Math 220: Exam 1 Fall 2007

Problem 1. (40pts) State the method you will use and then find the general solution to the equation (you may leave your answer in implicit form)

a)
$$y' = \frac{xe^{x+y}}{y}$$

b) $y' = \frac{y}{x} + \frac{x}{x^2+1}$
c) $(2xy + \cos y)dy + y^2dx = 0$

Problem 2. (20pts) Consider the initial value problem $\frac{dy}{dx} = \frac{x}{y} + \cos(2\pi x)$ with y(2) = -1.

a)Use Euler's method with step size h = 0.5 to approximate y(x) at the point x = 2.5.

b)Use the midpoint method with step size h = 0.5 to approximate y(x) at the point x = 2.5.

Problem 3.(15pts) Solve the initial value problem (your answer should NOT contain imaginary number i)

$$y'' - 4y' + 5y = 0$$
 with $y(0) = 3$, $y'(0) = 1$.

Problem 4. (25pts) Consider a large tank holding 100 L of brine solution, initially containing 5 kg of salt. At time t = 0, more brine solution begins to flow into the tank at the rate of 2 L/min. The solution inside the tank is well-stirred and is flowing out of the tank at the rate of 2 L/min. The concentration of salt in the solution entering the tank is $te^{-t/50}$ kg/L, i.e. varies in time. Set up and solve the problem for A(t), the amount of salt in the tank at time t.

Extra Credit. (10pts) Find the most general function N(x, y) so that the equation is exact

$$(ye^{xy} - 4x^3y + 2)dx + N(x, y)dy = 0.$$

Problem 1.

a) Separable:

$$ye^{-y}dy = xe^{x}dx$$

$$-e^{-y} - ye^{-y} = xe^{x} - e^{x} + C$$
b) Linear:

$$y' - \frac{1}{x}y = \frac{x}{x^{2} + 1}, \quad P(x) = -\frac{1}{x}$$

$$\int -\frac{dx}{x} = -\ln|x| + C, \quad \mu(x) = \frac{1}{x}$$

$$\frac{y'}{x} - \frac{y}{x^{2}} = \frac{1}{x^{2} + 1}, \quad \left(\frac{y}{x}\right)' = \frac{1}{x^{2} + 1}$$

$$\frac{y}{x} = \arctan(x) + C, \quad y = x \arctan(x) + Cx$$
c) Since $\frac{\partial}{\partial x}(2xy\cos y) = 2y$ and $\frac{\partial}{\partial y}(y^{2}) = 2y$, the equation is exact.

$$F(x, y) = \int y^{2}dx = xy^{2} + g(y), \quad \frac{\partial F}{\partial y} = 2xy + g'(y)$$

$$2xy + g'(y) = 2xy + \cos x, \quad g'(y) = \cos y, \quad g(y) = \sin y + C$$

$$xy^{2} + \sin y = D$$

Problem 2.

$$f(x,y) = \frac{x}{y} + \cos(2\pi x), \quad x_0 = 2, \ y_0 = -1, \quad h = .5$$

a) $y_1 = y_0 + hf(x_0, y_0) = -1 + .5(2/(-1) + \cos(4\pi)) = -1.5, \quad y(2.5) \approx -1.5$
b) $x_{mid} = x_0 + \frac{h}{2} = 2.25, \ y_{mid} = y_0 + \frac{h}{2}f(x_0, y_0) = -1 + .25(2/(-1) + \cos(4\pi)) = -1.25$
 $y_1 = y_0 + hf(x_{mid}, y_{mid}) = -1 + .5(2.25/(-1.25) + \cos(2.5\pi)) = -1.9, \quad y(2.5) \approx -1.9$

Problem 3.

Characteristic equation is: $r^2 - 4r + 5 = 0$, $r = 2 \pm i$ $y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t$, $y'(t) = 2C_1 e^{2t} \cos t - C_1 e^{2t} \sin t + 2C_2 \sin t + C_2 e^{2t} \cos t$ Substitute t = 0, y = 3: $3 = C_1$ Substitute t = 0, y' = 1: $1 = 2C_1 + C_2$, $C_2 = -5$

$$y(t) = 3e^{2t}\cos t - 5e^{2t}\sin t$$

Problem 4.

A(t)=amount of salt in the tank at time t, A(0) = 5Input rate: (concentration)×(rate of flow) = $2te^{-t/50}$ Output rate: (concentration)×(rate of flow) = $2\frac{A(t)}{100}$ $\frac{\partial A}{\partial t} = 2te^{-t/50} - \frac{A}{50}$ $A' + \frac{1}{50}A = 2te^{-t/50}, \quad P(t) = \frac{1}{50}$ $\int \frac{dt}{50} = \frac{t}{50} + C, \quad \mu(x) = e^{t/50}$ $e^{t/50}A' - \frac{e^{t/50}}{50}A = 2t, \quad (e^{t/50}A)' = 2t$ $e^{t/50}A = t^2 + C$, $A = t^2 e^{-t/50} + C e^{-t/50}$ Substitute t = 0, A = 5: 5 = C

Linear:

$$A(t) = t^2 e^{-t/50} + 5e^{-t/50}$$

Problem 5.

Assume that this equation is exact then

$$F(x,y) = \int (ye^{xy} - 4x^3y + 2)dx = e^{xy} - x^4y + 2x + g(y)$$
$$N(x,y) = \frac{\partial F}{\partial y} = xe^{xy} - x^4 + g'(y)$$
$$\partial F$$

or

$$N(x,y) = \frac{\partial F}{\partial y} = xe^{xy} - x^4 + f(y)$$

where f(y) is an arbitrary function of y.