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Abstract

The classical Kruskal-Katona theorem gives a tight upper bound for the size of an
r-uniform hypergraphH as a function of the size of its shadow. Its stability version was
obtained by Keevash who proved that if the size of H is close to the maximum, then
H is structurally close to a complete r-uniform hypergraph. We prove similar stability
results for two classes of hypergraphs whose extremal properties have been investigated
by many researchers: the cancellative hypergraphs and hypergraphs without expansion
of cliques.

Keywords. hypergraphs, shadows, the Kruskal-Katona theorem, Turán problems,
stability.

1 Introduction

An r-uniform hypergraph (henceforth r-graph) H is a collection of r-subsets of a ground
set V (H), which is called the vertex set of H. The r-sets that are contained in H are
called edges of H, and we identify H with its edge set. We use Kr

n to denote the complete
r-graph on n vertices. The shadow ∂H of an r-graph H is an (r − 1)-graph defined as

∂H =

{
A ∈

(
V (H)

r − 1

)
: ∃B ∈ H such that A ⊂ B

}
.

The classical Kruskal-Katona theorem [14, 9] gives a tight upper bound for |H| as a
function of |∂H| . Here we state a technically simper version due to Lovász.

Theorem 1.1 (Lovász [20, Ex. 13.31(b)]). Let r ≥ 2 be an integer and H be an r-graph
with |∂H| =

( x
r−1

)
for some real number x ≥ r. Then |H| ≤

(x
r

)
. Moreover, equality holds

if x is an integer and H is a union of Kr
x and a set of isolated vertices.

Keevash [10] gave a nice short proof to Theorem 1.1 without using the compression tech-
nique, and moreover, his proof was extended to obtain the following stability result.

Theorem 1.2 (Keevash [10]). Let r ≥ 2 be an integer. For every δ > 0 there exists ǫ > 0
such that if H is an r-graph with |∂H| =

(
x

r−1

)
and |H| ≥ (1− ǫ)

(
x
r

)
for some real number

x ≥ r, then there exists a set V ′ ⊂ V (H) of size at most ⌈x⌉ such that all but at most δ
(x
r

)

edges of H are contained in V ′.
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In this work, we consider extensions of Theorem 1.2 to the class of hypergraphs that omit
certain forbidden substructures.

Let r ≥ 2 and F be a family of r-graphs. An r-graph is F-free if it does not contain any
member of F as a (not necessarily induced) subgraph. The Turán number ex(n,F) of F
is the maximum size of an F-free r-graph on n vertices, and the Turán density of F is
π(F) = limn→∞ ex(n,F)/

(n
r

)
. It is one of the central problems in extremal combinatorics

to determine ex(n,F) for various families F .

Much is known about ex(n,F) when r = 2 and one the most famous results in this regard
is Turán’s theorem [29], which states that for ℓ ≥ 2 the Turán number ex(n,Kℓ+1) is
uniquely achieved by T (n, ℓ) which is the ℓ-partite graph on n vertices with the maximum
number of edges. However, for r ≥ 3 determining ex(n,F), even π(F), is notoriously hard
in general. Compared to the case r = 2, very little is known about ex(n,F) for r ≥ 3, and
we refer the reader to [11] for results before 2011.

To have a better understanding of the extremal properties of F-free hypergraphs, in [17],
the following question which combines the Kruskal-Katona theorem and the hypergraph
Turán problem was studied systemically.

If H is F-free, what are the possible values of |H| for fixed |∂H|?

Tight upper bound for |H| was obtained in [17] for two specific families that have been
investigated by many researchers: cancellative hypergraphs and hypergraphs without ex-
pansions of cliques.

1.1 Cancellative hypergraphs

For every integer r ≥ 2 let Tr be the family of r-graphs with at most 2r − 1 vertices
and three edges A,B,C such that A△B ⊂ C. Note that when r = 2 the family T2
consists of only one graph K3. An r-graph H is cancellative if it has the property that
A ∪ B = A ∪ C implies B = C, where A,B,C are edges in H. It is easy to see that
an r-graph is cancellative if and only if it is Tr-free, and a cancellative graph is simply a
triangle-free graph.

Let ℓ ≥ r ≥ 2 be integers and let V1∪· · ·∪Vℓ be a partition of [n] with each Vi of size either
⌊n/ℓ⌋ or ⌈n/ℓ⌉. The generalized Turán graph Tr(n, ℓ) is the collection of all r-subsets of
[n] that have at most one vertex in each Vi. Let tr(n, ℓ) = |Tr(n, ℓ)| ∼

(ℓ
r

)
(n/ℓ)r.

In the 1960’s, Katona raised the problem of determining the maximum size of a cancellative
3-graph on n vertices and conjectured that the maximum size is achieved by T3(n, 3).
Bollobás [4] proved Katona’s conjecture and he conjectured that a similar result holds for
all r ≥ 4. Sidorenko [27] proved it for r = 4, but Shearer [26] gave a construction showing
that Bollobás’ conjecture is false for all r ≥ 10. The number π(Tr) is still unknown for all
r ≥ 5.

The following Kruskal-Katona type result for cancellative r-graphs was proved in [17]
despite π(Tr) is only known for r ∈ {3, 4}.

Theorem 1.3 ([17]). Let r ≥ 2 be an integer and H be a cancellative r-graph. Suppose
that |∂H| = xr−1/rr−2 for some real number x ≥ r. Then |H| ≤ (x/r)r. In other words,

|H| ≤ (|∂H|/r)r/(r−1).
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For integers n ≥ m ≥ ℓ ≥ r ≥ 2 let Tr(n,m, ℓ) be the union of Tr(m, ℓ) and a set of n−m
isolated vertices. Notice that the inequality in Theorem 1.3 is tight for Tr(n,m, r) if m is
a multiple of r.

We prove a corresponding stability result for Theorem 1.3.

Theorem 1.4. Let r ≥ 2 be an integer. For every δ > 0 there exist ǫ > 0 and n0 such that
the following holds for all real numbers x ≥ n0. Suppose that H is a cancellative r-graph
with

|∂H| =
xr−1

rr−2
and |H| ≥ (1− ǫ)

(x
r

)r
. (1)

Then there exists a set V ′ ⊂ V (H) of size at most ⌈x⌉ such that H is a subgraph of a
complete r-partite r-graph on V ′ after removing at most δxr edges.

1.2 Expansion of cliques

For ℓ ≥ r ≥ 2 let Kr
ℓ+1 denote the collection of all r-graphs F with at most

(ℓ+1
2

)
edges

such that for some (ℓ+1)-set S (called the core of F ), every pair {u, v} ⊂ S is covered by
an edge in F . Let the r-graph Hr

ℓ+1 be obtained from the complete graph Kℓ+1 by adding
r − 2 new vertices to every edge. The r-graph Hr

ℓ+1 is called the expansion of Kℓ+1, and
it is easy to see that Hr

ℓ+1 ∈ Kr
ℓ+1. Also note that {H2

ℓ+1} = K2
ℓ+1 = {Kℓ+1}.

