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I am talking today about Reverse Mathematics.
Post-talk note: The talk did not cover the full breadth of what these notes contain: the talk did not

carefully cover the proof of Lemma 4, or some of the proofs that some of the various systems are stronger
than others.

1 Introduction

Reverse Mathematics is a late twentieth century branch of logic concerned with characterizing theorems of
classical (and even modern) mathematics in terms of the set-theoretic tools required to prove them. Simpson
formulates the aim of Reverse Mathematics as asking, “Which set existence axioms are needed to prove the
theorems of ordinary, non-set-theoretic mathematics?”

A word of warning: there is a fair amount of computability theory in this talk, because a lot of the theory
of Reverse Mathematics has a natural computability-theoretic formulation (and this gives a very natural way
of thinking about the theorems of Reverse Mathematics!). I will do my best to introduce, without going off
on tangents, the necessary computability theory as it arises.

The content herein comes from [4], unless otherwise noted.
Without further ado:

2 Preliminaries

Definition 1. The language of second order arithmetic L2 is a second-order language that allows for quan-
tification over elements and sets. L2 consists of the usual +, ·, <, countably many variables for elements
(generally denoted by lowercase letters), sets (denoted by uppercase letters), and the familiar fashion of
building terms, formulae, and sentences.

Definition 2. A model of L2 is a structure

M = (|M |, SM ,+M , ·M , 0M , 1M , <M )

where |M | is the set of numbers (or elements), SM is the collection of sets, and the rest of the symbols are
the usual ones.

An ω-model is a model whose domain of elements is ω; the definition of non-ω model is analogous.

We have a hierarchy of sentences of L2 similar to the Levy hierarchy:

Definition 3. 1. We say that a formula is quantifier-free if it has no quantifiers.

2. We say that a formula is Π0
n if it is logically equivalent to a sentence of the form ∀x1 . . . ∀xkφ(x1, . . . , xk)

where φ(x1, . . . , xk) is Σ0
n−1, and that a formula is Σ0

n if it is logically equivalent to a sentence of the
form ∃x1 . . . ∃xkφ(x1, . . . , xk) where φ(x1, . . . , xk) is Π0

n−1. (Σ0
0 and Π0

0 have the obvious meanings.)

3. We say that a formula is arithmetical if it has no set quantifiers.

4. We say that a formula is Π1
n if it is logically equivalent to a sentence of the form ∀X1 . . . ∀Xkφ(X1, . . . , Xk)

where φ(X1, . . . , Xk) is Σ0
n−1, and that a formula is Σ0

n if it is logically equivalent to a sentence of the
form ∃X1 . . . ∃Xkφ(X1, . . . , Xk) where φ(X1, . . . , Xk) is Π0

n−1. (Σ1
0 and Π1

0 have the obvious meanings.)
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5. A formula is ∆i
n if it is logically equivalent to a Σin formula and to a Πi

n formula.

Remark 1. Adding on dummy quantifiers shows that Σin ⊆ Πi
n+1, Πi

n ⊆ Σin+1, and Πi
n∪Σin ⊆ Πi

n+1∩Σin+1.

Definition 4. The intended model of L2 is the familiar (ω,P(ω),+, ·, 0, 1, <).

Definition 5. The axioms of second order arithmetic are the usual rules of how +, ·, < work:

• ∀n(n+ 1 6= 0)

• ∀m∀n(m+ 1 = n+ 1→ m = n)

• ∀m(m+ 0 = m)

• ∀m∀n(m+ (n+ 1) = (m+ n) + 1)

• ∀m(m · 0 = 0)

• ∀m∀n(m · (n+ 1) = (m · n) +m)

• ∀m(m 6< 0)

• ∀m∀n(m < n+ 1↔ (m < n ∨m = n))

along with induction:

• ∀X(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 = x))→ ∀n(n ∈ X)

and the comprehension scheme:

• ∃X∀n(n ∈ X ↔ φ(n))

over all formulae φ(n) having no free occurrences of X.
We call Z2 the closure of these axioms under logical consequence.

