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Abstract

For fixed k ≥ 2, determining the order of magnitude of the number of edges in an n-vertex bipartite

graph not containing C2k, the cycle of length 2k, is a long-standing open problem. We consider an

extension of this problem to triple systems. In particular, we prove that the number of triples in an

n-vertex triple system which does not contain a C6 in the link of any vertex, has order of magnitude n7/3.

Additionally, we construct new families of dense C6-free bipartite graphs with n vertices and n4/3 edges

in order of magnitude.

1 Introduction

An r-uniform hypergraph, or simply, an r-graph H on vertex set V (H) is a subset of
(
V (H)

r

)
. Given an

r-graph H, the hypergraph Turán problem asks the following question: what is the largest size of an r-graph

on n vertices that does not contain a copy of H as a subgraph? This number is known as the Turán number

or the extremal number of H, and is denoted by exr(n,H). The case r = 2 was first introduced by Turán

[19] in 1941, and several lower and upper bounds on exr(n,H) have been obtained since then for different

values of r and H.

Towards analyzing the asymptotic behavior of ex2(n,G) for graphs G, the seminal result of Erdős and Stone

[5] states that when the chromatic number χ(G) ≥ 3,

ex2(n,G) =

(
1− 1

χ(G)− 1

)(
n

2

)
+ o(n2).

This result essentially determines ex2(n,G) for graphs G which are not bipartite. The analysis of ex2(n,G)

for bipartite graphs G turns out to be extremely difficult, and the reader is referred to [6] for a comprehensive

survey of the bipartite case.

One especially well-studied class of bipartite graphs G are the even cycles C2k for k ≥ 2. For these graphs, the

best known upper bound is provided by Bondy and Simonovits [2], who proved that ex2(n,C2k) ≤ O(n1+
1
k ).

Improvements in the constant term has been obtained in [8, 17, 4].

A major open problem for even cycles is to construct C2k-free graphs on n vertices and Ω(n1+
1
k ) edges.

There have been several bipartite constructions based on finite geometries including [18, 3, 1, 12, 21, 11]

that have sequentially improved the bounds; however, they give the tight bound only for k ∈ {2, 3, 5}. For

k 6∈ {2, 3, 5}, the best known lower bounds are given by the bipartite graphs CD(k, q) [9, 10] for integers

k ≥ 2 and prime powers q. These graphs arise from Lie algebraic incidence structures that approximate the
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behavior of generalized polygons, and are analyzed in detail in [22]. For a recent survey on the even cycle

problem, the reader is referred to [20].

In this paper, we are mainly concerned with three classes of lower bound constructions: the bipartite graphs

D(k, q) from [9, 10], the arc construction introduced in [13] and later generalized in [14], and Wenger’s

construction [21]. Our results can be divided into two sections: results about 3-graphs and results about

graphs.

1.1 3-Graphs

For a graph G, the suspension Ĝ is the graph obtained from G by adding a new vertex adjacent to all vertices

of G. In [16], the author, together with Mubayi, studied the generalized Turán number ex(n,K3, Ĝ) for

different bipartite graphs G. Analogously, we introduce the concept of a hypergraph suspension.

Let H be a 3-graph and x ∈ V (H) be any vertex of H. The link of x in H, denoted by Lx,H , is the graph

with vertex set V (H) \ {x} and edges {uv : {x, u, v} ∈ H}. For a graph G, the hypergraph suspension G̃ is

a 3-graph defined as follows: add a new vertex x to V (G), and let G̃ = {e ∪ {x} : e ∈ E(H)}. By definition,

Lx,G̃ = G.

Note that the numbers ex3(n, G̃) and ex(n,K3, Ĝ) are closely related. In fact, given a Ĝ-free graph, we can

replace all triangles in it with hyperedges to obtain a G̃-free 3-graph, implying

ex(n,K3, Ĝ) ≤ ex3(n, G̃). (1.1)

In this paper, we study ex3(n, C̃2k) for k ≥ 2. When k = 2, observe that C̃2k is the complete 3-partite

3-graph K
(3)
1,2,2, and its extremal number has been exactly determined to be Θ(n5/2) in [15]. Thus, we focus

our attention on ex3(n, C̃2k) for k ≥ 3.

Observe that a 3-graph H does not contain C̃2k iff Lx,H does not contain C2k for every vertex x ∈ V (H),

leading us to the upper bound

ex3(n, C̃2k) ≤ O(n · n1+ 1
k ) = O(n2+

1
k ) (1.2)

On the other hand, a probabilistic deletion argument lets us deduce the following result:

Proposition 1.1. For k ≥ 2,

ex3(n, C̃2k) ≥ Ω
(
n2+

1
2k−1

)
. (1.3)

Our main result is to show a construction of C̃2k−free 3-graphs, which asymptotically improves the bound

above for k = 3 and k = 4.

Theorem 1.2. For every integer q that is a power of 3, there exists a 3-partite 3-graph D3(k, q) with the

following properties:

1. D3(k, q) has 3qk vertices and q2k+1 edges,

2. The link graph of every vertex of D3(k, q) is isomorphic for k ≤ 6, and

3. D3(3, q) and D3(5, q) are C̃6 and C̃8-free, respectively.

In particular, Theorem 1.2 implies that

ex3(n, C̃6) ≥ Ω(n7/3) and ex3(n, C̃8) ≥ Ω(n11/5). (1.4)

As a corollary of (1.2) and (1.4), we determine the exact growth rate of ex3(n, C̃6).
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Corollary 1.3. For large n, the Turán number of C̃6 grows as,

ex3(n, C̃6) = Θ(n7/3). (1.5)

Corollary 1.3 further implies that the bound in (1.1) is not always sharp, since we demonstrated in [16] that

ex(n,K3, Ĉ6) = o(n7/3).