The family Kr
ℓ+1 was introduced by Mubayi in [21] as a way to extend Turán’s theorem to

hypergraphs. He proved that ex(n,Kr
ℓ+1) = tr(n, ℓ), and moreover, Tr(n, ℓ) is the unique

Kr
ℓ+1-free r-graph on n vertices with exactly tr(n, ℓ) edges. Pikhurko [25] improved this

result by showing that ex(n,Hr
ℓ+1) = tr(n, ℓ) for sufficiently large n and Tr(n, ℓ) is also the

unique Hr
ℓ+1-free r-graph on n vertices with exactly tr(n, ℓ) edges. One key tool used by

Pikhurko is the following stability theorem, which extends the Erdős-Simonovits stability
theorem for graphs [28].

Theorem 1.5 (Stability, see [21, 25, 15]). Let ℓ ≥ r ≥ 2 be integers. For every δ > 0
there exists ǫ > 0 and n0 = n0(ℓ, r, δ) such that the following holds for all n ≥ n0. Suppose
that H is an Hr

ℓ+1-free r-graph on n vertices with at least (1− ǫ)tr(n, ℓ) edges. Then H is
a subgraph of Tr(n, ℓ) after removing at most δnr edges.

In [17] the following Kruskal-Katona type result was proved for Kr
ℓ+1-free r-graphs.

Theorem 1.6 ([17]). Let ℓ ≥ r ≥ 2 be integers and H be a Kr
ℓ+1-free r-graph. Suppose

that |∂H| =
( ℓ
r−1

)
(x/ℓ)r−1 for some real number x ≥ ℓ. Then |H| ≤

(ℓ
r

)
(x/ℓ)r. In other

words,

|H| ≤

(
ℓ

r

)(
|∂H|( ℓ
r−1

)
)r/(r−1)

.

Note that the inequality in Theorem 1.6 is tight for the r-graph Tr(n,m, ℓ) if m is a
multiple of ℓ.

We prove the following stability result for Theorem 1.6.

Theorem 1.7. Let ℓ ≥ r ≥ 2 be integers. For δ > 0 there exist ǫ > 0 and n0 such that the
following holds for all real numbers x ≥ n0. Suppose that H is an Kr

ℓ+1-free r-graph with

|∂H| =

(
ℓ

r − 1

)(x
ℓ

)r−1
and |H| ≥ (1− ǫ)

(
ℓ

r

)(x
ℓ

)r
. (2)
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Then there exists a set V ′ ⊂ V (H) of size at most ⌈x⌉ such that H is a subgraph of a
complete ℓ-partite r-graph on V ′ after removing at most δxr edges.

This paper is organized as follows. In Section 2, we prove Theorem 1.4. Section 3, we
prove Theorem 1.7. In Section 4, we include some concluding remarks.

2 Cancellative hypergraphs

We prove Theorem 1.4 in this section.

2.1 Preliminaries

For every integer i ∈ [r − 1] the i-th shadow ∂iH of an r-graph H is

∂iH =

{
A ∈

(
V (H)

r − i

)
: ∃B ∈ H such that A ⊂ B

}
.

The (r − 1)-graph ∂1H is also called the shadow of H and denoted by ∂H. For a vertex
v ∈ V (H) the link of v in H is

LH(v) = {A ∈ ∂H : {v} ∪A ⊂ H} .

The degree of v is dH(v) = |LH(v)|. For a set S ⊂ V (H) of size at most r − 1 the
neighborhood of S is

NH(S) = {v ∈ V (H) \ S : ∃A ∈ H such that S ∪ {v} ⊂ A} .

When S = {v} for some v ∈ V (H) we write NH(v) instead of NH({v}). The degree sum
of S is defined as

σH(S) =
∑

v∈S

dH(v).

For every hypergraph H let

σ̂H = max {σH(E) : E ∈ H} .

We will omit the subscript H from the notations above if it is clear from context.

We say a set S of vertices is 2-covered in H if every pair of vertices in S is contained in
some edge of H, or equivalent, if S induces a complete graph in the graph ∂r−2H.

For cancellative hypergraphs we have the following lemma for 2-covered sets.

Lemma 2.1 ([17]). Let r ≥ 2 be an integer and H be a cancellative r-graph. Suppose
that S ⊂ V (H) is a 2-covered set. Then L(v) ∩ L(u) = ∅ for every pair {u, v} ⊂ S. In
particular, σ(S) =

∑
v∈S d(v) ≤ |∂H|.

The following inequalities which can be found in [17, Section 4.1] will be important for
our proofs.

4



Lemma 2.2 ([17]). Let r ≥ 2 be an integer, H be a cancellative r-graph, and E ∈ H be
an edge with σ(E) = σ̂. Then

|H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

((
|∂H| −

σ̂

r

)
σ̂

) 1

r−1

, (3)

|H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

(
∑

v∈E

d(v) (σ̂ − d(v)) + (|∂H| − σ̂) σ̂

) 1

r−1

, (4)

|H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)



∑

v∈E

∑

S∈L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E
L(v)

σ(S)




1

r−1

, (5)

and

1

r(r − 1)

∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)| ≤

(
|∂H|

r

) r

r−1

. (6)

We will also use the following property of cancellative hypergraphs.

Lemma 2.3. Let r ≥ 2 be an integer and H be a cancellative r-graph. Then for every
v ∈ V (H) and every A ∈ L(v) we have N(A) ∩ N(v) = ∅. In other words, N(A) ⊂
V (H) \N(A).

Proof of Lemma 2.3. Suppose to the contrary that there exists A ∈ L(v) and u ∈ N(v)
such that u ∈ N(A). Since |A| = r − 1, |A ∪ {u}| = r. So, A ∪ {u} is an edge in H. On
the other hand, since A ∈ L(v), A ∪ {v} is also an edge in H. However, u ∈ N(v) implies
that there is an edge B ∈ H such that {u, v} ⊂ B, which contradicts the assumption that
H is cancellative.

The following easy lemma will help us to simplify some calculations.

Lemma 2.4. Let V be a finite set, f : V → R be a map, and δ1, δ2 > 0 be two real
numbers. Let f̄ =

(∑
v∈V f(v)

)
/|V | be the average value of f on V , and suppose that

maxv∈V {f(v)} ≤ f̄ + δ2. Then the set Vs = {v ∈ V : f(v) ≤ f̄ − δ1} satisfies

|Vs| ≤
δ2

δ1 + δ2
|V |.

Proof of Lemma 2.4. By assumption,

|V |f̄ =
∑

v∈V

f(v) =
∑

v′∈Vs

f(v′) +
∑

v∈V \Vs

f(v) ≤ |Vs|
(
f̄ − δ1

)
+ (|V | − |Vs|)

(
f̄ + δ2

)

= |V |f̄ + δ2|V | − (δ1 + δ2) |Vs|,

which implies that |Vs| ≤ δ2|V |/(δ1 + δ2).

For two nonnegative numbers x, y ∈ R and ǫ ∈ [0, 1] we write x = (1 ± ǫ)y if x satisfies
(1− ǫ)y ≤ x ≤ (1 + ǫ)y.
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2.2 Proof of Theorem 1.4

We prove Theorem 1.4 in this section. The most technical parts are contained in proofs of
Lemma 2.5 and Lemma 2.6. In Lemma 2.5 we show that the proof of Theorem 1.4 can be
reduced to the same problem with two extra assumptions that |∂H| is close to |∂Tr(⌈x⌉, r)|
and |H| is close to |Tr(⌈x⌉, r)|. In Lemma 2.6 we prove the stability result for hypergraphs
with these two extra assumptions.

