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Abstract

Graph coloring is a computationally difficult problem, and currently the best known classical algorithm

for k-coloring of graphs on n vertices has runtimes Ω(2n) for k ≥ 5. The list coloring problem asks the

following more general question: given a list of available colors for each vertex in a graph, does it admit

a proper coloring? We propose a quantum algorithm based on Grover search [11] to quadratically speed

up exhaustive search. Our algorithm loses in complexity to classical ones in specific restricted cases, but

improves exhaustive search for cases where the lists and graphs considered are arbitrary in nature.

1 Introduction

Graph coloring problems provide for a rich family of NP-complete problems in theoretical computer science.

While exhaustive search is believed to be the fastest classical approach for several NP-complete problems

including satisfiability and hitting-set [7], there are much better classical algorithms using dynamic program-

ming, inclusion-exclusion and other structural approaches for problems such as graph coloring [9, 3, 17], the

traveling salesman problem [22, 12], set cover [14] etc. Several authors have obtained quantum speedup on

these classical algorithms [2, 26, 29]; however, all of these algorithms have the limitation that they cannot

be easily generalized to the list coloring problem.

Given a finite graph G = (V,E), a proper coloring of G is a function χ : V → N such that for every edge

uv ∈ E, χ(u) 6= χ(v). The list coloring problem tries to determine a proper coloring χ of a graph G = (V,E),

given a list Lv of available colors for each vertex v. In other words, it is forced that χ(v) ∈ Lv. When

Lv = {1, 2, . . . , k} for every vertex v this reduces to the well-studied k-coloring problem. We propose a

simple Grover search-based approach to obtain a quadratic speedup on exhaustive search for the list coloring

problem.

Grover’s algorithm [11] is known to speed up unstructured search quadratically using the technique of am-

plitude amplification. In its simplest form, to find some marked elements from a list of N = 2n entries, the

algorithm starts with a uniform quantum superposition of all 2n basis states of an n-qubit register. It then

amplifies the amplitudes of the searched state and reduces those of the other states, such that a measurement

of the n qubits leads to one of the searched states with high probability.

Grover’s algorithm has been used to obtain quantum speedups for various problems in combinatorial opti-

mization and computer science (see, for e.g., [18, 31, 16, 15, 20]). Needless to say, graph coloring problems

are also not an exception in the literature, and have been attacked using quantum annealing [33, 19], hybrid

approaches [32, 5], as well as using Grover search [36, 30, 28].

In [36], a qutrit-based approach has been used to demonstrate the cost-efficiency of ternary quantum logic;

however, their main algorithm is not realizable right now on NISQ devices. The algorithm of [30] has the
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same issue as it requires quantum RAM which has not been realized at this moment. On the other hand, the

authors of [28] and [27] demonstrate a quantum algorithm solving the k-coloring problem on NISQ devices,

comparing the efficiency of their algorithm against the reduction of 3-SAT to 3-coloring approach of Hu et.

al. [13].

All of these algorithms use an oracle design which uses binary comparators, and provide solutions where

almost all binary strings have positive probabilities of being selected, including those that do not represent

valid colorings. Our approach circumvents this problem via a modified initialization and diffusion operator

that restricts the evolution of the quantum algorithm to the only
∏
v∈Lv

|Lv| plausible states. Note that this

is the total number of valid colorings when the underlying graph is empty. We achieve this via the restricted

version of Grover search [11, 10].

Proposition 1 (Restricted Grover search). Let S ⊆ {1, 2, . . . , 2n−1}, and suppose S′ ( S is a set of marked

states. Let O be an oracle that marks these states and requires a ancillas. Then, there is a quantum circuit

on n+ a+ 1 qubits which makes O(
√

2n/|S′|) queries, which when measured, gives one of the marked states

with high probability. Further, states outside S are never measured.

Additionally, we use an oracle design different from those in [36, 28], and give a classical algorithm in Section

3 that can reduce the complexity of this oracle in several special cases (such as for the 3-coloring or 4-coloring

problems). As a corollary of Proposition 1, our main theorem provides an algorithm for the list coloring

problem.

