
STAT - 381 In-class Group Work Instructor Syring

1. Let X be a Pareto-distributed random variable; i.e. the pdf of X for

k, θ > 0 is

f(x) =


kθk

xk+1 x ≥ θ

0 x < θ
.

(a) Verify that the total area under the graph equals 1.

∫ ∞
θ

kθk

xk+1
dx =

kθk

−kxk
|∞θ = 0 +

kθk

kθk
= 1

(b) Find an expression for the cdf P (X ≤ x).

∫ x

θ

kθk

tk+1
dt =

kθk

−ktk
|xθ = 1− θk

xk

(c) Calculate the population mean and variance, E(X) and V (X). What

condition(s) do you need on k in order for the mean and variance to be

finite?

E(X) =

∫ ∞
θ

kθk

xk
dx =

kθk

(−k + 1)xk−1
|∞θ =

kθ

k − 1
, k > 1

E(X2) =
kθk

(2− k)xk−2
|∞θ =

kθ2

k − 2
, k > 2.

2. Let Z be a standard normal random variable. Find the value of c that

makes the following probability statements correct.

(a) P (0 ≤ Z ≤ c) = .4838
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c = 2.14

(b) P (c ≤ Z) = .121

c = 1.17

(c) P (−c ≤ Z ≤ c) = .668

c = 0.97

(d) P (c ≤ |Z|) = 0.016

c = 2.41

3. Let X be a normal random variable with mean 80 and standard devia-

tion 10. Compute the following probabilities by standardizing.

(a) P (X ≤ 100)

P (Z ≤ 100−80
10

= 2) = .9772

(b) P (65 ≤ Z ≤ 90)

P (Z ≤ 1)− P (Z ≤ −1.5) = 0.7745

(c) P (|X − 80| ≤ 10)

P (70 ≤ X ≤ 90) = P (Z ≤ 1)− P (Z ≤ −1) = 0.6826
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4. Consider the following two situations in which you want to compute bi-

nomial probabilities: (a) X ∼ Binomial n = 1000, q = 0.01,

(b) X ∼ Binomial n = 100, q = 0.20. Suppose you have access to Pois-

son and standard normal probability tables, but you do not have access

to a binomial table or any other means to efficiently calculate binomial

probabilities.

Question 1. For situations (a) and (b), would you use the normal ap-

proximation or the Poisson approximation and why?

The Poisson approximation applies to the situation in which nq → λ, so

n should be large and q small. This is (a). The normal approximation

generally works well for large n and moderate q. In fact, you want

nq− 2
√
nq(1− q) > 0 so that µ− 2σ > 0 and the normal places almost

all of its probability on the positive reals. So, normal should work in (b).

Question 2. For (a) calculate P (X ≤ 5), P (X ≤ 10), P (X ≤ 15) using

both approximations and the binomial table. Which approximation did

better?

Using the normal approximation, the mean is µ = nq = 1000 ∗ 0.01 = 10

and the standard deviation is σ =
√
nq(1− q) =

√
1000 ∗ 0.01 ∗ 0.99 =

3.146427. We get about 0.076,0.56, and 0.96 for the three probabilities.

Using the Poisson, we have λ = nq = 10. The Poisson probabilities are
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0.067, 0.58, 0.95.

Using the binomial, the probabilities are 0.066, 0.58, and 0.95.

The Poisson approximation is better than the normal.

Question 3. For (b) calculate P (X ≤ 10), P (X ≤ 20), P (X ≤ 30) using

both approximations and the binomial table. Which approximation did

better?

For the normal, the mean is µ = nq = 100 ∗ 0.2 = 20 while standard

deviation is σ =
√
nq(1− q) = 4. The normal probabilities are 0.006,

0.5, and 0.99.

For the Poisson, λ = 20 and the probabilities are 0.01, 0.56, and 0.9865.

The binomial probabilities are 0.0057, 0.56 and 0.99. Both approxima-

tions work well.
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