Lemma 2.5. Let r ≥ 2 be an integer, ǫ > 0 be a sufficiently small constant, and x > 0
be sufficiently large real number. Suppose that H is a cancellative r-graph satisfying (1).
Then there exists a set U ⊂ V (H) of size (1 ± ǫ1)x such that the induced subgraph of H
on U satisfies

|∂(H[U ])| ≥ (1− ǫ1)
xr−1

rr−2
and |H[U ]| ≥ (1− ǫ1)

(x
r

)r
,

where ǫ1 = 35r4ǫ1/2.

Lemma 2.6. Let r ≥ 2 be an integer. For every δ > 0 there exists ǫ > 0 and n0 such that
the following holds for all n ≥ n0. Suppose that H is a cancellative r-graph on n vertices
with

|∂H| = (1± ǫ)
nr−1

rr−2
and |H| ≥ (1− ǫ)

(n
r

)r
. (7)

Then H is a subgraph of Tr(n, r) after removing at most δnr edges.

First let us show that Lemmas 2.5 and 2.6 imply Theorem 1.4.

Proof of Theorem 1.4 using Lemmas 2.5 and 2.6. Fix the integer r ≥ 2 and the constant
δ > 0. Let ǫ > 0 be a sufficiently small constant (whose value can be determined in the
following proof) and x > 0 be a sufficiently large real number. Let H be a cancellative
r-graph satisfying (1). By Lemma 2.5 there exists a set U ⊂ V (H) of size (1 ± ǫ1)x such
that the induced subgraph H satisfies

(1− ǫ1)
xr−1

rr−2
≤ |∂(H[U ])| ≤

xr−1

rr−2
and |H[U ]| ≥ (1− ǫ1)

(x
r

)r
,

where ǫ1 = 40r2rǫ1/2. Let m = |U | = (1± ǫ1)x. Then x = (1± 2ǫ1)m and the inequalities
above imply that

(1− 4rǫ1)
mr−1

rr−2
≤ |∂(H[U ])| ≤ (1 + 4rǫ1)

mr−1

rr−2
and |H[U ]| ≥ (1− 4rǫ1)

(m
r

)r
,

Lemma 2.6 applied to the r-graph H[U ] shows that H[U ] is a subgraph of Tr(m, r) after
removing at most δ1m

r ≤ 2δ1x
r edges, where δ1 = δ1(4rǫ1) is the constant guaranteed by

Lemma 2.6. If m ≤ ⌈x⌉, then let V ′ = U and we are done. Otherwise we replace U by any
⌈x⌉-subset V ′ of it, and since m ≤ (1+ǫ1)x, we only loss at most ǫ1x

r edges. Therefore, we
can remove at most ǫ1 (x/r)

r + 2δ1x
r + ǫ1x

r edges from H to obtain an r-partite r-graph
on at most ⌈x⌉ vertices.
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2.3 Proof of Lemma 2.5

We prove Lemma 2.5 in this section. Recall that for a hypergraph H and a set S ⊂ V (H)

σH(S) =
∑

v∈S

dH(v), and σ̂H = max {σH(E) : E ∈ H} .

The subscript H will be omitted in the following proof.

Proof of Lemma 2.5. We may assume that r ≥ 3 since the case r = 2 follows from the
Erdős-Simonovits stability theorem [28] (for K3-free graphs). Let ǫ > 0 be sufficiently
small, x ≥ 0 be sufficiently large, and H be a cancellative r-graph satisfying assumptions
in Lemma 2.5. Fix an edge E ∈ H with σ(E) = σ̂.

Claim 2.7. We have (1− 2rǫ) |∂H| < σ̂ ≤ |∂H|.

Proof of Claim 2.7. The inequality σ̂ ≤ |∂H| follows from Lemma 2.1, so we may focus
on the lower bound for σ̂. It follows from (1) and (3) that

(1− ǫ)

(
|∂H|

r

) r

r−1

≤ |H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

((
|∂H| −

σ̂

r

)
σ̂

) 1

r−1

.

So,
(
|∂H| −

σ̂

r

)
σ̂ ≥ (1− ǫ)r−1 r − 1

r
|∂H|2 ≥ (1− (r − 1)ǫ)

r − 1

r
|∂H|2

=
r − 1

r
|∂H|2 − ǫ

(r − 1)2

r
|∂H|2.

Solving this quadratic inequality we obtain that σ̂ ≤ (1− 2rǫ) |∂H| (the other solution is
greater than |∂H|, which is not possible).

Claim 2.8. We have |d(v) − σ̂/r| < 2rǫ1/2σ̂ for every vertex v ∈ E.

Proof of Claim 2.8. First, we prove that

∑

v∈E

d(v) (σ̂ − d(v)) >

(
r − 1

r
− 2rǫ

)
σ̂2. (8)

Suppose that (8) is not true. Then by (4),

|H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

(
∑

v∈E

d(v) (σ̂ − d(v)) + (|∂H| − σ̂) σ̂

)1/(r−1)

≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

((
r − 1

r
− 2rǫ

)
σ̂2 + (|∂H| − σ̂) σ̂

)1/(r−1)

≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

((
|∂H| −

(
1

r
+ 2rǫ

)
σ̂

)
σ̂

)1/(r−1)

It follows from σ̂ ≤ |∂H| (Claim 2.7) that

|H| ≤
|∂H|

r−2

r−1

r(r − 1)1/(r−1)

((
r − 1

r
− 2rǫ

)
|∂H|2

) 1

r−1

=

(
1−

2r2

r − 1
ǫ

) 1

r−1

(
|∂H|

r

) r

r−1

< (1− ǫ)

(
|∂H|

r

) r

r−1

,

7



a contradiction. Therefore, (8) is true.

Now suppose that Claim 2.8 is not true. Assume that E = {v1, . . . , vr} and without loss
of generality we may assume that |d(v1)− σ̂/r| ≥ 2rǫ1/2σ̂. Then by Jensen’s inequality

∑

i∈[r]

d(vi) (σ̂ − d(vi)) = d(v1) (σ̂ − d(v1)) +
r∑

i=2

d(vi) (σ̂ − d(vi))

≤ d(v1) (σ̂ − d(v1)) +

(
r∑

i=2

d(vi)

)(
σ̂ −

∑r
i=2 d(vi)

r − 1

)

= d(v1) (σ̂ − d(v1)) + (σ̂ − d(v1))

(
σ̂ −

σ̂ − d(v1)

r − 1

)

=
r − 2

r − 1
(σ̂ − d(v1))

(
σ̂ +

r

r − 2
d(v1)

)

=
r − 1

r
σ̂2 −

r

r − 1

(
d(v1)−

σ̂

r

)2

<
r − 1

r
σ̂2 − 2rǫσ̂2,

which contradicts (8).