Theorem 2 (Quantum list coloring algorithm). Given a graph G = (V,E) on n vertices and m edges and

lists of available colors {Lv : v ∈ V }, there exists a (
∑
v∈V dlog2 maxLve + m + 1)-qubit quantum algorithm

with query complexity O(
∏
v∈V (maxLv)

1/2) that returns a valid list coloring of G with high probability.

This paper is organized as follows. In Section 2, we describe Grover’s algorithm and a gate-level implemen-

tation. Section 3 is devoted to tackling the list coloring problem, and proves Theorem 2. In Section 4, we

run experiments on classical simulators as well as real quantum machines, and compare the outcomes. We

discuss applications and provide concluding remarks in Section 5.

2 Grover’s Algorithm

In this section, we provide a concise exposition on Grover search. The main idea behind Grover search

is to amplify the amplitudes of some number of marked states (states which are being searched for), and

consequentially decrease that of unmarked states. Grover’s Algorithm requires three different operators:

Initialization, Oracle, and Diffusion. Below we present two formulations of the algorithm:

2.1 Unrestricted search space

When searching for a marked state among the full search space S = {0, 1}n, the initialization step of the

algorithm creates a uniform superposition of all the possible states of an n-qubit system. This is achieved

via appending Hadamard gates on each qubit:

H⊗n|0〉n = |+〉n =
1√
2n

n∑
i=1

|i〉n.

Here we abuse notation and write |i〉n to denote the state corresponding to an n-digit binary representation

of i.

2



Next, Grover’s Algorithm requires an oracle O that, given a uniform superposition of all 2n possible states,

can change the sign of the marked states. Let S′ ⊆ {0, 1, . . . 2n − 1} be a set of marked states. The Oracle

O then switches the signs of the states in S′, i.e.

O|i〉n =

{
|i〉n, i 6∈ S
−|i〉n, i ∈ S.

The circuit implementation of the oracle O usually is the most difficult (and computationally expensive) part

of the algorithm, and one of the most basic implementations requires the usage of phase kickback [6].

The final component of Grover’s Algorithm is the diffusion operator D, which can be thought of as a reflection

around the vector |0〉n. As an operator, we have

D = 2|0〉n〈0|n − I.

D is usually implemented using phase kickback in the same fashion as the oracle O.

Grover’s algorithm requires repeated usage of the operator G = H⊗nDH⊗nO which has the net effect of

reflecting around |+〉n, amplifying the amplitudes of marked states and decreases those of other states.

Measuring the state GrH⊗n|0〉n (r ≥ 1) gives one of the marked states with high probability, and this

probability is maximum when r = bπ4
√

2n/|S′|c. Since |S′| is not known in general, the r is either randomly

selected [8, 4], or is estimated using quantum counting algorithms [23, 1].

See Figure 2.1 for an example of a circuit implementing unrestricted Grover search with n = 3, S′ =

{|010〉n, |011〉n}, S = {0, 1, . . . , 7}.

Init Grover Operator

|0〉 H H H

|0〉 H • • H H

|0〉 H • H H

|0〉 H Z

In a standard circuit implementation of Grover

search, the initialization is achieved by the

Hadamard operator H⊗3. Phase kickback from

the fourth qubit initialized to the state |−〉 is used

to negate the amplitudes of |010〉 and |011〉. Fi-

nally, diffusion is achieved via another phase kick-

back from the same qubit.

Figure 2.1: An example Grover search implementation

2.2 Restricted search space

Let us now consider a search space S ( {0, 1}n. In this case, the algorithm is designed to only evolve over

the states of S, and this is achieved via an initialization operator A such that

A|0〉n =
1√
|S|

∑
i∈S
|i〉n,

And the Grover operator is changed to a reflection around A|0〉n instead of |+〉n:

G = ADA†O.

The usage of ADA† instead of H⊗nDH⊗n makes sure that the evolution of the quantum states remains in

the subspace spanned by S instead of the entire space {0, 1}n, and this leads to probability distribution of

the measured outcomes being supported on the state S.

The only detail missing in this formulation is the construction of the initialization operator A. As we shall

see in Section 3, for graph coloring problems (and most applications in general), A can be represented as a

block matrix and can be implemented in time linear in the number of qubits.
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We make a remark here that the graph coloring algorithm of [28] uses the unrestricted formulation of Grover’s

algorithm, but modifies the oracle to discard states that represent invalid colorings. On the other hand, they

do not modify their diffusion operator, leading to states outside the search space having positive probabilities

of being measured.