Z2 is a natural operating environment for (classical) mathematics; it allows us to build, say Z, Q, R and
C, and gives us analysis, algebra, combinatorics, number theory, etc.

Remark 2. φ(n) may have parameters in addition, say φ(n) ≡ φ(n, a, Y, Z). Then we have the comprehen-
sion axiom ∀Y ∀Z∀a∃X∀n(n ∈ X ↔ φ(n, a, Y, Z)).

Now that we have established our language, we want to look at some weaker subtheories.

Definition 6. A subsystem of Z2 is a formal system whose axioms are theorems of Z2.

There are five canonical subsystems that capture a remarkably large amount of mathematics: RCA0,
WKL0, ACA0, ATR0, and Π1

1 − CA0.

3 RCA0

Definition 7. RCA0 is the system containing the familiar rules of +, ·, <, the first-order induction scheme
restricted to Σ0

1 formulae (i.e. over sets definable by Σ0
1 formulae), and the comprehension axiom restricted

to ∆0
1 induction.

RCA0 can be thought of as computable mathematics, not only because computable subsets of ω are
precisely those that are ∆0

1 (which is a straightforward exercise if you’re familiar with how Turing machines
work), but also in the following sense:

Theorem 3. An ω-model is a model of RCA0 if and only if its subsets are closed under Turing reducibility
(that is, given set A and B, A ≤T B if any relativized Turing machine that can compute A can also compute
B) and computable joins (where the computable join A⊕B is the smallest set that computes both A and B).
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RCA0 allows for the construction of a fair amount of classical mathematics: RCA0 allows for a construc-
tion of real numbers, a decent amount of the theory of separable metric spaces, etc. Here are some things
that can be proven in RCA0:

• The Baire Category Theorem

• The Intermediate Value Theorem

• The Soundness Theorem

• The existence of algebraic closures of countable fields

• Existence of a unique real closure of a countable ordered field

• The Uniform Boundedness Principle

Proof. We read through the classical proofs of these theorems and observe that they only use computable
tools, or we construct proofs of these using only computable tools.

In the case of algebraic closures of countable fields, for instance, we take roots of polynomials over that field
instead of using Zorn’s Lemma.

RCA0 has a minimum ω-model REC, whose subsets are precisely the computable subsets of ω. We will
use this fact to argue that RCA0 is different from our next subsystem:

4 WKL0

Definition 8. WKL0 is RCA0 with the addition of Weak König’s Lemma, which states that every infinite
binary tree has an infinite path.

Lemma 4. REC contains an infinite binary tree with no path in REC.

Proof. This construction comes from [1]. Take the halting problem, that is, the function H (along with an
enumeration of all the Turing machines Φn) such that

H(n) =

{
1 if Φn(n) ↓
0 if Φn(n) ↑

Then define

Hk(n) =

{
H(n) if Φn(n) halts in k steps

−1 otherwise

Observe that H is computably enumerable but not computable, and Hk is computable. Then we define the
Kleene Tree K to be a set of finite strings of 0’s and 1’s as follows:

K = {a ∈ 2∗ : ∀1 ≤ k ≤ a(Hk(n) 6= −1→ the nth digit of a is Hk(n))}

Then order K by saying that a ≤ a′ if a′ extends a. Now K is infinite and computable, but any path in K
would compute H, so no path in K can be computable.

We then get the following result:

Corollary. WKL0 can prove classical theorems that RCA0 cannot.

