Math 516: Exam 1

Problem 1. (25 points) Let G be a group and let H and K be normal subgroups of G with $H \leq K$. Prove that $K/H \unlhd G/H$ and $(G/H)/(K/H) \cong G/K$.

Problem 2. (20 points) Let G be a group. Let H be a subgroup of G such that $C_G(H) = G$ and G/H is cyclic. Show that G is abelian.

Problem 3. (40 points) Let G be a finite group and p be the smallest prime dividing $|G|$. Let H be a subgroup of G.
 a) Show that if $|G : H| = p$ then H is a normal subgroup of G.
 b) Show that if $|H| = p$ and H is normal in G then H is contained in the center of G.

Problem 4. (15 points) Give the number of nonisomorphic abelian groups of order 144.