3 Quantum List Coloring Algorithm

Our goal in this section is to prove Theorem 2. For the remainder of this section, assume that G = (V,E) is

an arbitrary graph with |V | = n, |E| = m. Further, for every vertex v, let Lv denote the list of admissible

colors for vertex v. As our algorithm is based on Grover search, we shall discuss the four basic steps of the

algorithm: circuit setup, initialization, oracle and diffusion, each in their respective subsections.

3.1 Setup and qubit labels

Our algorithm design requires three different qubit registers:

• A vertex register to keep track of vertex colors. For each vertex v, we require the usage of dlog2 maxLve
qubits to represent each color in Lv. Let us denote jv := dlog2 maxLve, and let the qubits corresponding

to vertex v ∈ V be labeled by q1v , . . . , q
jv
v .

• An edge register consisting of m qubits, one corresponding to each edge. Let q′uv denote the qubit

corresponding to an edge uv ∈ E.

• A single qubit ancilla register, used for phase kickback in Grover’s algorithm. Let q∗ denote this ancilla.

The total number of qubits required is
∑
v∈V

jv+m+1. Now we take a closer look at our list coloring algorithm.

3.2 Initialization

For each v ∈ V , we initialize qubits q1v , . . . , q
jv
v to a uniform superposition χv = 1√

|Lv|

∑
i∈Lv
|i〉. This can be

achieved via a unitary operator Uv such that

Uv|0〉 =
1√
|Lv|

∑
i∈Lv

|i〉.

We show one way of constructing the operator Uv. First, consider the standard basis B = {|i〉 : i ∈
{0, 1, . . . , 2vj − 1}}. We shall replace any one entry |i〉 with χv, where i ∈ Lv: let B′ = {χv}

⋃
(B \ {|i〉}). It

can be seen that Span(B) = Span(B′). We can now consider B′ as an ordered basis with its first entry as χv,

and apply the Gram-Schmidt process to turn B′ into an orthonormal basis B′′ [25]. Note that as ‖χv‖ = 1,

it remains unchanged in B′′. The transpose of the coefficients of the vectors in B′′ constitutes a change of

basis operator that maps |0〉 to χv, and this is how one can construct the matrix for Uv. It can then be

implemented with quantum gates using the results of [21, 24, 34] for example.

For the sake of clarity of the above procedure, let us consider an example with jv = 2 and Lv = {1, 2, 3}.
Note that χv = 1√

3
(|1〉 + |2〉 + |3〉). Then, B = {|0〉, |1〉, |2〉, |3〉}, and we can take B′ = {χv, |0〉, |1〉, |2〉}.

After the Gram-Schmidt process, we obtain

B′′ =
{

1√
3
|1〉+ 1√

3
|2〉+ 1√

3
|3〉, |0〉,

√
2√
3
|1〉 − 1√

6
|2〉 − 1√

6
|3〉, 1√

2
|2〉+ 1√

2
|3〉
}
.
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Hence, in this case, we get

Uv =


0 1√

3
1√
3

1√
3

1 0 0 0

0
√
2√
3
− 1√

6
− 1√

6

0 0 1√
2

1√
2


>

.

Observe that by construction, Uv|0〉 = Uv
[
1 0 0 0

]>
=
[
0 1√

3
1√
3

1√
3

]>
, as desired.

Finally, let us denote A =
⊗
v∈V

Uv. Then,

A⊗
⊗
e∈E

I ⊗ ZH (3.1)

is the full initialization operator applied to the circuit starting from |0〉∑
v∈V jv ⊗ |0〉m⊗ |0〉. This creates the

quantum state
⊗
v∈V

χv ⊗ |0〉m ⊗ |−〉.

3.3 Oracle

Traditionally for the graph coloring problem, each vertex color is represented using the same number of

qubits, and binary comparator circuits [36] are used to make sure that the two colors corresponding to two

adjacent vertices are different.