For every v ∈ E let

Lv =
{
S ∈ L(v) : σ(S) ≥

(
1− ǫ1/2

)
(σ̂ − d(v))

}
.

Claim 2.9. We have |Lv| ≥ (1− 4r2ǫ1/2)d(v) for every v ∈ E.

Proof of Claim 2.9. First we show that for every v ∈ E

∑

S∈L(v)

σ(S) ≥ (1− 4r2ǫ)d(v) (σ̂ − d(v)) . (9)

Suppose that (9) is not true and let u ∈ E be a counterexample. Then

∑

v∈E

∑

S∈L(v)

σ(S) =
∑

S∈L(u)

σ(S) +
∑

v∈E\{u}

∑

S∈L(v)

σ(S)

≤ (1− 4r2ǫ)d(u) (σ̂ − d(u)) +
∑

v∈E\{u}

d(v) (σ̂ − d(v))

≤ (1− 2rǫ)
∑

v∈E

d(v) (σ̂ − d(v))

+ 2rǫ
∑

v∈E

d(v) (σ̂ − d(v)) − 4r2ǫd(u) (σ̂ − d(u)) .

Due to Claim 2.8, it is easy to see that
∑

v∈E d(v) (σ̂ − d(v)) < 2rd(u) (σ̂ − d(u)). There-
fore, by Jensen’s inequality,

∑

v∈E

∑

S∈L(v)

σ(S) ≤ (1− 2rǫ)
∑

v∈E

d(v) (σ̂ − d(v))

≤ (1− 2rǫ)

(
∑

v∈E

d(v)

)(
σ̂ −

∑
v∈E d(v)

r

)
= (1− 2rǫ)

r − 1

r
σ̂2.

8



Then it follows from (5) that

|H| ≤
1

r(r − 1)
1

r−1

|∂H|
r−2

r−1


∑

v∈E

∑

S∈L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E
L(v)

σ(S)




1

r−1

≤
1

r(r − 1)
1

r−1

|∂H|
r−2

r−1

(
(1− 2rǫ)

r − 1

r
σ̂2 + (|∂H| − σ̂) σ̂

) 1

r−1

≤
1

r(r − 1)
1

r−1

|∂H|
r−2

r−1

((
|∂H| −

(
1

r
+ 2(r − 1)ǫ

)
σ̂

)
σ̂

) 1

r−1

.

Then, it follows from σ̂ ≤ |∂H| (Claim 2.7) that

|H| ≤ (1− 2rǫ)
1

r−1

(
|∂H|

r

) r

r−1

< (1− ǫ)

(
|∂H|

r

) r

r−1

,

a contradiction. Therefore, (9) holds for every v ∈ E. Then, apply Lemma 2.4 with
V = L(v) and f(A) = σ(A) for every A ∈ L(v) we obtain

|L(v) \ Lv| ≤
(σ̂ − d(v)) −

∑
S∈L(v) σ(S)/d(v)

(σ̂ − d(v)) −
(
1− ǫ1/2

)
(σ̂ − d(v))

· d(v)

≤
(σ̂ − d(v)) − (1− 4r2ǫ) (σ̂ − d(v))

ǫ1/2 (σ̂ − d(v))
· d(v) ≤ 4r2ǫ1/2d(v).

The completes the proof of Claim 2.9.

Let

G =

{
S ∈ ∂H : σ(S) ≥

(
r − 1

r
− 2rǫ1/2

)
|∂H|

}
.

Claim 2.10. We have |G| ≥ (1− 8r2ǫ1/2)|∂H|.

Proof of Claim 2.10. By Claims 2.8 and 2.7, for every v ∈ E and S ∈ Lv we have

σ(S) ≥
(
1− ǫ1/2

)
(σ̂ − d(v)) ≥

(
1− ǫ1/2

)(r − 1

r
− 2rǫ1/2

)
σ̂

≥
(
1− ǫ1/2

)(r − 1

r
− 2rǫ1/2

)
(1− 2rǫ) |∂H|

≥

(
r − 1

r
− 2rǫ1/2

)
|∂H|.

On the other hand, by Claims 2.9 and 2.7,

∑

v∈E

|Lv| ≥
∑

v∈E

(1− 4r2ǫ1/2)d(v) = (1− 4r2ǫ1/2)σ̂ ≥ (1− 8r2ǫ1/2)|∂H|.

Therefore, by Lemma 2.1, |G| ≥
∑

v∈E |Lv| ≥ (1− 8r2ǫ1/2)|∂H|.

Claim 2.11. We have ∆(H) ≤
(
1
r + 3rǫ1/2

)
|∂H|.

9



Proof of Claim 2.11. Suppose to the contrary that there exists a vertex u ∈ V (H) with

d(u) >

(
1

r
+ 3rǫ1/2

)
|∂H|.

Then, for every S ∈ L(u),

σ(S) ≤ σ̂ − d(u) < |∂H| −

(
1

r
+ 3rǫ1/2

)
|∂H| =

(
r − 1

r
− 3rǫ1/2

)
|∂H|.

Therefore, L(u) ∩ G = ∅, and hence

|G| ≤ |∂H| − |d(u)| <
r − 1

r
|∂H| < (1− 8r2ǫ1/2)|∂H|,

which contradicts Claim 2.10.

Let U = ∂r−2G ⊂ V (H).

Claim 2.12. We have |U | ≤
(
1 + 6r3ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 .

Proof of Claim 2.12. First we show that for every v ∈ U ,

d(v) ≥

(
1

r
− 3r2ǫ1/2

)
|∂H|. (10)

Suppose that (10) is not true and let u ∈ U be a counterexample. Then choose a set S ∈ G
such that u ∈ S. By the definition of G,

σ(S) ≥

(
r − 1

r
− 2rǫ1/2

)
|∂H|,

so by the Pigeonhole principle, there exists u′ ∈ S \ {u} such that

d(u′) ≥
σ(S)− d(u)

r − 2
>

(
(r − 1)/r − 2rǫ1/2

)
|∂H| −

(
1/r − 3r2ǫ1/2

)
|∂H|

r − 2

>

(
1

r
+ 3rǫ1/2

)
|∂H|,

which contradicts Claim 2.11. Therefore, (10) holds for every v ∈ U , and it follows from∑
v∈U d(v) ≤ r|H| and Theorem 1.3 that

|U | ≤
r|H|(

1/r − 3r2ǫ1/2
)
|∂H|

≤
r (|∂H|/r)

r

r−1

(
1/r − 3r2ǫ1/2

)
|∂H|

<
(
1 + 6r3ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 .

Claim 2.13. We have |H[U ]| ≥
(
1− 33r4ǫ1/2

) ( |∂H|
r

) r

r−1

.

Proof of Claim 2.13. By (10) and Claim 2.10, for every u ∈ U we have

dH[U ](u) ≥ dH(u)− |∂H \ G| ≥

(
1

r
− 3r2ǫ1/2

)
|∂H| − 8r2ǫ1/2|∂H|

=

(
1

r
− 11r2ǫ1/2

)
|∂H|.

