1. Exercise 1.14 in the text. When you calculate sample variance, do so by hand and show the values of $\left(x_{i}-\bar{x}\right), \sum_{i=1}^{n} x_{i}^{2}$ and $\sum_{i=1}^{n} x_{i}$. Use both formulas for sample variance, i.e. $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ and $\frac{n}{n-1}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\right.$ $\left.\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right]$ and show they give the same result.

Solution:
The values of $\left(x_{i}-\bar{x}\right)$ are 1.5, 1.5, 2.5, $-2.5,-1.5,4.5,-5.5,-0.5$. The values of the sum and sum of squares are $\sum_{i=1}^{n} x_{i}=4564$ and $\sum_{i=1}^{n} x_{i}^{2}=$ 2603832. Using the first sample variance formula, we calculate

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{7}\left(1.5^{2}+1.5^{2}+2.5^{2}+(-2.5)^{2}+(-1.5)^{2}+4.5^{2}+(-5.5)^{2}+(-0.5)^{2}\right)=10 .
$$

Using the second formula, we calculate

$$
\frac{n}{n-1}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right]=\frac{8}{7}\left[\frac{2603832}{8}-\left(\frac{4564}{8}\right)^{2}\right]=10 .
$$

2. Exercise 1.16 in the text. Also, explain what insight you have gained regarding the formula for sample variance (hint: why do we divide by $n-1$ instead of n ?).

Solution:

$$
\begin{gathered}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n}\left(x_{i}\right)-n \bar{x} \\
=n \bar{x}-n \bar{x}=0
\end{gathered}
$$

because $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Here is the intuition: Since the above sum is always zero, it means that
if you are given values for $x_{1}-\bar{x}, x_{2}-\bar{x}, \ldots, x_{n-1}-\bar{x}$, then the last value $x_{n}-\bar{x}$ is determined, i.e. $x_{n}-\bar{x}=-\sum_{i=1}^{n-1}\left(x_{i}-\bar{x}\right)$. So, the last "piece of information" doesn't really contain any new information. That is one way of understanding why we divide by $n-1$; we only average over the number of pieces of unique information.
3. Exercise 2.10 in the text. The answer to part c) is supposed to be a sentence explaining in words what the given event means.

Solution:
a) The elements are $\{F F F\},\{F F N\},\{F N F\},\{N F F\},\{F N N\},\{N F N\}$, $\{N N F\},\{N N N\}$.
b) $\{F F F\},\{F F N\},\{F N F\},\{N F F\}$
c) Probably the best answer is "the event that the second river is safe for fishing".
4. Exercise 2.26 in the text.

Solution:
a) $\left(\frac{7}{5}\right)=\frac{7!}{5!2!}$.
b) $(\stackrel{5}{3})=\frac{5!}{3!2!}$.
5. Exercise 2.29 in the text.

Solution:
$3 * 5 * 7 * 2$ test runs are needed.
6. Exercise 2.37 in the text.

Solution:
The boys and girls must sit like

$G B G B G B G B G$.

From left to right, for the first position there are 5 girls to choose from. For the second position there are 4 boys to choose from. For the third position, 4 girls, then 3 boys, and so on... The number of ways to seat everyone is

$$
5 * 4 * 4 * 3 * 3 * 2 * 2 * 1 * 1
$$

7. Exercise 2.45 in the text.

Solution:
Think of a bag with 3 I's, 2 N's, 1 F, 1 T, and 1 Y . Then, how many distinct orderings of those letters can you make if you sample them without replacement from the bag and use all 8 letters? We did an example like this in class. The answer is

$$
\frac{8!}{3!2!}
$$

If you had 8 distinct objects, then the answer would be 8!. Since there are 3 repeats of I and 2 repeats of N , you have to discard orderings of the letters that have I's and N's in the same positions, since they are indistinguishable.

