φ ⇐⇒ ∃p ∈ G p  φ.

We haven’t really talked about what M [G] looks like (and we will need to in order to do applications of
forcing). We do so now.

Definition 2. MP, the set of P-names over M , can be thought of as being built inductively:

1. ∅ is a P-name.

2. A P-name is a set in M whose elements are of the form (σ, p) where σ is a P-name and p ∈ P.

For each X ∈M , there is a canonical name for X, denoted

X̌ = {(y̌, 1P) | y ∈ X}

and there is a canonical name for the generic filter:

Ġ = {(p̌, p) | p ∈ P}

Definition 3.

1. (Another inductive definition) For each name τ , we define τG = {σG | ∃p ∈ G(σ, p) ∈ τ}.

2. M [G] is defined to be {τG | τ ∈MP}.

With this, we have that every X ∈ M is in M [G]; for X̌G = X. This can be proved using well-founded
induction.

Furthermore, ĠG = G; this is a simple corollary. Hence G ∈M [G].

Remark 4. M and M [G] have the exact same ordinals. Showing this is left as an exercise.
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2 Application 1: Cardinal Collapse

Recall that we defined

Definition 5. Col(ω, δ) := {f : ω ⇀ δ | |dom(f)| < ω} with partial ordering ⊇.

This poset gets its name from the following:

Theorem 6. If G is Col(ω, δ)-generic over M , then M [G] believes that
⋃
G : ω → δ is a surjection. In

particular, if |δ|M > ℵ0, that is, if δ is uncountable in M , then |δ|M [G] = ℵ0.

Proof. Most of these are density arguments.
First, since G is a filter, any two p, q ∈ G are compatible, hence agree on their common domain. Thus⋃
G is a function.
Obtaining that

⋃
G is total is a density argument. For any n ∈ ω, we have that Dn := {p ∈ Col(ω, δ) |

n ∈ dom(p)} is dense; for if q ∈ Col(ω, δ) and n /∈ dom(q), then q ⊆ q ∪ {(n, 0)} ∈ Dn. Hence there is a
p ∈ Dn ∩G; such p has that n ∈ dom(p), hence n ∈ dom (

⋃
G).

Likewise, the surjectivity of G is a density argument. For each α < δ, let Qα = {p ∈ Col(ω, δ) | α ∈
ran(p)} and observe this is dense; for if q ∈ Col(ω, δ) and α /∈ ran(q), then since |dom(q)| is finite, there is
some n /∈ dom(q). Hence q ⊆ q ∪ {(n, α)} ∈ Qα. Thus there is a p ∈ Qn ∩G, so α ∈ ran (

⋃
G).

3 Application 2: Independence of CH

Recall that we defined

Definition 7. Add(ω, ω2) := {f : ω2 × ω ⇀ {0, 1} | |dom(f)| < ω} with partial ordering ⊇.

By work done by Gödel’s L, we may assume that M |= GCH; that is, we are going to black-box
Con(GCH).

Remark 8. You can also get Con(CH) using forcing; we will not describe how.

Theorem 9. Let G be Add(ω, ω2)-generic over M . Then M [G] |= (2ℵ0)M [G] ≥ |ℵ2M |.

Proof. To obtain (2ℵ0)M [G] ≥ |ℵ2M |, we count in M [G]. As with Col(ω, δ),
⋃
G is a function; in this case⋃

G : ω × ωM2 → {0, 1} and we define a collection of functions fα : ω → {0, 1} by fα(n) = f(α, n). When
α 6= β, we have that fα 6= fβ ; this is because {p ∈ Add(ω, ω2) | ∃n p(α, n) 6= p(β, n)} is dense, hence meets

G. Thus there is a p ∈ G such that p  ḟα(n) 6= ḟβ(n).
Hence M [G] has ωM2 -many subsets of ω.

Remark 10. Carefully counting a large enough collection of names, and use of the yet-to-be-defined count-

able chain condition, will show that M [G] |= (2ℵ0)M [G] =
∣∣∣ℵ2M ∣∣∣.

This is not yet enough to violate CH; we saw that generic extensions can collapse cardinals. We need to
ensure that ℵ2M = ℵ2M [G]. It turns out that Add(ω, ω2) has a nice combinatorial property that guarantees
this:

Definition 11. We say that a poset P has the countable chain condition (ccc) if every antichain (equivalently
maximal antichain) is countable.