10



For every 0 ≤ i ≤ r let Ei be the set of edges in H that have exactly i vertices in U and
note that Er = H[U ]. Then by Claim 2.11 we have

∑

i∈[r−1]

i|Ei| =
∑

u∈U

dH(u)− r|Er| =
∑

u∈U

dH(u)−
∑

u∈U

dH[U ](u)

≤
∑

u∈U

(
∆(H)− dH[U ](u)

)

≤

((
1

r
+ 3rǫ1/2

)
|∂H| −

(
1

r
− 11r2ǫ1/2

)
|∂H|

)
|U |

≤ 12r2ǫ1/2|∂H||U |.

It follows from Claim 2.12 that

∑

i∈[r−1]

i|Ei| ≤ 12r2ǫ1/2|∂H| ·
(
1 + 6r2ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 ≤ 24r2ǫ1/2|∂H|
r

r−1 .

On the other hand, by Theorem 1.3, |E0| ≤ (|∂H| − |G|)
r

r−1 ≤ 8r2ǫ1/2|∂H|
r

r−1 . Therefore,

|H[U ]| = |H| −
r−1∑

i=0

|Ei| ≥ (1− ǫ)

(
|∂H|

r

) r

r−1

− 24r2ǫ1/2|∂H|
r

r−1 − 8r2ǫ1/2|∂H|
r

r−1

≥
(
1− 33r4ǫ1/2

)( |∂H|

r

) r

r−1

.

Claim 2.14. We have |U | ≥
(
1− 35r4ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 .

Proof of Claim 2.14. It follows from Claims 2.11, 2.13, and
∑

u∈U dH(u) ≥ r|H[U ]| that

|U | ≥
r|H[U ]|

∆(H)
≥

r
(
1− 33r4ǫ1/2

)
(|H|/r)

r

r−1

(
1/r + 3rǫ1/2

)
|∂H|

≥
(
1− 35r4ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 .

Now Claims 2.12 and 2.14 and |∂H| = xr−1/rr−2 imply that |U | = (1 ± ǫ1)x. Claim 2.13
shows that

|H[U ]| ≥
(
1− 33r4ǫ1/2

)( |∂H|

r

) r

r−1

=
(
1− 33r4ǫ1/2

)(x
r

)r
≥ (1− ǫ1)

(x
r

)r
.

Together with Theorem 1.3 we obtain

|∂ (H[U ]) | ≥ r|H[U ]|
r−1

r ≥ (1− ǫ1)
xr−1

rr−2
.

2.4 Proof of Lemma 2.6

Proof of Lemma 2.6. The proof if by induction on r. The case r = 2 follows from the
Erdős-Simonovits stability theorem [28] (for K3-free graphs). So we may assume that
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r ≥ 3. Fix r ≥ 3 and δ > 0. Let ǫ > 0 be sufficiently small, x > 0 be sufficiently large,
and H be a cancellative r-graph satisfying assumptions in Lemma 2.6. Let

VL =

{
v ∈ V (H) : d(v) ≥ (1− ǫ1/2)

(
|∂L(v)|

r − 1

) r−1

r−2

}
,

V̂L =

{
v ∈ V (H) : d(v) ≥

(
1

r
− 3r2ǫ1/2

)
|∂H|

}
,

VS = V (H)\VL, and V̂S = V (H)\ V̂L. It follows from the definition that for every v ∈ VS,

|∂L(v)| ≥
(r − 1) (d(v))

r−2

r−1

(1− ǫ1/2)
r−2

r−1

. (11)

Claim 2.15. We have |V̂L| ≥
(
1− 36r4ǫ1/2

)
n, and hence |V̂S | ≤ 36r4ǫ1/2n.

Proof of Claim 2.15. Since |∂H| = (1 ± ǫ)nr−1/rr−2 and |H| ≥ (1 − ǫ)(n/r)r, it follows
from Claim 2.14 and (10) that there exists a set U ⊂ V (H) of size at least

(
1− 35r4ǫ1/2

)
r

r−2

r−1 |∂H|
1

r−1 ≥
(
1− 35r4ǫ1/2

)
(1− ǫ)n ≥

(
1− 36r4ǫ1/2

)
n,

such that d(v) ≥ (1/r−3r2ǫ1/2)|∂H| for every v ∈ U . Therefore, |V̂L| ≥ |U | ≥
(
1− 36r4ǫ1/2

)
n,

and hence |V̂S | = n− |V̂L| ≤ 36r4ǫ1/2n.

Claim 2.16. We have |VL| ≥ (1− 37r4ǫ1/2)n.

Proof of Claim 2.16. It is easy to see that for every v ∈ V (H) the (r − 1)-graph L(v) is

also cancellative, so by Theorem 1.3, d(v) ≤ (|∂L(v)|/(r − 1))(r−1)/(r−2). Therefore, by
the definition of VL,

|H| =
1

r

∑

v∈V (H)

d(v)

=
1

r


∑

v∈VL

(d(v))
1

r−1 (d(v))
r−2

r−1 +
∑

v∈VS

(d(v))
1

r−1 (d(v))
r−2

r−1




≤
1

r(r − 1)


∑

v∈VL

(d(v))
1

r−1 |∂L(v)| + (1− ǫ1/2)
r−2

r−1

∑

v∈VS

(d(v))
1

r−1 |∂L(v)|




=
1

r(r − 1)

∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)| −
1− (1− ǫ1/2)

r−2

r−1

r(r − 1)

∑

v∈VS

(d(v))
1

r−1 |∂L(v)|.

Together with (11) we obtain

|H| ≤
1

r(r − 1)

∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)| −
1− (1− ǫ1/2)

r−2

r−1

(1− ǫ1/2)
r−2

r−1

1

r

∑

v∈VS

d(v)

≤
1

r(r − 1)

∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)| −
ǫ1/2

2r

∑

v∈VS

d(v).

12



So by (6),

|H| ≤

(
|∂H|

r

) r

r−1

−
ǫ1/2

2r

∑

v∈VS

d(v).

Then, it follows from |H| > (1−ǫ) (|∂H|/r)r/(r−1) ≥ (|∂H|/r)
r

r−1−ǫ|∂H|
r

r−1 and Claim 2.15
that

(
|∂H|

r

) r

r−1

− ǫ|∂H|
r

r−1 ≤

(
|∂H|

r

) r

r−1

−
ǫ1/2

2r

∑

v∈VS

d(v)

≤

(
|∂H|

r

) r

r−1

−
ǫ1/2

2r
|VS \ V̂S |

(
1

r
− 3r2ǫ1/2

)
|∂H|

≤

(
|∂H|

r

) r

r−1

−
ǫ1/2

3r2

(
|VS | − 36r4ǫ1/2

)
|∂H|,

which implies that |VS | ≤ 37r4ǫ1/2n. Therefore, |VL| = n− |VS | ≥
(
1− 37r4ǫ1/2

)
n.