Remark. Our proof of Theorem 1.2 heavily relies on the bipartite graphs D(k, q) introduced by Lazebnik,

Ustimenko and Woldar in [9], and D3(k, q) can be viewed as an extension of D(k, q) to 3-graphs. D3(k, q)

has the property that for every k ≥ 2 and prime power 3 | q, the link graph of any of its vertex is isomorphic

to either D(k, q) or another graph which we call D′(k, q) (Proposition 2.5). We also make a conjecture

(Conjecture 2.9) about the girth of D′(k, q), which, if true, would give a bound of ex3(n, C̃2k) ≥ Ω(n2+
1

2k−3 )

for all k ≥ 3, an asymptotic improvement on (1.3).

1.2 Graphs

We also compare two well-known constructions of C2k-free graphs: the arc construction [13, 14] and Wenger’s

construction [21]. Let t ≥ 2, and let q be a prime power. An arc in a projective t-space PG(t, q) is a collection

of points such that no (t− 1) of them lie in a hyperplane. The arc construction is defined as follows.

The bipartite graphs Garc(k, q, α). Let Σ = PG(t, q), and Σ0 ⊂ Σ be the hyperplane consisting of points

with first homogeneous coordinate 0. Note that Σ0
∼= PG(t − 1, q). Let α be any arc in Σ0. Then, the

bipartite graph Garc(k, q, α) with parts P and L is defined as follows. Let P = Σ \ Σ0, and L be the set of

all projective lines ` of Σ such that ` ∩ Σ0 ∈ α. Vertices p ∈ P and ` ∈ L are adjacent if and only if p ∈ `.

It was shown in [14] that Garc(k, q, α0) is C2k-free for k = 2, 3, 5 but contains C8 for k = 4, where α0 is the

normal rational curve in Σ0 given by

α0 = {[0 : 1 : x : x2 : · · · : xt−1] : x ∈ Fq} ∪ {[0 : 0 : · · · : 0 : 1]}.

In contrast, let H(k, q) be the bipartite graph with parts A = B = Fk
q such that (a1, . . . , ak) is adjacent to

(b1, . . . , bk) iff

ai + bi = a1b
i−1
1 for all 2 ≤ i ≤ k.

It was shown by Wenger in [21] that H(k, q) is C2k-free for k = 2, 3, 5.

We prove that these two constructions are in fact, isomorphic, and our proof uses the Plücker embedding [7],

a tool from algebraic geometry that lets us parametrize the set of projective lines L.

Proposition 1.4. Let α0 be the normal rational curve in PG(2, k), and α−0 = α0 \ {[0 : · · · : 0 : 1]}. Then,

Garc(k, q, α
−
0 ) ∼= H(k, q).

As Garc(4, q, α0) is shown to contain C8’s in [14], Proposition 1.4 also provides a geometric explanation for

why Wenger’s bound is tight for k = 3 and k = 5 but not k = 4.

For 1 ≤ s ≤ r with (s, r) = 1, it is known that α = {[1 : x : x2
s

] : x ∈ F2r} is an arc in the projective space

PG(2, 2r). Using the proof method of Proposition 1.4 on this arc α, we are able to construct a new family

of C6-free graphs with Ω(n4/3) edges, given as follows.

Theorem 1.5. Let q = 2r and 1 ≤ s ≤ r be such that (s, r) = 1. Let G(2r, s) denote the bipartite graph with

parts A = B = F3
q such that (a1, a2, a3) ∈ A is adjacent to (b1, b2, b3) ∈ B iff

b2 + a2 = a1b1 and b3 + a3 = a1b
2s

1 .

Then, G(2r, s) is C6-free.
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Note that the graphs G(2r, s) extend Wenger’s C6-free construction in even characteristic, as G(2r, 1) ∼=
H(3, 2r).

This paper is organized as follows. In Section 2, we prove Proposition 1.1, recapitulate on the graphs D(k, q),

extend them to the 3-graphs D3(k, q), and investigate its link graphs, finally proving Theorem 1.2. Section

3 is devoted to proving Proposition 1.4 and Theorem 1.5.

2 Lower bounds on ex(n, C̃2k)

Our goal in this section is to extend the graphs D(k, q) to a family of 3-graphs, and build up the tools

required to prove Theorem 1.2. We start with a proof of Proposition 1.1. Recall that we wish to show

ex3(n, C̃2k) ≥ Ω(n2+
1

2k−1 ).

Proof of Proposition 1.1. Let H ∼ G3(n, p) be the Erdős-Rényi 3-graph, where each edge of the complete

3-graph on n vertices is selected with probability p = 1
10k
−100n−

2k−2
2k−1 . Then, E(|H|) = p

(
n
3

)
. For every C̃2k

in H, we remove one edge from it. Let H ′ ⊂ H be the new 3-graph obtained via the deletion of edges. Note

that the probability that any 2k+ 1 vertices forms a C̃2k is (2k+ 1)p2k, and therefore, the expected number

of them is at most (2k + 1)n2k+1p2k. Now, E(H ′) = p
(
n
3

)
− (2k + 1)n2k+1p2k. As

n2k+1p2k−1 = n2k+1 · 10−(2k−1)k−100(2k−1)n−(2k−2) ≤ 10−(2k−1)n3k−100(2k−1),

and

p

((
n

3

)
− (2k + 1)n2k+1p2k

)
≥ pn3

(
1

10
− 2k + 1

102k−1

)
≥ pn3

100
,

This implies that E(|H ′|) ≥ 1
1000k

−100n3−
2k−2
2k−1 . Thus, there exists a 3-graph H ′ with Ω(n3−

2k−2
2k−1 ) edges with

no copy of C̃2k. This completes our proof.

