## Math310 : Exam 2 solution Spring 2013

SHOW WORK: Unsupported answers will not receive credit.

Problem 1. (20pts) Prove or disprove
(1) $S=\left\{\left.\binom{x}{y} \right\rvert\, x+y=3\right\}$ is a subspace of $\mathbb{R}^{2}$.
(2) $T=\left\{p(x) \in P_{3} \mid p^{\prime}(3)=0\right\}$ is a subspace of $P_{3}$.

Problem 2. (30pts) Let $A=\left(\begin{array}{rrrrr}1 & -2 & 1 & 0 & 3 \\ 0 & 0 & 2 & 2 & -1 \\ 1 & -2 & -1 & -2 & 0 \\ -1 & 2 & -2 & -1 & 2\end{array}\right)$.
a) Find a basis for the row space of $A$. What is the dimension of the row space of $A$ ?
b) Find a basis for $R(A)$. What is the dimension of $R(A)$ ?
c) Find a basis for $N(A)$. What is the dimension of $N(A)$ ?
d) Find rank and nullity of $A$.

Problem 3. (15pts) Let $\mathbf{u}_{\mathbf{1}}=\binom{2}{1}, \mathbf{u}_{\mathbf{2}}=\binom{3}{2}$ and $\mathbf{v}_{\mathbf{1}}=\binom{1}{1}, \mathbf{v}_{\mathbf{2}}=\binom{-1}{1}$.
a) Find the transition matrix $S$ corresponding to the change of basis from $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.
b) If $\mathbf{w}=\binom{5}{3}$ find the coordinate representation of $\mathbf{w}$ with respect to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

Problem 4. (20pts) Give an example (no explanation required) of
(1) a set in $\mathbb{R}^{3}$ that is linearly independent but not a basis of $\mathbb{R}^{3}$;
(2) a set in $P_{3}$ that is a spanning set for $P_{3}$ but not a basis of $P_{3}$;
(3) a basis in $\mathbb{R}^{2 \times 2}$;
(4) a linear map from $\mathbb{R}^{3}$ to $\mathbb{R}^{2}$;
(5) a map from $\mathbb{R}^{2}$ to $\mathbb{R}^{3}$ that is not linear.

Problem 5. (15pts) Determine if $\left\{x^{2}-x+1, x+3, x^{2}-5\right\}$ is a spanning set for $P_{3}$.

## Problem 1.

(1) $S$ is not a subspace of $\mathbb{R}^{2}$. To show that $S$ is not a subspace of $\mathbb{R}^{2}$ it is enough to provide a counterexample : $\binom{1}{2} \in S$, but $2\binom{1}{2}=\binom{2}{4} \notin S$
(2) $T$ is a subspace of $P_{3} . T$ is closed under addition: if $p, q \in T$ then $(p+q) \in T$ since $(p+q)^{\prime}(3)=\left(p^{\prime}+q^{\prime}\right)(3)=p^{\prime}(3)+q^{\prime}(3)=0+0=0 . T$ is also closed under multiplication by a scalar: if $p \in T$ and $r$ is a number then $(r p) \in T$ since $(r p)^{\prime}(3)=r p^{\prime}(3)=r \cdot 0=0$.

Problem 2. We first find $\operatorname{RREF}(A)$ :

$$
\begin{aligned}
& \left(\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 3 \\
0 & 0 & 2 & 2 & -1 \\
1 & -2 & -1 & -2 & 0 \\
-1 & 2 & -2 & -1 & 2
\end{array}\right) \underset{\substack{ \\
R_{4}+R_{1}}}{R_{3}-R_{1}}\left(\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 3 \\
0 & 0 & 2 & 2 & -1 \\
0 & 0 & -2 & -2 & -3 \\
0 & 0 & -1 & -1 & 5
\end{array}\right) \begin{array}{c} 
\\
R_{3}+R_{2} \\
2 R_{4}+R_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{rrrrr}
1 & -2 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

a) $\{(1,-2,1,0,0),(0,0,1,1,0),(0,0,0,0,1)\}$ is a basis of the row space of $A$. Dimension of the row space of $A$ is 3 .
b) $\left\{\left(\begin{array}{c}1 \\ 0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1 \\ -2\end{array}\right),\left(\begin{array}{c}3 \\ -1 \\ 0 \\ 2\end{array}\right)\right\}$ is a basis of $R(A) \cdot \operatorname{dim} R(A)=3$.
c) To find $N(A)$ we solve the system $A x=0$. From the $R R E F(A)$ we see that $x_{1}, x_{3}, x_{5}$ are lead and $x_{2}, x_{4}$ are free. Also

$$
\begin{array}{r}
x_{1}-2 x_{2}-x_{4}=0 \\
x_{3}+x_{4}=0 \\
x_{5}=0
\end{array}
$$

