Some of these exercises instruct you to quote a p-value in your conclusion. Regard p-values as optional; you should, however, always draw a conclusion.

1. Exercise 10.28 in the text.

Solution:

Based on the normality and common variance assumptions, we should do a pooled t -test.

$$
s_{p}^{2}=\frac{24 * 1.5^{2}+24 * 1.25^{2}}{25+25-2}=1.90625
$$

so that $s_{p}=1.38067$. Then, the value of the pivot under H_{0} (also called the "test statistic") is

$$
\frac{\bar{x}_{n}-\bar{y}_{n}-\left(\mu_{x}-\mu_{y}\right)}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}=\frac{20-12-0}{1.38067 \sqrt{1 / 25+1 / 25}}=20.4859 .
$$

Since the alternative hypothesis is $H_{a}: \mu_{x}>\mu_{y}$, we compare the above value to the percentile $t_{0.95,48} \approx 1.678$ and we clearly reject $H_{0}: \mu_{x}=\mu_{y}$.
2. Exercise 10.30 in the text.

Solution:

In this case, since we know the true population standard deviations (or
variances) we use a z-test, that is, a test based on the percentiles of the normal distribution:

$$
\frac{\bar{x}_{n}-\bar{y}_{n}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}}=\frac{81-76-(0)}{\sqrt{\frac{5.2^{2}}{25}+\frac{3.4^{2}}{36}}}=4.221686 .
$$

Based on the alternative hypothesis $H_{a}: \mu_{x} \neq \mu_{y}$ we compare to both $z_{0.025}=-1.96$ and $z_{0.975}=1.96$ for $\alpha=0.05$. Clearly, we reject H_{0}. Since $1-P(Z<4.22) \approx 0$ the p-value is almost zero.
3. Exercise 10.32 in the text.

Solution:

Since the number of samples (200) in each group is so large, we can use an approximate test based on normal percentiles.

$$
\frac{\bar{x}_{n}-\bar{y}_{n}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}}=\frac{70750-65200-(2000)}{\sqrt{\frac{6000^{2}}{200}+\frac{5000^{2}}{200}}}=6.428038 .
$$

The z critical value for comparison is $z_{0.99}=2.325$. Clearly we will reject H_{0}.
4. Exercise 10.34 in the text.

Solution:

Based on the assumptions of normality and equal variances, we should use the pooled t-test. Our hypotheses are $H_{0}: \mu_{x}-\mu_{y}=8$ versus $H_{a}: \mu_{x}-\mu_{y}<8$.

$$
s_{p}^{2}=\frac{10 * 4.7^{2}+16 * 6.1^{2}}{11+17-2}=31.39
$$

so that $s_{p}=5.60309$. Then, the value of the pivot under H_{0} (also called the "test statistic") is

$$
\frac{\bar{x}_{n}-\bar{y}_{n}-\left(\mu_{x}-\mu_{y}\right)}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}=\frac{85-79-8}{5.60309 \sqrt{1 / 11+1 / 17}}=-.922 .
$$

Since the alternative hypothesis is $H_{a}: \mu_{x}-\mu_{y}<8$, we compare the above value to the percentile $t_{0.05,26}=-1.706$ and we do not reject. The p-value is $P\left(t_{26}<-.922\right)=.1825$.
5. Exercise 10.40 in the text.

Solution:

Based on the assumptions of normal data with unequal and unknown variances, we do the approximate t-test with calculated degrees of freedom. The hypotheses are $H_{0}: \mu_{x}=\mu_{y}$ vs. $H_{a}: \mu_{x} \neq \mu_{y}$. Degrees of freedom is calculated with the formula:

$$
v=\frac{\left(\frac{s_{x}^{2}}{n}+\frac{s_{y}^{2}}{m}\right)^{2}}{\frac{\left(s_{x}^{2} / n\right)^{2}}{n-1}+\frac{\left(s_{y}^{2} / m\right)^{2}}{m-1}}=\frac{\left(\frac{0.391478^{2}}{8}+\frac{0.214414^{2}}{24}\right)^{2}}{\frac{\left(0.391478^{2} / 8\right)^{2}}{8-1}+\frac{\left(0.214414^{2} / 24\right)^{2}}{24-1}}=8
$$

The test statistic is $\frac{\bar{x}_{n}-\bar{y}_{n}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{x}^{2}}{n}+\frac{s_{y}^{2}}{m}}}=\frac{0.97625-0.91583}{\sqrt{0.391478^{2} / 8+0.214414^{2} / 24}}=-.42$ and we fail to reject H_{0}.
6. Exercise 10.44 in the text.

Solution:

This is an example of paired data, so we need to do a paried t-test.

$$
\frac{\bar{d}}{s / \sqrt{n}}=\frac{198.625}{210.1652 / \sqrt{8}}=2.673118
$$

To test $H_{0}: \mu_{x}-\mu_{y}=0$ vs. $H_{a}: \mu_{x}-\mu_{y} \neq 0$ we compare to $t_{7,0.025}=$ 2.365 at the $\alpha=0.05$ level. Reject H_{0}.