Since probabilistic lower bounds for 3-graphs tend to be weak, we try to strengthen this result via a look at

the graphs D(k, q). Here we present a summary of the properties of D(k, q); for more details, the reader is

referred to [9, 10, 22].

Definition 2.1 (The bipartite graphs D(q)). For a prime power q, let A and B be two copies of the countably

infinite dimensional vector space V over Fq. Use the following coordinate representations for elements a ∈ A
and b ∈ B:

a = (a1, a11, a12, a21, a22, a
′
22, a23, . . . , aii, a

′
ii, ai,i+1, ai+1,i, . . .),

b = (b1, b11, b12, b21, b22, b
′
22, b23, . . . , bii, b

′
ii, bi,i+1, bi+1,i, . . .).

(2.1)

Let AtB be the vertex set of D(q), and join a ∈ A to b ∈ B if the following coordinate relations hold (i ≥ 2):

a11 + b11 + a1b1 = 0

a12 + b12 + a1b11 = 0

a21 + b21 + a11b1 = 0

...

aii + bii + ai−1,ib1 = 0

a′ii + b′ii + a1bi,i−1 = 0

ai,i+1 + bi,i+1 + a1bii = 0

ai+1,i + bi+1,i + a′iib1 = 0.

(2.2)
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Define D(k, q) to be the graph obtained by truncation of A and B to the first k coordinates in (2.1) and, the

first k − 1 relations in (2.2).

The key properties of the graphs D(k, q) are summarized in the following proposition.

Proposition 2.2. For any prime power q and k ≥ 2, the following holds:

1. D(k, q) is a q-regular bipartite graph of order 2qk;

2. The girth of D(k, q) is at least k + 4 if k is even, and k + 5 if k is odd.

Further, it is known that for k ≥ 6 the graphs D(k, q) start to get disconnected into pairwise isomorphic

components at regular intervals. These connected components are called CD(k, q). The graphs CD(2k−3, q)

give the currently best known asymptotic lower bounds on ex(n,C2k) for k ≥ 3. We omit the proof of

Proposition 2.2 here.

In the following subsection, we extend D(k, q) to the 3-graph case.

2.1 The 3-graphs D3(k, q)

Definition 2.3 (The 3-partite 3-graphs D3(q)). For a prime power q, let A, B, and C be three copies of the

countably infinite dimensional vector space V over Fq. We use the following coordinate representations for

a ∈ A, b ∈ B, c ∈ C:

a = (a1, a11, a12, a21, a22, a
′
22, a23, . . . , aii, a

′
ii, ai,i+1, ai+1,i, . . .),

b = (b1, b11, b12, b21, b22, b
′
22, b23, . . . , bii, b

′
ii, bi,i+1, bi+1,i, . . .),

c = (c1, c11, c12, c21, c22, c
′
22, c23, . . . , cii, c

′
ii, ci,i+1, ci+1,i, . . .).

Let A t B t C be the vertex set of D(q), and say that {a, b, c} is a hyperedge if the following coordinate

relations (call them I) hold (i ≥ 2):

a11 + b11 + c11 + a1b1 + b1c1 + c1a1 = 0

a12 + b12 + c12 + a1b11 + b1c11 + c1a11 = 0

a21 + b21 + c21 + a11b1 + b11c1 + c11a1 = 0

...

aii + bii + cii + ai−1,ib1 + bi−1,ic1 + ci−1,ia1 = 0

a′ii + b′ii + c′ii + a1bi,i−1 + b1ci,i−1 + c1ai,i−1 = 0

ai,i+1 + bi,i+1 + ci,i+1 + a1bii + b1cii + c1aii = 0

ai+1,i + bi+1,i + ci+1,i + a′iib1 + b′iic1 + c′iia1 = 0.

(2.3)

Define D3(k, q) to be the 3-graph obtained by truncation of A, B, and C to the first k coordinates and I to

the first k − 1 relations.

The graphs D3(q) are designed in such a way that the link of the vertex ~0 from any part is isomorphic to

D(q). In fact, note that D3(q) has the natural cyclic automorphism a∗ 7→ b∗, b∗ 7→ c∗, and c∗ 7→ a∗, under

which all the defining equations of D3(q) remain invariant. Hence, for any vertex v ∈ V , the links of v in

D3(q) taken from either of the three parts are all isomorphic, and it is enough to consider the link graphs

from a fixed part, say, A.

One would hope that the link graphs of other vertices in D3(k, q) also have similar high girth properties as

D(k, q). This inspires us to analyze the links of every vertex in D3(k, q). To that end, we analyze Aut(D3(q)).
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Proposition 2.4. Suppose Fq has characteristic 3, and consider D3(q) with parts A, B, C. Let a ∈ A be fixed,

and suppose s ≥ 1. Then there is an automorphism ϕ ∈ Aut(D3(q)) such that ϕ(a) = (a1, 0, . . . , 0, ∗, ∗, . . .) ∈
A, where the second through the (s+ 1)’th coordinates are mapped to 0.