While this approach is very efficient for the k-coloring problem where every vertex has the same set of

admissible colors, the list coloring problem may sometimes require a large number of qubits. In fact, the

total number of qubits required for implementing a comparator-based oracle would be n ·maxv∈V jv +m+ 1,

which can be much higher than our proposed oracle when the jv’s are not all equal.

In short, for every edge uv ∈ E, we shall encode all possible colorings in Lu ×Lv via flipping the amplitudes

of the states corresponding to valid colorings {|i1〉ju |i2〉jv : i1 ∈ Lu, i2 ∈ Lv, i1 6= i2}. We propose a classical

O(|Lu|2|Lv|2)-time algorithm to construct an efficient oracle Ou,v for flipping these amplitudes. In short,

Ou,v should have the following net effect:

Ou,v

 1√
|Lu||Lv|

∑
i1∈Lu,i2∈Lv

|i1〉|i2〉|−〉

 =
1√
|Lu||Lv|

 ∑
i1∈Lu,i2∈Lv

i1 6=i2

−|i1〉|i2〉+
∑

i∈Lu∩Lv

|i〉|i〉

 |−〉 (3.2)

Given a string s of length ` and a subset J = {j1, j2, . . . , jr} ⊆ {1, 2, . . . , `} we use sJ to denote the substring

sj1sj2 . . . sjr . F2 denotes the finite field of two elements. Our algorithm for implementing Ou,v (Algorithm

1) makes use of a subroutine called oracleReduction that can significantly simplify the complexity and the

number of controlled not operations required in many cases.

Algorithm 1: Oracle Ou,v for marking valid colorings.

Input : Sets Lu, Lv (denote ju = dlog2 maxLue, jv = dlog2 maxLve).
Output: A ju + jv + 1-qubit quantum circuit Ou,v satisfying (3.2).

1 Let W ′ = oracleReduction(Lu, Lv);

2 Create a circuit C with quantum wires q1, . . . , qju+jv+1;

3 for every pair (J, s) in W ′ do

4 Add a multicontrolled NOT gate to C with controls on wires {qj : j ∈ J, sj = 1}, anticontrols on

wires {qj : j ∈ J, sj = 0} and target qju+jv+1.

5 return C
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Function oracleReduction(Lu, Lv)

Input : Sets Lu, Lv.

Output: A set of pairs W ′.

1 Denote ju = dlog2 maxLue, jv = dlog2 maxLve;
2 Convert each entry of Lu and Lv into {0, 1}-strings of lengths ju and jv, respectively;

3 Let X = {ab : a ∈ Lu, b ∈ Lv, a 6= b}, where “ab” denotes concatenation;

4 Let Y = {ab : a ∈ Lu.b ∈ Lv}, then |Y | = |Lu||Lv|;
5 Set W = ∅;

6 for k = 1 to ju + jv do

7 for every k-element subset J of {1, 2, . . . , ju + jv} do
8 for every {0, 1}-string s of length k do

9 Add a {0, 1}-variable xsJ to W ;

10 Create an empty linear system of equations L over F2 with variables W ;

11 for every {0, 1}-string t ∈ Y do

12 Calculate the expression f(W, t) =
∑
{xsJ ∈W : tJ = s};

13 if t ∈ X then

14 Add f(W, t) = 1 to L;

15 else

16 Add f(W, t) = 0 to L;

17 Solve the |Lu||Lv| ×
∑k
j=1

(
ju+jv
j

)
· 2j system L using Gaussian Elimination over F2;

18 if the system L is solvable then

19 Solve the linear program minimizing
∑
xs
J∈W

|J | · xsJ subject to L;

20 Let W ′ = {(J, s) : xsJ ∈W,xsJ = 1};
21 return W ′

We shall now demonstrate the correctness of Algorithm 1.

Theorem 3. Algorithm 1 gives a circuit C satisfying (3.2). Further, if the cost of implementing a k-

controlled NOT operation is k, then the cost of C is the smallest among all circuits that can be made using

only controlled NOT operations onto the phase flip qubit.

