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Abstract

Given graphs T and H, the generalized Turán number ex(n, T,H) is the maximum number of copies

of T in an n-vertex graph with no copies of H. Alon and Shikhelman, using a result of Erdős, determined

the asymptotics of ex(n,K3, H) when the chromatic number of H is greater than three and proved several

results when H is bipartite. We consider this problem when H has chromatic number three. Even this

special case for the following relatively simple three chromatic graphs appears to be challenging. The

suspension Ĥ of a graph H is the graph obtained from H by adding a new vertex adjacent to all vertices

of H. We give new upper and lower bounds on ex(n,K3, Ĥ) when H is a path, even cycle, or complete

bipartite graph. One of the main tools we use is the triangle removal lemma, but it is unclear if much

stronger statements can be proved without using the removal lemma.

1 Introduction

A graph G = (V (G), E(G)) consists of a vertex set V (G) and an edge set E(G) ⊆
(
V (G)

2

)
. Let e(G) denote

the number of edges of G. Say that G is F -free if G contains no subgraph isomorphic to H. We emphasize

that we do not consider induced subgraphs in this definition.

For graphs T and H with no isolated vertices and integer n, the generalized Turán number ex(n, T,H) is the

largest number of copies of T in an H-free n-vertex graph. When T = K2, this is the Turán number ex(n,H)

of the graph H.

The systematic study of ex(n, T,H) for T 6= K2 was initiated by Alon and Shikhelman [1]. Before then, there

had been sporadic results determining this function for several T and H, beginning with ex(n,Kt,Kr) for

t < r (see [6, 2]). Several cases where H = Kr were studied in [14]. There has been a lot of recent activity

when (T,H) = (K3, C2k+1) and (T,H) = (C5,K3) [1, 3, 9, 13, 12]. In [11], the cases (T,H) = (Pk,K2,t) and

(T,H) = (Ck,K2,t) have also been studied and some generic bounds on ex(n, T,H) are given. See also [16]

for a related result about the number of s-cliques in graphs without cycles of length at least k.

Alon and Shikhelman [1] determine all pairs of graphs T,H with ex(n, T,H) = Θ(n|V (T )|). Further, they

prove that if T and H are trees, then there exists an m(T,H) such that ex(n, T,H) = Θ(nm(T,H)). They

also study the problem when H is a tree and T is a bipartite graph, and give several results on ex(n,Kt, H)

for bipartite H. One general result they prove using a theorem of Erdős [7] is that if the chromatic number

χ(H) > t, then

ex(n,Kt, H) =

(
χ(H)− 1

t

)(
n

χ(H)− 1

)t
+ o(nt).
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In [17], the error term was determined more precisely.

All our results concern T = K3. Since the asymptotic formula of ex(n,K3, H) is already known for χ(H) > 3

and [1] studies the case χ(H) = 2 quite extensively, we consider the wide open case χ(H) = 3. Even within

this class, we restrict our attention to a very specific and simple family of 3-chromatic graphs. For any graph

H, let Ĥ denote the suspension K1 ∨H obtained by adding a new vertex adjacent to every vertex of H. We

obtain upper and lower bounds on ex(n,K3, Ĥ) for H ∈ {Ka,b, C2k, Pk}, where Pk denotes the path on k

edges.

Given a graph G = (V,E) and a vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E} denote the neighborhood of v

in G. For any subset X ⊆ V , let e(X) denote the number of edges in the subgraph G[X] induced by X. Let

t(G) denote the number of triangles in G.

If G is Ĥ-free, then NG(v) is H-free for every v ∈ V . This implies that

t(G) =
1

3

∑
v∈V

e(NG(v)) ≤ 1

3

∑
v∈V

ex(|NG(v)|, H) ≤ n

3
· ex(n,H).

Hence,

ex(n,K3, Ĥ) ≤ n

3
· ex(n,H). (1.1)

All our results give improvements on (1.1). For our first result H = Ka,b and Ĥ = K1,a,b, where 1 ≤ a ≤ b.

Here (1.1) combined with the Kövari-Sós-Turán theorem [15], which asserts that ex(n,Ka,b) = O(n2−
1
a )

yields ex(n,K3,K1,a,b) = O(n3−
1
a ). We improve this as follows.

Theorem 1.1. For fixed 1 ≤ a ≤ b and n→∞,

ex(n,K3,K1,a,b) = o(n3−
1
a ). (1.2)

Notice that setting a = b = 2 in (1.2) yields ex(n,K3,K1,2,2) = o(n5/2), where K1,2,2 = Ĉ4. This is related

to a question in [18], where the authors asked whether ex(n,K3,K1,2,2) = O(n2). While this remains open

we do give a quadratic lower bound in Proposition 3.1. Narrowing the (huge) gap in the bounds

Ω(n2) < ex(n,K3,K1,2,2) < o(n5/2)

is perhaps the most basic and attractive open problem raised in this paper.