The proof of Proposition 2.4 is technical. Before looking at the proof, we note an important consequence: it

is sufficient to analyze the girths of the link graphs of the vertices (a1, 0, . . . , 0) ∈ A for a1 ∈ Fq. In fact, it is

seen that the truncated 3-graphs D3(k, q) have exactly two kinds of links.

Proposition 2.5. If 3 | q, then the 3-graph D3(k, q) admits exactly two classes of link graphs, one of which

is D(k, q).

Now, we present the proofs of Propositions 2.4 and 2.5.

2.1.1 Proof of Proposition 2.4

Recall that 3 | q, and we wish to construct an automorphism ϕ of D(q) sending any vertex a ∈ A to

(a1, 0, . . . , 0, ∗, ∗, . . .) ∈ A, where the coordinates have s zeros followed by a1.

We construct ϕ via a product of automorphisms of D3(q). First, we may rewrite the system of equations

(2.3) into the following form:

aii + bii + cii + ai−1,ib1 + bi−1,ic1 + ci−1,ia1 = 0

a′ii + b′ii + c′ii + a1bi,i−1 + b1ci,i−1 + c1ai,i−1 = 0

ai,i+1 + bi,i+1 + ci,i+1 + a1bii + b1cii + c1aii = 0

ai+1,i + bi+1,i + ci+1,i + a′iib1 + b′iic1 + c′iia1 = 0

 , i ≥ 1, (2.4)

where we set the convention a01 = a1, b01 = b1, c01 = c1; a′11 = a11, b
′
11 = b11, c

′
11 = c11; and a10 = a1, b10 =

b1, c10 = c1, with the implication that the first and second equations coincide for i = 1. Further, for the sake of

ease in defining the automorphisms, we give meaningful interpretations for the equations in (2.4) when i = 0.

We set a′00 = b′00 = c′00 = a00 = b00 = c00 = −1; and a0,−1 = b0,−1 = c0,−1 = a−1,0 = b−1,0 = c−1,0 = 0.

Notice that the first and the second equations reduce to −3 = 0 for i = 0, which is true in characteristic 3.

Now, we define five different automorphisms of D(q) in Table 1 below, by noting where each coordinate is sent

to. For example, for fixed x ∈ Fq, we denote t1,1(x) to be the automorphism that sends a1 7→ a1+a−1,0x = a1,

a11 7→ a11 + a00x = a11 − x, and so on. A “-” as a table entry denotes a coordinate fixed by that map, e.g

tm+1,m(aii) = aii.

Claim 2.6. The maps defined in Table 1 are Automorphisms of D(q).

Proof of Claim 2.6. Observe that each of the maps defined have inverses given by x replaced with −x,

respectively, once we check that they are homomorphisms.

� t1,1(x): We observe that the map t1,1(x) keeps a1, b1, c1 fixed as a1 = a0,1 7→ a0,1 + a−1,0x = a0,1, etc.

And, for i ≥ 1, we need to check that the equations (2.4) are preserved after the transformation given

by t1,1. Suppose the equations (2.4) hold, then note that we also have for i ≥ 1,

aii + bii + cii + ai−1,ib1 + bi−1,ic1 + ci−1,ia1 = 0,

(ai−1,i−1 + bi−1,i−1 + ci−1,i−1 + ai−2,i−1b1 + bi−2,i−1c1 + ci−2,i−1a1)x = 0,

and adding these up verifies that the first equation is preserved under the image of t1,1(x). Similarly,

the other three equations can be verified for each i ≥ 1.
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Coordinates

(i ≥ 0)

t1,1(x) tm,m+1(x),m ≥
1 r = i−m

tm+1,m(x),m ≥
1 r = i−m

tm,m(x),m ≥ 2

r = i−m

t′m,m(x),m ≥ 2

r = i−m

aii +ai−1,i−1x +ar,r−1x,

r ≥ 1

- +arrx, r ≥ 0 -

ai,i+1 +ai−1,ix +a′rrx, r ≥ 0 - +ar,r+1x,

r ≥ 0

-

ai+1,i +ai,i−1x - +arrx, r ≥ 0 - +ar+1,rx,

r ≥ 0

a′ii +a′i−1,i−1x - +ar−1,rx,

r ≥ 1

- +a′rrx, r ≥ 0

bii +bi−1,i−1x +br,r−1x,

r ≥ 1

- +brrx, r ≥ 0 -

bi,i+1 +bi,i−1x +b′rrx, r ≥ 0 - +br,r+1x,

r ≥ 0

-

bi+1,i +bi,i−1x - +brrx, r ≥ 0 - +br+1,rx,

r ≥ 0

b′ii +b′i−1,i−1x - +br−1,rx,

r ≥ 1

- +b′rrx, r ≥ 0

cii +ci−1,i−1x +cr,r−1x,

r ≥ 1

- +crrx, r ≥ 0 -

ci,i+1 +ci−1,ix +c′rrx, r ≥ 0 - +cr,r+1x,

r ≥ 0

-

ci+1,i +ci,i−1x - +crrx, r ≥ 0 - +cr+1,rx,

r ≥ 0

c′ii +c′i−1,i−1x - +cr−1,rx,

r ≥ 1

- +c′rrx, r ≥ 0

Table 1: Automorphisms of D(q)

(a′00 = b′00 = c′00 = a00 = b00 = c00 = −1, a0,−1 = b0,−1 = c0,−1 = a−1,0 = b−1,0 = c−1,0 = 0)