Theorem 5. WKL0 is equivalent to the following results, with these equivalences being provable in RCA0:

1. Heine-Borel, that is, that every open cover of [0, 1] admits a finite subcover

2. Every continuous real-valued function on [0, 1] is bounded

3. Every Every continuous real-valued function on [0, 1] is uniformly continuous
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4. Every continuous real-valued function on [0, 1] is Riemann integrable

5. The Extremal Value Theorem

6. Lindenbaum’s Theorem that every consistent set of sentences can be enlarged to a maximal consistent
set of sentences

7. The Compactness Theorem of First-order logic

8. Brouwer Fixed Point

9. Separable Hahn-Banach

10. The uniqueness of the algebraic closure of a countable field of characteristic 0

11. Every countable commutative ring has a prime ideal

So as you can see, restricting yourself only to computable mathematics gets rid of a lot of important
results. We’ll prove the equivalence of Lindenbaum’s Theorem, first by proving Lindenbaum’s Theorem in
WKL0 and then doing a reversal:

Proof. This proof is from [2]. First, we prove that WKL0 =⇒ Lindenbaum. Suppose that Γ is a consistent
set of sentences; then there is a computable enumeration C of all of the theorems of Γ. (Just start sys-
tematically writing down proofs.) There is also a computable enumeration φn of all of the sentences of our

language. Let θ0 = ¬θ, and let θ1 = θ. For a (finite) binary string σ, let φσ =
∧
i≤|σ| φ

σ(i)
i (where |σ| is the

length of σ). Let T be the set of all binary strings σ such that there is no initial segment τ of σ such that
¬θτ is one of the first |σ|-many theorems that C produces, and partially order T by σ ≤ τ if τ extends σ.

T is computable from Γ since checking whether σ ∈ Γ is a matter of checking whether a finite set of
sentences is within the first such-and-such many outputs of C. T is infinite since Γ is consistent. Therefore,

by Weak König’s Lemma, T has an infinite path α, and then {θα(i)i : i ∈ N} (which is just a recursive
comprehension) is a maximal consistent theory containing Γ.

Thus WKL0 =⇒ Lindenbaum’s Theorem.
For the converse, suppose RCA0+Lindenbaum’s Theorem, and let T be an infinite binary tree (that is, a

set of finite binary strings with the usual partial order). Fix L to have unary relation symbols {Rn : n ∈ N}
and a constant symbol c, and let Γ be the set of all sentences of the form

∨
i≤σ(Ri(c))

1−σ(i) over all σ /∈ T .
After checking that Γ is consistent, apply Lindenbaum’s Theorem to obtain a Σ ⊇ Γ that is maximal
consistent. Then define α by α(i) = j iff Ri(c)

j ∈ Σ. Then α is an infinite path of T .

In particular, the equivalence of compactness to WKL0 means that there are models of RCA0 in which
consistent first-order theories need not be satisfiable.

But there are subsystems that are still stronger than WKL0:

5 ACA0

Definition 9. ACA0 is the system axiomatized by the familiar rules of +, ·, and <; induction; and the
comprehension axiom over arithmetical formulae.

Theorem 6. ACA0 is equivalet to the following theorems, with this equivalence provable over RCA0:

• König’s Lemma that every infinite, finitely branching tree has an infinite path

• The Bolzano-Weierstrass Theorem that every bounded sequence in R contains a convergent subsequence

• Bolzano-Weierstrass for compact metric spaces

• Every (countable) vector space over Q (or any countable field) has a basis

• Infinitary Ramsey’s Theorem for colorings of [N]n, n ≥ 3
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Since König’s Lemma trivially implies Weak König’s Lemma, every theorem of ACA0 is a theorem of
WKL0. The fact that ACA0 is strictly stronger than WKL0 is less clear than the analogous statement for
WKL0 and RCA0, but can be shown from the following characterization of ω-models of ACA0:

Theorem 7. An ω-model M is a model of ACA0 if and only if the collection of subsets of M is closed under
computable join, Turing reducibility, and the Turing jump (where the Turing Jump of A, denoted TJ(A) or
A′, is the Turing degree (or equicomputability equivalence class of sets) that computes the halting problem of
Turing machines relativized to A).

Then results about low sets from computability theory yield a model of WKL0 consisting entirely of low
sets, and thus a model of WKL0 that does not satisfy ACA0.