Proof. It is sufficient to verify the action of C on the states |i1〉|i2〉|−〉, where i1 ∈ Lu and i2 ∈ Lv. Notice

that a single controlled NOT gate corresponding to a pair (J, s) in C effectively flips the amplitudes of all

basis states represented by {0, 1}-strings x of length ju + jv for which xi = si, i ∈ J . In other words, all

states of the following form are flipped (here ∗ denotes a wildcard, and J = {j1, . . . , jk}, s = s1 · · · sk):

|∗ · · · ∗ s1
j1’th
∗ · · · ∗ s2

j2’th
· · · · · ·
···
· · · sk

jk’th
∗ · · · ∗〉

Thus, after application of all the controlled NOT gates, only states which appeared in an odd number of

(J, s)-pairs in W ′ will survive, and those appearing an even number of times will not have their amplitudes

flipped.

Let us now fix a string t = t1t2 · · · tju+jv , where t1 · · · tju ∈ Lu and tju+1 · · · tju+jv ∈ Lv, and analyze the

function oracleReduction closely. Recall that Y = {ab : a ∈ Lu, b ∈ Lv} and X = {ab : a ∈ Lu, b ∈ Lv, a 6= b}.
We now make a crucial observation: the number of times the amplitude of |t〉 gets flipped by C is

|{(J, s) ∈W ′ : tJ = s}| = |{xsJ ∈W : xsJ = 1, tJ = s}| = f(W, t),

As xsJ are all {0, 1}-valued. Since the linear system L over F2 exactly contains the equations f(W, t) = 1 if

t ∈ X and f(W, t) = 0 if t ∈ Y \X, any solution to the system L will give a correct circuit satisfying (3.2). �
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Now we come to the second assertion of the theorem. Note that for each variable xsJ ∈ W with xsJ = 1, we

require a |J |-controlled NOT operation onto the phase flip ancilla. This means that the cost of C is exactly∑
xs
J∈W

|J | · xsJ . As we have minimized this cost via a linear program in Step 19 of oracleReduction, this

proves the second claim.

We now have all the ingredients required to implement our full oracle, which is presented as Algorithm 3 below.

Algorithm 2: Full oracle O for marking valid list colorings

Input : Graph G = (V,E), lists {Lv : v ∈ V }, and a
∑
v∈V jv +m+ 1-qubit quantum circuit C.

Output: C appended with a graph coloring oracle O.

1 for every edge uv ∈ E do

2 Apply Oracle Ou,v on qubits q1u, . . . , q
ju
u , q1v , . . . , q

jv
v , q′uv of C;

3 Apply a controlled NOT operation with controls q′∗ and target q∗;

4 for every edge uv ∈ E do

5 Apply Oracle Ou,v on qubits q1u, . . . , q
ju
u , q1v , . . . , q

jv
v , q′uv to de-entangle the vertex register of C;

6 return C

3.4 Diffusion

Our diffusion operator is very straightforward, and is a direct application of the restricted search space

diffusion mentioned in section 2.2. Let A be the initialization operator we implemented in (3.1), then a

diffusion is achieved by ADA†, where D = 2|0〉〈0| − I can be implemented by a controlled NOT with

anticontrols on each of the vertex qubits and target the phase flip ancilla.

Refer to Figure 3.1 for an illustration of the full list coloring algorithm.

Initialization Grover Operator

Uv1

Oracle O

U†v1 Uv1


|0〉j1

· · · · · · ...

...

Uvn U†vn Uvn


|0〉jn

|0〉m

|0〉 H Z

︷ ︷ ︷ ︷

Figure 3.1: Outline of our list coloring circuit for a single Grover iteration.
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4 Results

We implement our list coloring algorithm in python 3.8 using blueqat-sdk. In order to gauge the efficiency

of our result, we run experiments for the 3 and 4-coloring problems used in [28] on the the Amazon Statevector

simulator.

4.1 3-coloring K3

3-coloring the triangle graph G = ({1, 2, 3}, {12, 23, 13}) is equivalent to the list-coloring problem on G with

L1 = L2 = L3 = {|01〉, |10〉, |11〉}. In this case, our initialization operator Uv and oracle component Ouv
obtained from Algorithm 1 are:

Uv = Ry(arcsin
√

2/3) •

S H T T † H S† X

;

Ouv = •
•
•

•
.

Each Toffoli gate can be decomposed into two-qubit gates using the standard decomposition:

•

•

= • • • • T

• • T † T † S

H T † T T † T H

.