� tm,m+1(x),m ≥ 1: Again, note that this map fixes a1 = a0,1, b1 = b0,1 and c1 = c0,1 as for i = 0 and

m ≥ 1, r = i − m < 0. It also fixes all aii, i ≤ m and all ai,i+1, i < m. Therefore, all of (2.4) are

satisfied for i < m. When i = m, the first equation is still preserved as amm, a
′
m−1,m are fixed. For the

third equation, we observe that am,m+1 7→ am,m+1 + a′00x = am,m+1 − x, bm,m+1 7→ bm,m+1 − x and

cm,m+1 7→ cm,m+1 − x. Thus, the third equation becomes

(am,m+1 − x) + (bm,m+1 − x) + (cm,m+1 − x) + a1bmm + b1cmm + c1amm = 0,

which is still true as 3x = 0 in Fq. Finally, for i > m, we need to check the validity of the first and

third equations from (2.4). However, note that for i > m and r = i−m ≥ 1,

aii + bii + cii + ai−1,ib1 + bi−1,ic1 + ci−1,ia1 = 0,

(ar,r−1 + br,r−1 + cr,r−1 + a′r−1,r−1b1 + b′r−1,r−1c1 + c′r−1,r−1a1)x = 0,

and adding these up verifies the first equation, since tm,m+1(x)(ai−1,i) = ai−1,i+a
′
r−1,r−1x. In a similar

fashion, we verify the third equation by adding up:

ai,i+1 + bi,i+1 + ci,i+1 + a1bii + b1cii + c1aii = 0,

(a′rr + b′rr + c′rr + a1br,r−1 + b1cr,r−1 + c1ar,r−1)x = 0,

for i > m and r = i−m ≥ 1. The second and fourth equations are unchanged by tm,m+1.
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� tm+1,m(x),m ≥ 1: Similar to tm,m+1, this map fixes aii and ai,i+1 for every i, and hence does not

change the first and third set of equations of (2.4). It changes am+1,m 7→ am+1,m − x, yet fixes a′mm,

hence satisfies

(am+1,m − x) + (bm+1,m − x) + (cm+1,m − x) + a′mmb1 + b′mmc1 + c′mma1 = 0.

Finally, when i > m, the following four equations vouch for the validity of the second and fourth

equations of (2.4): ∥∥∥∥ ai+1,i + bi+1,i + ci+1,i + a′iib1 + b′iic1 + c′iia1 = 0

(arr + brr + crr + ar−1,rb1 + br−1,rc1 + cr−1,ra1)x = 0

∥∥∥∥∥∥∥∥ a′ii + b′ii + c′ii + a1bi,i−1 + b1ci,i−1 + c1ai,i−1 = 0

(ar−1,r + br−1,r + cr−1,r + a1br−1,r−1 + b1cr−1,r + c1ar−1,r)x = 0

∥∥∥∥ .
� tm,m(x),m ≥ 2 : Same as before, we start by observing that tm,m(amm) = amm − x, tm,m(am−1,m) =

am−1,m, preserving the first equation of (2.4) for i = m. On the other hand, as am,m+1 7→ am,m+1 +

a0,1x = am,m+1 + a1x, we can rewrite the third equation into:

(am,m+1 + a1x) + (bm,m+1 + b1x) + (cm,m+1 + c1x) + a1(bmm − x) + b1(cmm − x) + c1(amm − x) = 0.

For i > m and r = i −m ≥ 1, we only add the first and third equations to themselves for i = i and

i = r.

� t′m,m(x),m ≥ 2 : For this map, t′m,m(a′mm) = a′mm − x, t′m,m(am,m−1) = am,m−1, verifying the second

equation of (2.4) for i = m. And, as t′m,m(am+1,m) = am+1,m + a1,0x = am+1,m + a1x, we again have

(am+1,m + a1x) + (bm+1,m + b1x) + (cm+1,m + c1x) + (a′mm − x)b1 + (b′mm − x)c1 + (c′mm − x)a1 = 0.

For i > m and r = i −m ≥ 1, adding the first and third equations to themselves for i = i and i = r

completes the verification.

This calculation shows that the maps defined in Table 1 are all homomorphisms. Since replacing x by −x
doesn’t change the verification of the equations, and since f(x) ◦ f(−x) is the identity map for f = t1,1,

tm,m+1, tm+1,m, tm,m and t′m,m, this implies that all these maps are automorphisms. This finishes the proof

of Claim 2.6. �

We now return to the proof of Proposition 2.4. In the proof of Claim 2.6, we checked that t1,1(x) keeps a1
fixed, and moves a11 7→ a11 + a00x = a11 − x. Therefore, given an edge {a, b, c} of D(q), we can perform

t1,1(a11) to map a11 to 0. After applying this map, an application of t1,2(a12) sends a12 to 0. Therefore, the

map ϕ given by

ϕ = · · · ◦ ti+1,i(ai+1,i) ◦ ti,i+1(ai+1,i) ◦ t′ii(a′ii) ◦ tii(aii) ◦ · · · ◦ t1,2(a12) ◦ t1,1(a11),

where ϕ is truncated to s compositions, sends the second through (s + 1)’th coordinates of a to 0. It also

preserves all edges through a, being an automorphism of D(q). This completes the proof. �

2.1.2 Proof of Proposition 2.5

Our goal in this section is to prove that D3(k, q) admits two different link graphs. We shall consider the link

graphs of a = (a1, 0, . . . , 0) ∈ A for a1 ∈ Fq. Let La denote the link graph of a. We see that bc ∈ E(La) if
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and only if the following equations hold (i ≥ 2):

b11 + c11 + a1b1 + b1c1 + c1a1 = 0

b12 + c12 + a1b11 + b1c11 = 0

b21 + c21 + b11c1 + c11a1 = 0

...

bii + cii + bi−1,ic1 + ci−1,ia1 = 0

b′ii + c′ii + a1bi,i−1 + b1ci,i−1 = 0

bi,i+1 + ci,i+1 + a1bii + b1cii = 0

bi+1,i + ci+1,i + b′iic1 + c′iia1 = 0.