Remark 8. The above characterization of models of ACA0 gives a minimum ω-model ARITH with collec-
tion of subsets S = {A ∈ P(ω) : ∃n(A ≤T ∅(n))}, that is, all of the sets computable from finite Turing jumps
of the computable sets.

We will use the above to prove that our next system is stronger than ACA0:

6 ATR0

Definition 10. The system ATR0 is ACA0 with the addition of arithmetical transfinite recursion, that is,
we are allowed to do transfinite recursion along any (countable) well order and any arithmetical formula.

Observe that within ARITH, ∅(n), the nth Turing jump of ∅, is in ARITH; additionally, the Turing
Jump is an arithmetical operator, where A = TJ(B) if and only if there is an n such that ΦBn , the nth
Turing machine relativized to A, computes A. However, ∅(ω) =

⋃
n∈ω ∅(n) is not in ARITH. Thus ARITH

is not a model of ATR0, and ATR0 is strictly stronger than ACA0.
ATR0 is, in a sense, the minimum theory in which ordinal arithmetic makes sense, in the following way:

Theorem 9. ATR0 is equivalent to the following, with the equivalence provable in RCA0:

• Any two (countable) ordinals are comparable

• Strong comparability of ordinals (i.e. α ≤s β iff there is an f : α → β that is an order-preserving
isomorphism between α and an initial segment of β, i.e. the familiar ordering) is equivalent to weak
comparability or ordinals (i.e. α ≤w β iff there is an order-preserving injection f : α→ β)

• The Perfect Set theorem: Any two disjoint analytic sets can be separated by a Borel set

The fact that ATR0 =⇒ any two ordinals are comprable, and that α ≤w β =⇒ α ≤s β are fairly
intuitive. The reversals are long and technical.

Remark 10. There are some equivalences that are provable over ACA0 instead of RCA0. These tend to
be theorems that require ACA0 for the relevant definitions, such as ordinal exponentiation.

ATR0 is strong enough to capture a great amount of classical mathematical content, but there is a yet
stronger system that we should note:

7 Π1
1 − CA0

Definition 11. Π1
1 − CA0 is the subsystem axiomatized by the usual rules of +, ·, and <; full induction;

and comprehension over Π1
1 formulae.

Remark 11. There are analogous systems Π1
k − CA0 with the analogous axiomatizations.

Remark 12. We don’t talk about Σ1
n −CA0 in its own right because Σ1

n −CA0, it turns out, is equivalent
to Π1

n − CA0.
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There is no minimum, or minimal, ω-model of Π1
1 − CA0, but there are a smaller class of models of

Π1
1 − CA0 about which there are nice model-theoretic results:

Definition 12. A β-model M is an ω-model with power set S such that for every Π1
1 or Σ1

1 sentence σ with
parameters from S, M models σ if and only if the intended model (ω,P(ω),+, ·, 0, 1, <) models σ.

Theorem 13. An β-model M is a model of Π1
1 − CA0 if and only if the power set in M is closed under

computable join, hyperreducibility (where A ≤H B iff A ≤T B(n) for some n), and hyperjumps.

This theorem gives a minimum β-model of Π1
1 − CA0, with power set S equal to all of the subsets of ω

that are hyperreducible to a finite hyperjump of ∅.
However, ATR0 has no minimum β-model, since the intersection of all β-models of ATR0 is a model

HY P , which has power set S equal to all of the hyperarithmetical sets; but HY P does not contain the ωth
hyperjump of ∅, and is thus not a model of ATR0. Therefore, ATR0 is strictly weaker than Π1

1 − CA0.

Theorem 14. The following are equivalent to Π1
1 − CA0, with this equivalence provable over RCA0:

• Cantor-Bendixson, that every closed subset of R (or any complete separable metric space) is the union
of a countable set and a perfect set

So a lot of the research of Reverse Mathematics is characterizing other theorems that don’t fit into the
above five. For example, well-foundedness of countable ordinals is Σ1

1 −AC0, which is ACA0 plus existence
of choice functions for Σ1

1 formulae, or Julien’s Indecomposability Theorem (see [3]).
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