Countable chain condition posets are really important:

Theorem 12. Countable chain condition posets preserve cardinals; that is, if P satisfies the countable chain
condition and G is generic, then M |= “κ is a cardinal” ⇐⇒ M [G] |= “κ is a cardinal”.

Proof. The reverse direction is clear: the sentence “κ is a cardinal” is just saying ∀f∀α < κ¬(f : α � κ).
This is a Π1 statement, and thus is downwards absolute for transitive models of set theory.
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Conversely, suppose that M |= “κ is a cardinal” but M [G] |= ¬“κ is a cardinal”. Without loss of gen-
erality we may take κ to be a successor in M , and hence regular in M ; this is because in ZFC, a limit of
cardinals is a cardinal.

There is a name ḟ and an ordinal α < κ such that M [G] |= ḟG : α � κ. By the Forcing Theorem, there
is a p0 ∈ P such that p0  ḟG : α̌� κ̌.

Let β < α. Since ḟ(β) is a name for an ordinal and p0 forces ḟ to be a function, we have that Dβ :=

{p ∈ P | ∃α p  ḟ(β) = α} is dense below p0; this is just one of the properties of forcing (and in fact, is often
taken to be the inductive definition of what it means to force an existential statement).

Choose Aβ ⊆ Dβ an antichain maximal below p0; then by the ccc, there is a countable set of ordinals Xβ

such that p ∈ Xβ =⇒ ∃γ ∈ Aβ p  ḟ(β) = γ.

Thus p0  ḟ(β) < sup Xβ . But then p0  sup ḟ [α] < supβ<α(sup Xβ). But this all happened in M ;

since κ is regular in M , supβ<α(sup Xβ) < κ; and thus ḟ cannot be surjective in M [G].
This is a contradiction and thus M [G] |= “κ is a cardinal”.

Theorem 13. Add(ω, ω2) has the countable chain condition.

We will be invoking the following result:

Lemma 14 (The ∆-system lemma). Let |X| = ℵ1 and let 〈xα | α < ω1〉 be a collection of (distinct) finite
subsets of X. Then there is an I ⊆ ω1 of size ℵ1 and an r ⊆ X such that α 6= β ∈ I =⇒ xα ∩ xβ = r.

A set 〈xα | α < κ〉 is called a ∆-system if there is a kernel r, i.e. for all α 6= β, xα ∩ xβ = r. The lemma
just says that [ω1]<ω has a ∆-system of size ω1.

We will not be proving this; the proof can be found in Jech.

Proof that Add(ω, ω2) has the ccc. We show that every subset of Add(ω, ω2) of size ω1 is not an antichain.
Let 〈pi | i < ω1〉 be a family of elements of Add(ω, ω2). Then each dom(pi) is finite, and hence there is an
uncountable J ⊆ ω1 and an r such that for every i 6= j ∈ J , dom(pi)∩ dom(pj) = r. But {pi � r | i ∈ J} has
size at most 2|r| < ω.

Thus, by the ω1-size Pigeonhole Principle, there are uncountably many pi that agree on their common
domain r, and hence are all mutually compatible.

Remark 15. We showed something a little stronger: we say that a poset P is ℵ1-Knaster if every uncountable
subset has uncountably many mutually compatible elements. The above argument shows that Add(ω, ω2) is
ℵ1-Knaster, and clearly ℵ1-Knaster =⇒ ccc. The converse is not true.

Putting all of this together, we obtain that M [G] |= 2ℵ0 ≥ ℵ2 and thus M [G] |= ¬CH.

Remark 16. ccc and ℵ1-Knaster are specimens of a veritable zoo of nice properties of posets. There’s
< κ-cc, κ-Knaster, something called < κ-closed, < κ-distributive, and scores of others that all give nice
properties of generic extensions.

Remark 17. One might ask what else we can force to be the value of 2ℵ0 , or more generally 2κ for any κ.
Easton’s Theorem is a partial result for regular cardinals; as far as I’m aware (and Maxwell may very well
correct me here), the question for singular cardinals remains open.
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