(2.5)

Here we consider two different cases.

� Case 1: a1 = 0. In this case, we note that the relations (2.5) reduce to the relations (2.2) defining

D(k, q), implying La
∼= D(k, q).

� Case 2: a1 6= 0. In this case, let us define another automorphism ψ on La as follows:

ψ(b1) = b1
a1

ψ(bii) = bii
a2i
1
,

ψ(b′ii) =
b′ii
a2i
1
,

ψ(bi,i+1) =
bi,i+1

a2i+1
1

,

ψ(bi+1,i) =
bi+1,i

a2i+1
1

;


and



ψ(c1) = c1
a1
,

ψ(cii) = cii
a2i
1
,

ψ(c′ii) =
c′ii
a2i
1
,

ψ(ci,i+1) =
ci,i+1

a2i+1
1

,

ψ(ci+1,i) =
ci+1,i

a2i+1
1

.


By dividing the equations in (2.5) by appropriate powers of a1, it can be seen that ψ is an automorphism.

Therefore, this implies La
∼= L(1,0,...,0), completing the proof.

�

Proposition 2.5 naturally leads us to investigate the links of the vertex (1, 0, . . . 0) in D3(q). The defining

equations for the link of c = (1, 0, . . . , 0) ∈ C is

a11 + b11 + a1 + a1b1 + b1 = 0

a12 + b12 + a11 + a1b11 = 0

a21 + b21 + a11b1 + b11 = 0

...

aii + bii + ai−1,ib1 + bi−1,i = 0

a′ii + b′ii + ai,i−1 + a1bi,i−1 = 0

ai,i+1 + bi,i+1 + aii + a1bii = 0

ai+1,i + bi+1,i + a′iib1 + b′ii = 0.

(2.6)

We can reduce this further by replacing a1 with a1 + 1 and b1 with b1 + 1. Noting that (a1 + 1) + (a1 +

1)(b1 + 1) + (b1 + 1) = a1b1− a1− b1 in characteristic 3, we get a new set of equations, namely (2.8). We call

this new series of graphs D′(k, q), and take a closer look at them in the next subsection.

2.2 The bipartite graphs D′(k, q)

We now take a detour into the series of graphs D′(k, q). It is worth clarifying that in this subsection, we look

at Fq of general characteristic.
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Definition 2.7 (The bipartite graphs D′(q)). For a prime power q, let A and B be two copies of the

countably infinite dimensional vector space V over Fq. We use the following coordinate representations for

a ∈ A, b ∈ B:
a = (a1, a11, a12, a21, a22, a

′
22, a23, . . . , aii, a

′
ii, ai,i+1, ai+1,i, . . .),

b = (b1, b11, b12, b21, b22, b
′
22, b23, . . . , bii, b

′
ii, bi,i+1, bi+1,i, . . .),

(2.7)

Let D′(q) consist of vertex set A tB, and let us join a ∈ A to b ∈ B iff the following equations hold (i ≥ 2):

a11 − a1 + b11 − b1 + a1b1 = 0

a12 + a11 + b12 + b11 + a1b11 = 0

a21 + a11 + b21 + b11 + a11b1 = 0

...

aii + ai−1,i + bii + bi−1,i + ai−1,ib1 = 0

a′ii + ai,i−1 + b′ii + bi,i−1 + a1bi,i−1 = 0

ai,i+1 + aii + bi,i+1 + bii + a1bii = 0

ai+1,i + a′ii + bi+1,i + b′ii + a′iib1 = 0

(2.8)

Define D′(k, q) to be the graph obtained by truncation of A and B to the first k coordinates in (2.7) and,

the first k − 1 relations in (2.8).

It is natural to inquire whether D′(k, q) and D(k, q) are related in any way, in particular, whether they’re

the same graph. The answer turns out to be yes for small values of k, but no for larger k:

Theorem 2.8. (a) For 2 ≤ k ≤ 6, D′(k, q) ∼= D(k, q).

(b) D′(11, 3) 6∼= D(11, 3).

Proof. First, we prove part (a).

The main idea of the proof is as follows. Observe that it is enough to show that D′(6, q) ∼= D(6, q), as

an isomorphism D′(6, q) → D(6, q) can be restricted to fewer coordinates to give isomorphisms D′(k, q) →
D(k, q) for k ≤ 10. To demonstrate that D′(6, q) ∼= D(6, q), we shall define a map x 7→ x sending a, b ∈
V (D′(6, q)) to vectors a, b ∈ F6

q, such that ab ∈ E(D′(6, q)) implies ab ∈ E(D(6, q)). By construction, this

map will be linear and invertible, which would then complete the proof.