Claims 2.15 and 2.16 imply that |VL ∩ V̂L| >
(
1− 73r2ǫ1/2

)
n. Then due to |H| ≥ (1 −

ǫ)(n/r)r, there exists an edge Ê ∈ H[VL ∩ V̂L]. By the definition of VL and V̂L, for every
v ∈ Ê we have

d(v) ≥ (1− ǫ1/2)

(
|∂L(v)|

r − 1

) r−1

r−2

, (12)

and

d(v) ≥

(
1

r
− 3r2ǫ1/2

)
|∂H| ≥

(
1

r
− 3r2ǫ1/2

)
(1− ǫ)

nr−1

rr−2
≥
(
1− 4r3ǫ1/2

) nr−1

rr−1
. (13)

On the other hand, since
∑

v∈Ê d(v) ≤ |∂H|, (13) implies that for every v ∈ Ê,

d(v) ≤ |∂H| − (r − 1)
(
1− 4r3ǫ1/2

) nr−1

rr−1
≤
(
1 + 4r4ǫ1/2

) nr−1

rr−1
. (14)

Notice that L(v) is a cancellative (r − 1)-graph. So (12) and Theorem 1.3 imply that

(1− ǫ1/2)

(
|∂L(v)|

r − 1

) r−1

r−2

≤ |L(v)| ≤

(
|∂L(v)|

r − 1

) r−1

r−2

. (15)

On the other hand, (13) and (14) give

(
1− 4r3ǫ1/2

) nr−1

rr−1
≤ |L(v)| ≤

(
1 + 4r4ǫ1/2

) nr−1

rr−1
. (16)

Combining (15) with (16) we obtain

(
1− 5r4ǫ1/2

)
(r − 1)

(n
r

)r−2
≤ |∂L(v)| ≤

(
1 + 5r4ǫ1/2

)
(r − 1)

(n
r

)r−2
. (17)

Let x be the real number such that |∂L(v)| = xr−2/(r − 1)r−3, and for convenience let us
assume that x is an integer. Then (17) implies that

(
1− 5r4ǫ1/2

) r − 1

r
n ≤ x ≤

(
1 + 5r4ǫ1/2

) r − 1

r
n. (18)
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Now Lemma 2.5 applied to L(v) implies that there exists a set Uv ⊂ N(v) ⊂ V (H) of size
(1± ǫ1)x (and to keep our calculations simple let us assume that |Uv| = x) such that

|L(v)[Uv ]| ≥ (1− ǫ1) |L(v)| ≥ (1− 2ǫ1)

(
x

r − 1

)r−1

, (19)

and

|∂ (L(v)[Uv ]) | ≥ (1− ǫ1) |∂L(v)| ≥ (1− 2ǫ1)
xr−2

(r − 1)r−3
, (20)

where ǫ1 = 35r4ǫ1/4 (the exponent 1/4 is due to ǫ1/2 in the first inequality in (15)). On
the other hand, it follows from (17) and (18) that

|∂ (L(v)[Uv ]) | ≤ |∂L(v)| ≤ (1 + 2ǫ1)
xr−2

(r − 1)r−3
. (21)

By (19), (20), (21), and the induction hypothesis, there exists a partition Uv = V1 ∪ · · · ∪
Vr−1 such that all but at most δ1x

r−1 edges in L(v)[Uv ] have exactly one vertex in each
Vi, where δ1 = δ1(r−1, 2ǫ1) is a sufficiently small constant guaranteed by Lemma 2.6. Let
L′(v) ⊂ L(v) be the collection of edges in L(v) that have exactly one vertex in each Vi.
Then by (16) and (19),

|L′(v)| ≥ |L(v)[Uv ]| − δ1x
r−1 ≥ (1− ǫ1)|L(v)| − δ1x

r−1 ≥ (1− δ2)
nr−1

rr−1
, (22)

where δ2 = 5r3ǫ1/2 + rrδ1.

Let
G =

{
A ∈ ∂H : |N(A)| ≥

(
1− ǫ1/4

) n

r

}
.

Claim 2.17. We have |G| ≥ (1− 15r5ǫ1/4)n
r−1

rr−2 .

Proof of Claim 2.17. By Lemma 2.3 and (18), for every v ∈ Ê and every A ∈ L(v) we
have

|N(A)| ≤ |V (H) \N(v)| ≤ |V (H) \ Uv| ≤
(
1 + 5r5ǫ1/2

) n

r
.

Therefore, by (14) and Lemma 2.1, all but at most

|∂H| −
∑

v∈Ê

|L(v)| ≤ (1 + ǫ)
nr−1

rr−2
− r

(
1− 4r3ǫ1/2

) nr−1

rr−1
≤ 5r4ǫ1/2

nr−1

rr−1

edges A ∈ ∂H satisfy N(A) ≤
(
1 + 5r5ǫ1/2

)
n/r. It follows that

r|H| =
∑

A∈G

N(A) +
∑

A∈∂H\G

N(A)

≤ |G|
(
1 + 5r5ǫ1/2

) n

r
+ 5r4ǫ1/2

nr−1

rr−1
· n+ |∂H \ G|

(
1− ǫ1/4

) n

r

= |∂H|
(
1− ǫ1/4

) n

r
+ |G|

(
ǫ1/4 + 5r5ǫ1/2

) n

r
+ 5r4ǫ1/2

nr

rr−1

≤ (1 + ǫ)
nr−1

rr−2

(
1− ǫ1/4

) n

r
+ |G|

(
ǫ1/4 + 5r5ǫ1/2

) n

r
+ 5r4ǫ1/2

nr

rr−1

≤
(
1− ǫ1/4 + ǫ

) nr

rr−1
+ |G|

(
ǫ1/4 + 5r5ǫ1/2

)
+ 5r4ǫ1/2

nr

rr−1
.
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Since |H| ≥ (1− ǫ)nr/rr, the inequality above implies

(
1− ǫ1/4 + ǫ

) nr

rr−1
+ |G|

(
ǫ1/4 + 5r5ǫ1/2

) n

r
+ 5r4ǫ1/2

nr

rr−1
≤ (1− ǫ)

nr

rr−1
.

Therefore,

|G| ≥
ǫ1/4 − 2ǫ− 5r4ǫ1/2

ǫ1/4 + 5r5ǫ1/2
nr−1

rr−2
≥ (1− 15r5ǫ1/4)

nr−1

rr−2
.

Now fix v ∈ Ê and let Vr = V (H) \ Uv. By Lemma 2.3, every edge A ∈ L′(v) satisfies
N(A) ⊂ Vr. By Claim 2.17 all but at most

|∂H| − |G| ≤ 16r5ǫ1/4
nr−1

rr−2

edges A ∈ L′(v) satisfy |N(A)| ≥ (1 − ǫ1/4)n/r. Therefore, by (22), the number of edges
in H that have exactly one vertex in each Vi is at least
(
|L′(v)| − 16r5ǫ1/4

nr−1

rr−2

)
(1− ǫ1/4)

n

r
≥

(
(1− δ2)

nr−1

rr−1
− 16r5ǫ1/4

nr−1

rr−2

)
(1− ǫ1/4)

n

r

≥ (1− δ3)
(n
r

)r
,

where δ3 = δ2 + 17r6ǫ1/4 (we can choose ǫ > 0 to be sufficiently small such that δ3 ≤ δ).
This completes the proof of Lemma 2.6.

3 Expansion of cliques

3.1 Preliminaries

For an r-graph H the clique set KH of H is

KH =
{
A ⊂ V (H) : (∂r−2H) [A] ∼= K|A|

}
.

