4 Substitution

Let’s start with an example to help motivate what we are about to do.

Let’s start with a simple example such as [ 2zdz = 22 4 ¢. Our choice to use z as a variable
is completely arbitrary, we could just as well use any other variable. For example, we could write
this function as 2u and then if we want to take the integral, we also have to change our dz to du to
match our new variable, giving [ 2udu = u* + ¢. Substituting = back in for u, this gives us 2% + ¢
which is exactly what we got before.

Now, let’s introduce a new variable u again, but this time let u = 2z (why we may want to do
this may not be clear right now, but for now let’s just see what happens, and we will look why

this is a useful thing to do later). Now, if we naively change dz to a du again, we get the integral

[ udu = % + ¢. Now, if we plug 2z back in for u to get (25)2 = % = 222 which is different
from what we got before. The reason for this discrepancy is because although we are allowed to
make substitutions like this, we cannot simply change the dx to a du and expect the answer not
to change. That is, the symbols dx, du, etc. are more than simply notation — they actually carry
important information, and simply changing the dz to a du loses this information and changes the
integral we get as a result.

Luckily, there is a way we can fix this! We just need to figure out what the new du should be in
terms of the original dz. The way we do this is using derivatives — recall that given a function f(x)
we can use the notation % to represent the derivative of f with respect to z, i.e. % is another way
of writing f’(x).

Now, if we go back to our example, we can think of v as being a function of z — namely the
function 2x. If we take the derivative of u with respect to x, we get 2, i.e. fjl—z = 2. We can now
treat this like a fraction and multiply both sides by dz to get du = 2dx. Why we are allowed to
treat this derivative like a fraction is technical and not important, but just know that there is a
way to interpret these symbols du and dx in such a way that dividing them gives us the derivative

of u with respect to x.

Now, if we want to substitute u = 2z, we need to also use the substitution du = 2dx. We can

13



divide both sides by 2 to get dx = %du, so doing these two substitutions gives us

/2xd:1: = /udaz
1
:/u§du
1
= —/udu
2

Computing this integral gives us % [ udu = % . “72 +c= “Tz + c. Plugging 2x back in for u, this

gives us % +c= % + ¢ = 2 + ¢ which is the same as we got originally!

Now, let’s compute a somewhat less contrived example that shows why this technique of sub-
stitution can be so powerful. Suppose we want to compute [ sin(z)cos(z)dz. This is a function
where it may be hard to just think of what the antiderivative would be, so let’s use substitution to
figure it out! We can start by letting u = sin(x), which then gives us Z—Z = cos(z) and multiplying

both sides by dz gives us du = cos(x)dz. Doing these substitutions yields
/sin(x) cos(z)dx = /ucos(w)dsc

:/udu

u2

;2
_ sin () Lo

2

which we can verify is the correct antiderivative by taking its derivative. Indeed, by the chain
rule, %(% sin?(z)) = 1 - 2sin(z) - cos(z) = sin(z) cos().

What you may notice is that in this process of doing substitution, we have to take the derivative
Z_Z = u/(z) and then multiply both sides to get du = u/(x)dx. That is, when doing substitution we
want to write part of the integrand as u in such a way that its derivative v’ is multiplied by dz so we
can do the appropriate substitution for du. This is why we chose u = sin(z) in the previous example,
since the derivative of sin(z) is cos(x) and there is a cos(z)dz in the integrand. Notice, however,
that since the order of multiplication doesn’t matter, we can also write this as [ cos(z)sin(z)dx
and the derivative of cos(z) is —sin(z), so we could have also chosen to let u = cos(z). Indeed, this

would have given us the same answer, we just need to be careful not to lose track of the negative

sign we pick up when taking the derivative of cos(x).

Exercise 4.1. Compute [ sin(z) cos(z)dz, but this time by letting u = cos(z). Double check you

get the same answer as before.
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Now that we have seen how substitution works for indefinite integrals, let us check what happens
if we add bounds and make our integrals definite. Again, let’s start with a simple example. Suppose

we want to calculate ff 2xdx. We can do this by simply taking the antiderivative of 2z and

2
/ 2xdr = xzﬁ
1

— 92 _ 12

evaluating at the bounds. That is,

=3

Now, let us use the substitution ©u = 2z and du = 2dx or %du = dx, which gives us f 2xdxr =
% [ udu, as before. Let’s start by leaving the bounds unchanged and seeing what happened. That

. 2 p . .
1s, we want to compute % fl udu and see if it gives us 3 or not. As we can see,

1 (2 1u? o
5/1 udu = 5|,

2

U= 2
:Z‘l
22 12
44
1 3
=1-= -2
4 4

computing this integral gives us a different answer. Why? Recall that definite integrals represent
areas underneath curves, and our original integral was in terms of the variable xz, i.e. we were using
dx, so our bounds are x values.

Thus, one option is to simply plug 2z back in for u after finding the antiderivative and then

u2

plugging in the original bounds. That is, once we find the antiderivative “-, plugging in u = 2z
gives us % = % = 22, which we can then evaluate at the bounds to get 22 — 12 = 3, as before.

On the other hand, sometimes the function v will be very complicated and we may not want
to substitute the x’s back in. However, as we just saw, if we leave the bounds unchanged we will
get a different answer. Just as we had to change the dx to a du, if we want to evaluate the final
answer using u’s instead of x’s, we also have to change the bounds to reflect that. That is, if we

think of u as the function u(z) = 2z, then when = = 1, we have u(1) = 2(1) = 2 and when = = 2

we get u(2) = 2(2) = 4. It may then seem reasonable that these are the new bounds we should use
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with our u integral, and indeed that is the case! We can simply compute

1/4d 1u? 4
— | udu=-—
2 /s 22

u2

4
:Z|2
42 22

11
=4-1

=3

which is the same as when we computed f12 2xdx!

us

Next, let’s compute /2 sin(x) cos(x)dx by using v = sin(z), which gives us du = cos(z)dz. We
0
can also compute the new bounds u(0) = sin(0) = 0 and u(5) = sin(3) = 1 to use later. Then,

just as before this gives us an antiderivative of “72 To compute the definite integral, we can either

evaluate “72 at the new bounds 0,1 or substitute sin(z) back in for u and evaluate the result at

the original bounds of 0, . Using the first method gives us “—22|é = % = % = %, and the second
02 s in(Z)2 : 2
method gives %‘5 = % — % = 1—22 — % = %, so both methods give the same answer.
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