We define the map x 7→ x as described in Table 2.

a ∈ V (D(k, q)) a ∈ F10
q b ∈ V (D(k, q)) b ∈ F10

q

a1 a1 b1 b1

a11 a11 − a1 b11 b11 − b1
a12 a12 + a1 b12 b12 + b1

a21 a21 + a1 b21 b21 + b1

a22 a22 + a12 + a11 − a1 b22 b22 + b12 + b11 − b1
a′22 a′22 + a21 + a11 − a1 b′22 b′22 + b21 + b11 − b1

Table 2: The isomorphism D′(6, q)→ D(6, q)
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Suppose a, b ∈ V (D′(k, q)) with ab ∈ E(D′(k, q)). This implies:

a11 − a1 + b11 − b1 + a1b1 = 0

a12 + a11 + b12 + b11 + a1b11 = 0

a21 + a11 + b21 + b11 + a11b1 = 0

a22 + a12 + b22 + b12 + a12b1 = 0

a′22 + a21 + b′22 + b21 + a1b21 = 0.

Now observe that, a1 = a1 and b1 = b1. Further,

•

{
a11 + b11 + a1b1 = a11 − a1 + b11 − b1 + a1b1

= 0,

•


a12 + b12 + a1b11 = a12 + a1 + b12 + b1 + a1(b11 − b1)

= a12 + a1 + b12 + b1 + a1b11 + (a11 − a1 + b11 − b1)

= a12 + a11 + b12 + b11 + a1b11

= 0,

•


a21 + b21 + a11b1 = a21 + a1 + b21 + b1 + (a11 − a1)b1

= a21 + a1 + b21 + b1 + a11b1 + (a11 − a1 + b11 − b1)

= a21 + a11 + b21 + b11 + a11b1

= 0,

•


a22 + b22 + a12b1 = a22 + a12 + a11 − a1 + b22 + b12 + b11 − b1 + (a12 + a1)b1

= a22 + a12 + b22 + b12 + a12b1

= 0,

•


a′22 + b′22 + a1b21 = a′22 + a21 + a11 − a1 + b′22 + b21 + b11 − b1 + a1(a21 + b1)

= a′22 + a21 + b′22 + b21 + a1b21

= 0.

(2.9)

Therefore the map x 7→ x is an isomorphism from D′(6, q) to D(6, q), as desired. �

Our proof of part (b) is purely computational. In summary, it has been computed that the diameter of the

component of D(11, 3) containing ~0 is 22 whereas the same number for D′(11, 3) is 20, implying they’re not

isomorphic (as it is known that D(11, 3) is edge-transitive). Further, D(11, 3) has 112 cycles through the

edge {~0,~0} whereas D′(11, 3) has only 4. This also implies D(11, 3) 6∼= D′(11, 3).

The github repository https://github.com/Potla1995/hypergraphSuspension/ contains further details

on how to reproduce these results.

Remark. Computer calculations for small values of q suggest that D′(k, q) and D(k, q) are isomorphic for

7 ≤ k ≤ 10. However, the proof method used for k ≤ 6 does not extend to this range.

Note that proving that D′(k, q) has high girth is synonymous to proving lower bounds on ex(n, C̃2k) by the

machinery we’ve built so far in this section, and we believe there is enough evidence, computational, and

otherwise, to make the following conjecture, analogous to D(k, q).

Conjecture 2.9. D′(k, q) has girth at least k + 4 if k is even, and k + 5 if k is odd.

2.3 Proof of Theorem 1.2

We have now built all the machinery required to complete our proof of Theorem 1.2, and will delve into the

proof.
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Proof of Theorem 1.2. Recall that we have to check three properties of D3(k, q), and that q is a power of 3.

1. First, we check that D3(k, q) has 3qk vertices and q2k+1 edges. It is clear that every part of D3(k, q)

has qk vertices. Since there is exactly one free variable when we fix a and b for a hyperedge {a, b, c},
this gives us a total of qk · qk · q = q2k+1 edges.

2. Next, we shall prove that the link graphs of every vertex of D3(k, q) is isomorphic, in fact, to D(k, q)

for k ≤ 6. By Proposition 2.5, the link of every vertex of D3(k, q) is isomorphic to D(k, q) or D′(k, q)

as 3 | q. However, D(k, q) ∼= D′(k, q) for k ≤ 6, implying the required assertion.

3. Finally, it remains to show that D3(3, q) is C̃6-free and D3(5, q) is C̃8-free. From the previous point,

and since D(3, q) and D(5, q) are known to have girths 8 and 10 respectively (Proposition 2.2 pt. 2),

this completes the proof.

3 The arc construction and Wenger’s construction

In this section, we relate the arc construction and Wenger’s construction via Proposition 1.4, and provide a

new set of C6-free graphs with n vertices and Θ(n4/3) edges via proving Theorem 1.5.

3.1 Proof of Proposition 1.4

Our main goal is to algebraically parametrize the constructions Garc(k, q, α0) for k ≥ 2, prime powers q and

the normal rational curve α0, which would lead us to Wenger’s construction H(k, q). To this end, we would

require the use of the Plücker embedding [7], an algebraic geometric tool that allows us to parametrize the

set L.

Lemma 3.1 (Plücker Embedding). Every line ` passing through points [a1 : · · · : at+1] and [b1 : · · · : bt+1]

in PG(t, q) can be parametrized using
(
t+1
2

)
coordinates {wij : 1 ≤ i < j ≤ t + 1}, where wij is given by the

i, j’th minor of the matrix [
a1 a2 · · · at+1

b1 b2 · · · bt+1

]
.

For further details on the Plücker embedding, the reader is referred to [7], p.211.

We are now well-equipped to prove Proposition 1.4, which asserts that Garc(k, q, α
−
0 ) ∼= H(k, q).