It was prove in [17] that

σ(S) ≤ (ℓ− r + 1)|∂H|, ∀S ∈ KH.

Let z = z(H) ≥ 0 be the largest real number such that for all R ∈ KH with |R| ≤ ℓ− 1,

σ(R) ≤ (ℓ− r + 1) |∂H| − (ℓ− |R|) z.

The following inequalities can be found in [17, Section 5].

Lemma 3.1 ([17]). Let H be a Kr
ℓ+1-free r-graph, and R0 ∈ KH be a set of size at most

ℓ− 1 with σ(R0) = (ℓ− r + 1) |∂H| − (ℓ− |R|) z, where z = z(H) ≥ 0 is defined as above.
Then

|H| ≤

(ℓ−1
r−1

) r−2

r−1

r
(ℓ−1
r−2

) (r − 1)
r−2

r−1 |∂H|
r−2

r−1

(
∑

E∈∂H

σ(E)

) 1

r−1

, (23)

∑

E∈∂H

σ(E) ≤ (ℓ− r + 1) (|∂H| − 2z) |∂H|+ z2ℓ−
((ℓ− r + 1)|∂H| − zℓ)2

|R0|
. (24)

15



3.2 Proof of Theorem 1.7

The proof is similar to the proof of Theorem 1.4, but it is simpler because we just need
to prove a similar result as Lemma 2.5 and then we can use Theorem 1.5 directly 1.

Proof of Theorem 1.7. Fix ℓ ≥ r ≥ 2 and δ > 0. Let ǫ > 0 be a sufficiently constant and
x > 0 be a sufficiently large real number. Let H be a Kr

ℓ+1-free r-graph satisfying the
assumptions in Theorem 1.7. Notice that the inequality in (2) is equivalent to

|H| ≥ (1− ǫ)

(ℓ
r

)
( ℓ
r−1

) r

r−1

|∂H|
r

r−1 . (25)

Let z = z(H) be the same as defined in Section 3.1, and let R0 ∈ KH be a set of size at
most ℓ− 1 with

σ(R0) = (ℓ− r + 1) |∂H| − (ℓ− |R0|) z.

Claim 3.2. We have
∑

E∈∂H

σ(E) ≤ (1− rǫ)
(ℓ− r + 1)(r − 1)

ℓ
|∂H|2. (26)

Proof of Claim 3.2. Suppose to the contrary that (26) fails. Then by (23),

|H| ≤

(ℓ−1
r−1

) r−2

r−1

r
(
ℓ−1
r−2

) (r − 1)
r−2

r−1 |∂H|
r−2

r−1

(
∑

E∈∂H

σ(E)

) 1

r−1

≤ (1− rǫ)
1

r−1

(ℓ−1
r−1

) r−2

r−1

r
(ℓ−1
r−2

) (r − 1)
r−2

r−1 |∂H|
r−2

r−1

(ℓ− r + 1)
1

r−1 (r − 1)
1

r−1

ℓ
1

r−1

|∂H|
2

r−1

= (1− rǫ)
1

r−1

(ℓ
r

)
( ℓ
r−1

) r

r−1

|∂H|
r

r−1 < (1− ǫ)

(ℓ
r

)
( ℓ
r−1

) r

r−1

|∂H|
r

r−1 ,

contradicting (25).

Next, we show that z is close to ℓ−r+1
ℓ |∂H|.

Claim 3.3. We have

z = (1± ℓrǫ1/2)
ℓ− r + 1

ℓ
|∂H|. (27)

Proof of Claim 3.3. Suppose to the contrary that (27) fails. Then by (24),

∑

E∈∂H

σ(E) ≤ (ℓ− r + 1) (|∂H| − 2z) |∂H|+ z2ℓ−
((ℓ− r + 1)|∂H| − zℓ)

|R0|

=
(ℓ− r + 1)(r − 1)

ℓ
|∂H|2 − ℓ

(
ℓ

|R0|
− 1

)(
z −

ℓ− r + 1

ℓ
|∂H|

)2

≤
(ℓ− r + 1)(r − 1)

ℓ
|∂H|2 − ℓ

(
ℓ

ℓ− 1
− 1

)(
ℓrǫ1/2 ·

ℓ− r + 1

ℓ
|∂H|

)2

< (1− rǫ)
(ℓ− r + 1)(r − 1)

ℓ
|∂H|2

1 One could also use a similar inductive argument to prove a similar result as Lemma 2.6 to avoid using

Theorem 1.5.
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contradicting Claim 3.2.

It follows from the definition of z and Claim 3.3 that for every R ∈ KH with |R| ≤ ℓ− 1,

σ(R) ≤ (ℓ− r + 1) |∂H| − (ℓ− |R|) z

≤ (ℓ− r + 1) |∂H| − (ℓ− |R|) (1− ℓrǫ1/2)
ℓ− r + 1

ℓ
|∂H|

≤ (1 + ℓ2rǫ1/2)
(ℓ− r + 1)|R|

ℓ
|∂H|.

In particular, for every v ∈ V (H) we have

d(v) = σ({v}) ≤ (1 + ℓ2rǫ1/2)
ℓ− r + 1

ℓ
|∂H|, (28)

and for every E ∈ ∂H we have

σ(E) ≤ (1 + ℓ2rǫ1/2)
(ℓ− r + 1)(r − 1)

ℓ
|∂H|. (29)

Let

G =

{
E ∈ ∂H : σ(E) ≥ (1− ǫ1/4)

(ℓ− r + 1)(r − 1)

ℓ
|∂H|

}
.

Claim 3.4. We have |G| ≥ (1− ℓ2rǫ1/4)|∂H|.

Proof of Claim 3.4. It follows from Lemma 2.4, Claim 3.2, and (29) that

|∂H \ G| ≤
(1 + ℓ2rǫ1/2)(ℓ− r + 1)(r − 1)|∂H|/ℓ −

∑
E∈∂H σ(E)/|∂H|

(1 + ℓ2rǫ1/2)(ℓ− r + 1)(r − 1)|∂H|/ℓ − (1− ǫ4)(ℓ− r + 1)(r − 1)|∂H|/ℓ
|∂H|

≤
ℓ2rǫ1/2 + rǫ

ℓ2rǫ1/2 + ǫ1/4
|∂H| ≤ ℓ2rǫ1/4|∂H|.

Let U = ∂r−2G ⊂ V (H).

Claim 3.5. For every u ∈ U we have d(u) ≥ (1− 2ǫ1/4) ℓ−r+1
ℓ |∂H|.

Proof of Claim 3.5. It follows from the definition of U that for every u ∈ U there exists
E ∈ G with u ∈ E. Then it follows from the definition of G that σ(E) ≥ (1− ǫ1/4)(ℓ− r+
1)(r − 1)|∂H|/ℓ. So by (28)

d(u) = σ(E)−
∑

v∈E\{u}

dH(v)

≥ (1− ǫ1/4)
(ℓ− r + 1)(r − 1)

ℓ
|∂H| − (r − 2)(1 + ℓ2rǫ1/2)

ℓ− r + 1

ℓ
|∂H|

≥ (1− 2ǫ1/4)
ℓ− r + 1

ℓ
|∂H|.