Thus $N(A)=\left\{\left.\left(\begin{array}{c}2 x_{2}+x_{4} \\ x_{2} \\ -x_{4} \\ x_{4} \\ 0\end{array}\right) \right\rvert\, x_{2}, x_{4} \in \mathbb{R}\right\}$. So, $\left\{\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis of
$N(A) . \operatorname{dim} N(A)=2$.
d) $\operatorname{rank}(A)=\operatorname{dim} R(A)=3$ and $\operatorname{nullity}(A)=\operatorname{dim} N(A)=2$.

Problem 3. Denote $U=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$ and $V=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$.
a) The transition matrix corresponding to the change of basis from $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is $S=V^{-1} U$.
$\left.\left.\left(\begin{array}{rr|rr}1 & -1 & 2 & 3 \\ 1 & 1 & 1 & 2\end{array}\right) \xrightarrow{R_{2}-R_{1}}\left(\begin{array}{rr|rr}1 & -1 & 2 & 3 \\ 0 & 2 & -1 & -1\end{array}\right) \xrightarrow[1 / 2 R_{2}]{\longrightarrow} \quad \begin{array}{l}R_{1}+1 / 2 R_{2} \\ 0\end{array}\right) \quad \begin{array}{rr|rr}1 & 0 & 3 / 2 & 5 / 2 \\ 0 & -1 / 2 & -1 / 2\end{array}\right)$
Thus, $S=\left(\begin{array}{rr}3 / 2 & 5 / 2 \\ -1 / 2 & -1 / 2\end{array}\right)$.
b) Write $\mathbf{w}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}$ and solve for $c_{1}, c_{2}$.

$$
\left(\begin{array}{rr|r}
1 & -1 & 5 \\
1 & 1 & 3
\end{array}\right) \xrightarrow{R_{2}-R_{1}}\left(\begin{array}{rr|r}
1 & -1 & 5 \\
0 & 2 & -2
\end{array}\right) \xrightarrow[1 / 2 R_{2}]{\longrightarrow}\left(\begin{array}{rr|r}
1 & 0 & 4 \\
0 & 1 & -1
\end{array}\right)
$$

Thus, $\binom{4}{-1}$ is the coordinate representation of $\mathbf{w}$ with respect to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.

## Problem 4.

(1) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ is a lineraly independent set in $\mathbb{R}^{3}$ and it is not a basis of $\mathbb{R}^{3}$;
(2) $\left\{1, x, x^{2}, 1+x+x^{2}\right\}$ is a spanning set for $P_{3}$ and it is not a basis of $P_{3}$;
(3) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is the standard basis of $\mathbb{R}^{2 \times 2}$;
(4) $L\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=\binom{x_{1}}{x_{2}}$ is a linear map from $\mathbb{R}^{3}$ to $\mathbb{R}^{2}$.
(5) $L\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{c}x_{1}^{2} \\ \sqrt{x_{2}} \\ 5\end{array}\right)$ is a map from $\mathbb{R}^{2}$ to $\mathbb{R}^{3}$ and it is not linear.

Problem 5. Using the basis $\left\{x^{2}, x, 1\right\}$ we replace polynomials $\left\{x^{2}-x+1, x+3, x^{2}-5\right\}$ with vectors $\left\{\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -5\end{array}\right)\right\}$. Since $\operatorname{det}\left(\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 3 & 5\end{array}\right)=-9 \neq 0$,
$\left\{\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -5\end{array}\right)\right\}$ is a basis of $\mathbb{R}^{3}$, in particular, it is a spanning set for $\mathbb{R}^{3}$. Thus $\left\{x^{2}-x+1, x+3, x^{2}-5\right\}$ is a spanning set for $P_{3}$.