Proof of Proposition 1.4. Recall that in the Garc(k, q, α
−
0 ) construction, P = Σ \ Σ0 and

L = {projective lines ` : ` ∩ Σ0 ∈ α−0 }.

Therefore, |P | = qk and |Q| = qk−1|α−0 | = qk.

Observe that the lines in L pass through the points [1 : a1 : · · · : ak] ∈ P and [0 : 1 : x : · · · : xk−1] ∈ α0. Let

{wij : 1 ≤ i < j ≤ k + 1} parametrize lines in L. Then, for 2 ≤ j ≤ k + 1,

w1j = det

[
1 aj−1
0 xj−2

]
= xj−2, (3.1)

and for 2 ≤ i < j,

wij = det

[
ai−1 aj−1
xi−2 xj−2

]
= xi−2(ai−1x

j−i − aj−1). (3.2)
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This set of relations imply

x = w13;w1j = wj−2
13 , 2 ≤ j; and wij = wi−2

13 (w2j − w2,j−1w13), 2 ≤ i < j ≤ k + 1. (3.3)

As w1j are all dependent on w13 and {wij : i ≥ 3} are all dependent on {w2j : j ≥ 3} by (3.3), we may reduce

our variables to only the set {w13}∪ {w2j : 3 ≤ j ≤ k+ 1}. Let b1 := x = w13 and bj−1 = w2j , 3 ≤ j ≤ k+ 1.

Then, the equation (3.2) for i = 2 reduces to

bj−1 = a1b
j−2
1 − aj−1, 3 ≤ j ≤ k + 1,

Which is exactly the defining set of equations for the graph H(k, q). As P consists of qk points parametrized

by {w13} ∪ {w2j : 3 ≤ j ≤ k + 1}, this implies Garc(k, q, α
−
0 ) ∼= H(k, q).

3.2 Proof of Theorem 1.5

We remark that Theorem 1.5 can be proved completely analogously to the proof of Proposition 1.4 via using

the arc α of PG(2, 2r) given by α = {[1 : t : t2
s

] : t ∈ Fq}. However, for the sake of simplicity, we provide an

alternative and more direct proof following Wenger’s proof in [21]. Recall that q = 2r, (s, r) = 1, and G(2r, s)

is the bipartite graph with parts A = B = F3
q such that (a1, a2, a3) ∈ A and (b1, b2, b3) ∈ B are adjacent iff

b2 + a2 = a1b1 and b3 + a3 = a1b
2s

1 .

Proof of Theorem 1.5. Let a = (a1, a2, a3), b = (b1, b2, b3), . . . , f = (f1, f2, f3) form a C6 in G(2r, s) where

a, c, e ∈ A are distinct, and b, d, f ∈ B are distinct.

Then, as ab and bc are edges, we have a2 + b2 = a1b1, c2 + b2 = c1b1 implying a2 + c2 = b1(a1 + c1) (due to

characteristic 2). Similarly, a3 + c3 = b2
s

1 (a1 + c1). We can write these equations as,a1 + c1
a2 + c2
a3 + c3

 =

 1

b1
b2

s

1

 · (a1 + c1).

As similarly c1 + e1
c2 + e2
c3 + e3

 =

 1

d1
d2

s

1

 · (c1 + e1) and

e1 + a1
e2 + a2
e3 + a3

 =

 1

f1
f2

s

1

 · (e1 + a1),

Adding these up and using characteristic 2, we have0

0

0

 =

 1

b1
b2

s

1

 · (a1 + c1) +

 1

d1
d2

s

1

 · (c1 + e1) +

 1

f1
f2

s

1

 · (e1 + a1)

=

 1 1 1

b1 d1 f1
b2

s

1 d2
s

1 f2
s

1

a1 + c1
c1 + e1
e1 + a1

 .
. (3.4)

Let M(x, y, z) =

 1 1 1

x y z

x2
s

y2
s

z2
s

. We shall now show that if x, y, z ∈ Fq are all distinct, then M(x, y, z) is

invertible, i.e. x2s+y2s

x+y 6= y2s+z2s

y+z . To prove this, it is enough to check that for a fixed t ∈ Fq,∣∣∣∣{ (x+ t)2
s

+ t2
s

x
: x ∈ Fq \ {t}

}∣∣∣∣ = q − 1.
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Observe that, by the binomial theorem and using the fact that
(
2s

i

)
is even for every 0 < i < 2s, (x+t)2

s
+t2

s

x =

x2
s−1. Hence, it suffices to show that the map x 7→ x2

s−1 is a permutation of Fq. However, as the multi-

plicative group F∗q has order q − 1, this happens only when (2s − 1, q − 1) = 1, which is true since

(2s − 1, 2r − 1) = 2(s,r) − 1 = 1

by assumption.

Further, note that if b1 = d1, then, as

b2 + c2 = b1c1 = c1d1 = c2 + d2

and

b3 + c3 = b2
s

1 c1 = c1d
2s

1 = c3 + d3,

we would obtain b = d, a contradiction. Thus, b1, d1, f1 are pairwise distinct, and therefore M(b1, d1, f1) is

invertible. Hence, (3.4) implies

a1 + c1 = c1 + e1 = e1 + a1 = 0,

i.e., a1 = c1 = e1. However, as

a2 + b2 = a1b1 = c1b1 = b2 + c2

and

a3 + b3 = a1b
2s

1 = c1b
2s

1 = b3 + c3,

this would imply a = c, a contradiction.
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