Next we show an upper bound for |U |.
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Claim 3.6. We have |U | ≤ (1 + 4ǫ1/4)ℓ

(
|∂H|

( ℓ

r−1
)

)1/(r−1)

.

Proof of Claim 3.6. Since
∑

u∈U d(u) ≤ r|H|, by Claim 3.5 and Theorem 1.6,

|U | ≤
r|H|

(1− 2ǫ1/4) ℓ−r+1
ℓ |∂H|

≤

r
(
ℓ
r

)( |∂H|

( ℓ

r−1
)

) r

r−1

(1− 2ǫ1/4) ℓ−r+1
ℓ |∂H|

=

r
ℓ−r+1

(ℓ
r
)

( ℓ

r−1
)

(1− 2ǫ1/4)
ℓ

(
|∂H|(

ℓ
r−1

)
)1/(r−1)

≤ (1 + 4ǫ1/4)ℓ

(
|∂H|(

ℓ
r−1

)
)1/(r−1)

.

Here we used the identity
(ℓ
r

)
/
( ℓ
r−1

)
= (ℓ− r + 1)/r.

Claim 3.7. We have |H[U ]| ≥ (1− 9ℓ2rrǫ1/4)

(
|∂H|

( ℓ

r−1
)

) r

r−1

.

Proof of Claim 3.7. By Claims 3.5 and 3.4, for every u ∈ U we have

dH[U ](u) ≥ dH(u)− |∂H \ G| ≥ (1− 2ǫ1/4)
ℓ− r + 1

ℓ
|∂H| − ℓ2rǫ1/4|∂H|

≥ (1− 3ℓ3rǫ1/4)
ℓ− r + 1

ℓ
|∂H|.

For every 0 ≤ i ≤ r let Ei be the set of edges in H that have exactly i vertices in U and
note that Er = H[U ]. Then by (28) and Claim 3.6,

∑

i∈[r−1]

i|Ei| =
∑

u∈U

dH(u)− r|Er| =
∑

u∈U

dH(u)−
∑

u∈U

dH[U ](u)

≤
∑

u∈U

(
∆(H)− dH[U ](u)

)

≤ (ℓ2rǫ1/2 + 3ℓ3rǫ1/4)
ℓ− r + 1

ℓ
|∂H||U |

≤ 4ℓ3rǫ1/4
ℓ− r + 1

ℓ
|∂H| · (1 + 4ǫ1/4)ℓ

(
|∂H|(

ℓ
r−1

)
)1/(r−1)

≤ 8ℓ3r2
(
ℓ

r

)
ǫ1/4

(
|∂H|( ℓ
r−1

)
) r

r−1

.

On the other hand, by Claim 3.4 and Theorem 1.3,

|E0| ≤

(
ℓ

r

)(
|∂H| − |G|( ℓ

r−1

)
) r

r−1

≤ ℓ2rǫ1/4

(
|∂H|( ℓ
r−1

)
) r

r−1

.

Therefore,

|H[U ]| = |H| −
r−1∑

i=0

|Ei| ≥ (1− ǫ)

(
ℓ

r

)(
|∂H|( ℓ
r−1

)
) r

r−1

−

(
8ℓ3r2

(
ℓ

r

)
ǫ1/4 + ℓ2rǫ1/4

)(
|∂H|( ℓ
r−1

)
) r

r−1

≥ (1− 9ℓ3r2ǫ1/4)

(
ℓ

r

)(
|∂H|( ℓ
r−1

)
) r

r−1

.
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Let m = |U |. Then it follows from Claim 3.6 and |∂H| =
( ℓ
r−1

)
(x/ℓ)r−1 that

m ≤ (1 + 4ǫ1/4)ℓ

(
|∂H|( ℓ
r−1

)
)1/(r−1)

≤ (1 + 4ǫ1/4)x.

Claim 3.7 implies that

|H[U ]| ≥ (1− 9ℓ3r2ǫ1/4)

(
ℓ

r

)(
|∂H|( ℓ
r−1

)
) r

r−1

≥ (1− 9ℓ3r2ǫ1/4)

(
ℓ

r

)(x
ℓ

)r

≥ (1− 9ℓ3r2ǫ1/4)
1

(1 + 4ǫ1/4)r

(
ℓ

r

)(m
ℓ

)r
≥ (1− 10ℓ3r2ǫ1/4)

(
ℓ

r

)(m
ℓ

)r
.

Now Theorem 1.5 applied to H[U ] implies that H[U ] contains a subgraph H′ of size at
least

|H[U ]| − δ1m
r ≥ (1− 10ℓ3r2ǫ1/4)

(
ℓ

r

)(m
ℓ

)r
− δ1m

r ≥ |H| − (10ℓ3r2ǫ1/4 + δ1)m
r

≥ |H| − 2(10ℓ3r2ǫ1/4 + δ1)x
r

such that H′ is a subgraph of Tr(m, ℓ). If m ≤ ⌈x⌉, then let V ′ = U and we are done.
Otherwise let V ′ ⊂ U be a subset of size ⌈x⌉. Then due to m ≤ (1 + 4ǫ1/4)x, the number
of edges in H′[V ′] is at least |H′| − 4ǫ1/4xr ≥ |H| − 2(10ℓ3r2ǫ1/4 + δ1)x

r − 4ǫ1/4xr (we
can choose ǫ > 0 to be sufficiently small such that 2(10ℓ3r2ǫ1/4 + δ1) + 4ǫ1/4 ≤ δ). This
completes the proof of Theorem 1.7.

4 Concluding remarks

In this work we showed some extensions of Keevash’s stability result of the Kruskal-
Katona theorem to the classes of calcellative hypergraphs and hypergraphs without the
expansion of cliques. In general, one could ask whether similar results hold for other F-
free hypergraphs. An classical example suggested by Sós is the Fano plane, which is the
3-graph on vertex set [7] with edge set

{123, 345, 561, 174, 275, 376, 246}.

The extremal properties of the Fano plane have been well studies by several authors (see
e.g. [6, 13, 7, 2]). However, a Kruskal-Katona type result for the Fano plane is still not
known.

It is interesting that the inequality in Theorem 1.3 is tight for every integer r ≥ 2 while the
maximum size of an n-vertex cancellative r-graph is still unknown (even asymptotically)
for every r ≥ 5. This suggests that one could prove a Kruskal-Katona type result for a
family F whose Turán density is not known. A famous example is the complete 3-graph
on four vertices K3

4 (see [29]). It was shown in [17] that the Turán problem for K3
4 does not

have the stability property (assuming the famous Turán tetrahedron conjecture is true).
So, it would be very interesting if the Kruskal-Katona type result for K3

4 has the stability
property. There are many other interesting cases one could consider for F , and we refer
the reader to the nice survey of Keevash [11] for more details.
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It seems that Theorems 1.4 and 1.7 belong to a new type of stability results for F-free
hypergrahs, which are different from the stability results proved before (see e.g. [28, 1, 12,
7, 13, 21, 24, 8, 22, 5, 23, 3, 16, 18, 19]). It would be interesting to see whether there are
any applications of this new type of stability results.
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