To implement a cccx gate, we use a clean ancilla qubit to reduce circuit depth as demonstrated below:

•
•
•

= • •
• •
•

|0〉 •

Finally, we are able to run our circuit on the Amazon Statevector Simulator after decomposing into these

elementary single and two-qubit operations. Our resulting histogram is shown in Figure 4.1.
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Figure 4.1: Observed frequencies for 2000 shots for 3-coloring K3.
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It is seen that the states |011011〉, |011110〉, |100111〉, |101101〉, |110110〉, |111001〉 are all massively amplified.

A theoretical calculation of the statevector shows that each of these states have a probability of 0.165066 of

being measured, whereas states representing colorings outside {|01〉, |10〉, |11〉}3 have probability 0 of being

measured. After a single Grover iteration, we therefore improve upon the results of [28].

4.2 4-coloring K4

Let G = {{1, 2, 3, 4}, {12, 13, 14, 23, 24, 34, 14} be the complete graph on 4 vertices, and suppose L1 = L2 =

L3 = L4 = {|00〉, |01〉, |10〉, |11〉}. In this case the simple Hadamard operator H⊗2 initializes each vertex

register to a uniform superposition of its valid colors, and we can then run Algorithm 1 to figure out the

component Ouv. It turns out that one of the valid solutions minimizing the cost of gates used is the following

circuit:
Ouv = •

•
•

•
.

Figure 4.2 shows the results of running our circuit on the statevector simulator.
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Figure 4.2: Observed frequencies for 2000 shots for 4-coloring K4.

In this case, a statevector computation shows that each of the 4! = 24 states corresponding to valid colorings

of K4 has a theoretical probability of 0.041657 of being measured, whereas the same for every unmarked

state is approximately 10−6. The result of our experiment also follows this distribution.

We also ran our circuits on the IonQ physical device, however, reasonable results were not obtained due to

the limitations of current quantum computers.
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5 Applications and Concluding Remarks

The list coloring problem is ubiquitous in real life, as it not only generalizes an already well-appearing problem

of graph coloring (scheduling, satisfiability etc.), but is also applicable to several other scenarios, such as:

• Wireless network Allocation [35]: Consider a wireless network. Assume that due to hardware restric-

tions, each radio in the network has a limited set of frequencies through which it can communicate. Also

assume radios within a certain distance of each other cannot operate on the same frequency without

their transmissions interfering with each other. This problem can be modeled in terms of list-coloring

by representing the radios by vertices, and joining them by edges if their corresponding radios are within

a certain distance of each other. The lists for each vertex can be assigned according to the available

frequencies for its corresponding radio.

• Register Allocation: In compiler optimization, register allocation is the process of assigning a large

number of target program variables (n) onto a small number of CPU registers (k), which reduces to a

k-coloring problem on an n-vertex graph.

• Sudoku: We can represent every cell in a sudoku problem with a vertex, and join two vertices with

an edge if they are in same row or same column or same block. Given x already filled cells, we can

formulate the sudoku problem as a list-coloring problem on 81− x vertices and at most 9 colors.

We proposed a Grover search-based quantum algorithm that achieves quadratic speedup in query complexity

compared to a classical brute force search, and also proposed a classical algorithm that can simplify the oracle

design for several special instances of the list coloring problem. We demonstrate the efficiency of our method

in comparison with previous work by running our algorithm on the Amazon statevector simulator for the 3

and 4-coloring problems.

Unfortunately, the list coloring problem is difficult to solve both classically and using quantum algorithms,

as for generic lists with no known structure, brute force seems to be the only way to attack the problem. As

our algorithm is basically a brute force quantum search with some optimizations in the oracle, we perform

better in general cases where the structure of the lists are unknown. However, the existence of clever hybrid

algorithms exploiting specific structures for known lists cannot be ignored, and is a very promising future

direction.

Finally, we note that one can obtain improvements on our algorithm by just changing a given list coloring

problem to a reduced problem. For example, if G = (V,E) has a vertex v with |Lv| = 1, we can color v first

and remove its color from each Lu such that uv ∈ E. Secondly, we can remap admissible colors to ensure

that the lists are as compactly represented as possible, leading to lower qubit requirement for our algorithm.
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