
Louise Hay Logic Seminar notes

Noah Schoem

February 4, 2016

I am talking today about Turing Degrees and the Jump Operator.

1 Basics

We start with a quick review of basics:

Definition 1. A Turing machine is a machine with a two-way infinitely long tape of cells containing 0, 1,
or B, a read/write head, and a finite collection of states Q, one of which is the starting state and another of
which is HALT .

Its operation happens in discrete time chunks, where at each time the read/write head reads its current
cell, and does something based on the current cell and its state: the read/write head can overwrite the
current cell with a 0 or 1, and then moves left or right. The machine halts when it reaches the HALT state.

Definition 2. A set A ⊆ N is recursive/Turing computable if there is a Turing machine that always halts
that decides whether n ∈ A. A function f : N → N is computable if it can be computed with a Turing
machine.

Definition 3. A set A is recursively enumerable if there is a Turing machine such that x ∈ A iff when x is
written on the read/write tape in binary, the Turing machine halts and returns a 1.

Theorem 4. There are countably many Turing machines, and we can code them computably (in the sense
that we can write a Turing machine that halts and produces every possible state diagram) as Pe over n ∈ N;
the associated partial function is written Φe.

Theorem 5. There is a universal Turing machine U that takes as input a pair (n, e) and simulates Pe(n).

Theorem 6. K := {n ∈ N|Pn(n) ↓} is r.e. but not recursive.

2 Relativization

We want to develop some notion of relative computability gague just how hard the questions we ask are.
We already have ≤1 and ≤m. These aren’t great, because we’d like to be able to say that Ā and A are
equicomputable. But Ā 6≤m A for some sets A. This motivates a new way of thinking about computation:

Definition 7. A relativized Turing machine (oracle tape Turing machine) is a Turing machine where there
is an added two-way infinite tape. The read/write head moves along the oracle tape simultaneously with
the work tape, but may only read it. The oracle tape has written on it the characteristic function of some
set A.

Definition 8. Given an oracle tape Turing machine, we write P̂e to denote the eth oracle tape Turing
machine, and given an A, we write ΦAe for the corresponding partial function.

We may now talk about Turing reducibility.

Definition 9. A function f is Turing computable in A, written f ≤T A, if there is a program P̂e such that
f(x) = y iff P̂e(x) halts whenever A is on its oracle tape and ΦAe (x) = y. B ⊆ ω is computable in A if
χB ≤T A (and we’ll write B ≤T A).

1

If you’re following along in Soare, he writes {e}A to denote ΦAe .
It should be clear that Ā ≤T A: If A is on an oracle tape, just have a program that, given n, finds the

nth cell on the oracle tape. If the contents of that cell are d, output 1− d.
The definition above is “relativized”, in the sense that we took the definition of Turing machines and

made it “relative” to A. This works analogously for the definitions of A-partial recursive, A-recursive, and
A-r.e. Many statements and theorems about Turing machines and partial recursive functions relativize as
well:

Theorem 10 (Relativized Enumeration Theorem). There exists a z ∈ ω such that for all A ⊆ ω and all
x, y ∈ ω, ΦAz (x, y) = ΦAx (y).

This is just the existence of a universal A-relativized Turing machine, and the proof has no remarkable
differences from the non-relativized version.

Theorem 11 (Relativized s-m-n theorem; Relativized Parametrization lemma). For every m,n there is an
injective recursive m+ 1-ary function smn such that for all A ⊆ ω and for all x, y1, . . . , yn ∈ ω,

ΦAsmn (x,y1,...,yn)
= λz1, . . . , zn[ΦAx (y1, . . . , ym, z1, . . . , zn)]

There’s not much to say about this, other than it works just like the non-relativized version.
(If someone really wants to know:)

Proof. Using a suitable pairing function, we may take m = n = 1. Then let P̂s(x,y)(z) = P̂x(y, z). Since our
enumeration of the relativized Turing machines is effective, s is recursive. s can be made injective by the
usual padding.

Theorem 12 (Relativized Recursion Theorem). For all A ⊆ ω and all x, y ∈ ω, if f(x, y) is recursive in A
then there is a recursive n such that ΦAn(y) = ΦAf(n(y),y).

Furthermore, if f(x, y) = {e}A(x, y) then n(y) can be made uniform in e; that is, n does not depend on
A.

Proof. Left as exercise. You read the standard Recursion theorem and make sure relativization doesn’t
change things.

The uniformity part of this is notable, since it does not occur in other relativized theorems.
It’s worth mentioning that computation with oracles, when a computation halts, does so finitely. This

has a name:

Theorem 13 (Use Principle). If ΦAe (x) = y then there is a finite σ ⊆ A and an s such that Φσe (x) halts in
s steps with output y.

We’ll conclude our remarks on relative computability by tying the notion of Turing computability to a
syntactic notion:

Definition 14. 1. We say that a set B is r.e. in A if B is the domain of an A-recursive function, i.e. for
some e, B = WA

e .

2. We say that a set B is ΣA1 if there is an A-recursive R such that B = {x|∃y(RA(x, y))}.

Theorem 15. B is r.e. in A iff B is ΣA1 .

Proof. The reverse direction is just the relativized version of the standard proof that B is r.e. iff B is Σ1.
For the forward direction, by the Use Principle, x ∈ B ⇐⇒ ∃s, σ(σ ⊆ A ∧ x ∈ Wσ

e,s). Observe
that x ∈ Wσ

e,s is recursive, and σ ⊆ A is A-recursive and equivalent to ∀y < len(σ), σ(y) = A(y). Thus
B = {x|∃s∃σR(e, x, σ, s)} where R is an A-recursive relation on x, s, σ.

2

3 Turing degrees

We already saw the relation ≤T , which is reflexive (obviously) and transitive (and to see this, if A ≤T B
and B ≤T C, just make a relativized TM with oracle tape C that whenever we need to check an answer to
B, we compute that answer using C). Thus ≡T is an equivalence relation.

Definition 16. The equivalence classes of ≡T are the Turing degrees, denoted deg(A).

Definition 17. We write deg(A) ∪ deg(B) to mean deg(A⊕B), the degree of their computable join.

Theorem 18. deg(A⊕B) is the least upper bound of deg(A) and deg(B).

Proof. Clearly A,B ≤T A ⊕ B so suppose that A ≤T X and B ≤T X. Then to compute A ⊕ B using X,
write a program that on input 2n, computes χA(n) using X, and on input 2n + 1, computes χB(n) using
X.

Remark 19. The computable join can be extended to a join of ω-many sets
⊕

nAn which is the minimum
degree that computes all the An’s uniformly. We cannot extend to all ordinals, or even all countable
ordinals. Computable join, for instance, doesn’t make sense to extend to ωCK1 since we want the join to
reflect information about the sets we’re joining, not the index we’re joining them over. We can, however,
extend the join to recursive ordinals, that is, ordinals α such that there is a recursive bijection f : ω → α.
The case of ω is an exercise in Soare.

Definition 20. 1. Given an A ⊆ ω, let KA = {x ∈ ω|ΦAx (x) ↓}. We say that KA is the “jump” of A,
and is often denoted A′.

2. We may iterate this operation to obtain A(n).

Theorem 21. 1. A′ is recursively enumerable in A.

2. A′ 6≤T A.

These should be pretty clear.
As a special case, we say 0 is the degree of all computable sets, and then 0(n) is the nth Turing jump of

0. This gives us a hierarchy 0 < 0′ < · · · < 0(n) <

3