Our next result concerns H = C2k. Here (1.1) together with the classical bound ex(n,C2k) = O(n1+
1
k ) of

Bondy-Simonovits [4] yields ex(n,K3, Ĉ2k) = O(n2+
1
k ).

Theorem 1.2. For fixed k ≥ 2 and n→∞,

ex(n,K3, Ĉ2k) = o(n2+
1
k ). (1.3)

The same lower bound construction for ex(n,K3,K1,2,2) yields ex(n,K3, Ĉ2k) = Ω(n2).

Our final results concern ex(n,K3, P̂k) for k ≥ 3. We begin with a simple proposition.

Proposition 1.3. Let n ≥ k ≥ 3. Then⌊
k − 1

2

⌋
· n

2

8
≤ ex(n,K3, P̂k) ≤ k − 1

12
· n2 +

(k − 1)2

12
· n, (1.4)

where the lower bound holds when n is a multiple of 4bk−12 c.
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We believe that the lower bound above is asymptotically tight for all fixed k ≥ 3 and prove this for the first

three cases k = 3, 4 and 5.

Theorem 1.4. For k = 3, 4 and 5,

ex(n,K3, P̂k) =

⌊
k − 1

2

⌋
· n

2

8
+ o(n2). (1.5)

When k = 3 or k = 5, the error term can be improved to O(n).

In Section 2, we present some preliminary results that we use in our proofs. In Section 3 we prove Theorem

1.1, in Section 4 we prove Theorem 1.2 and in Section 5 we prove Proposition 1.3 and Theorem 1.4.

Note. After making this paper public, we learnt that Theorem 1.1 has also been proved by several other

researchers and Theorem 1.2 has been proved by Methuku, Grosz, Tompkins (using a different proof). These

works are unpublished.

2 Preliminaries

In this section, we describe some preliminary tools that will be used in our proofs. The most important tool

for proving Theorems 1.1 and 1.2 is the triangle removal lemma [5, 10, 21]. The specific form that we shall

be using appears as Theorem 2.1 in [5].

Lemma 2.1 (Ruzsa-Szemerédi [21]). Suppose ε > 0. Let δ = δ(ε) be such that 1
δ is a tower of twos of height

684 log(1
ε ). If G is a graph on n vertices with at least εn2 edge-disjoint triangles, then G contains at least

δn3 triangles.

Recall that t(G) is the number of triangles in G.

Lemma 2.2 (Nordhaus-Stewart [19]). For any graph G on n vertices,

t(G) ≥ e(G)

3n
·
(
4e(G)− n2

)
.

A k-uniform hypergraph H = (V (H), E(H)), consists of a vertex set V (H) and edge set E(H) ⊆
(
V (H)
k

)
.

We write e(H) = |E(H)|. A subset X ⊆ V (H) of vertices is an independent set if e 6⊂ X for any e ∈ E(H).

The independence number of H, denoted by α(H), is the largest size of an independent set in H.

Lemma 2.3 (Spencer [22]). Let H = (V,E) be an r-uniform hypergraph on n vertices, and let d = re(H)
n

denote the average degree of H. Then,

α(H) ≥ r − 1

r
·
(

n

d
1

r−1

)
.

Finally, we require a result that is a direct consequence of the proof of the Erdős-Gallai theorem [8] for cycles,

which states that every graph with average degree at least k contains a cycle of length at least k + 1. Recall

that a chord in a cycle is an edge between any two non-adjacent vertices of the cycle.

Lemma 2.4 (Erdős-Gallai [8]). Let k ≥ 3 be an integer. If G is a graph of average degree at least k, then G

contains a cycle of length at least k + 1 with a chord. In particular, G also contains a path of length at least

k. �
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3 Suspension of complete bipartite graphs

Our goal in this short section is to prove Theorem 1.1 and give a lower bound on ex(n,K3,K1,2,2) via Propo-

sition 3.1. Given a graph G and X ⊆ V (G), let NG(X) =
⋂
v∈X NG(v) denote the common neighborhood of

all vertices from X.

Proof of Theorem 1.1. Recall that we are to show that for 1 ≤ a ≤ b, ex(n,K3,K1,a,b) = o(n3−
1
a ). Let n be

sufficiently large, and G be an n-vertex graph which is K1,a,b-free. By the Kövari-Sós-Turán theorem [15]

and (1.1), we know that there exists c = cb such that

t(G) < cbn
3− 1

a . (3.1)

Now, suppose ε > 0 is fixed. Assume that n is sufficiently large, and that G is a K1,a,b-free graph with t(G) ≥
εn3−

1
a . Construct an a-uniform hypergraph H whose vertices are the triangles of G, and let {T1, . . . , Ta} be

an edge of H if the triangles T1, . . . , Ta all share a common edge in G. Then

e(H) =
∑

{v1,...,va}∈(V (G)
a )

e(NG({v1, . . . , va})).

As G is K1,a,b-free, NG({v1, . . . , va}) has no vertex of degree at least b. This implies that

e(NG{v1, . . . , va}) <
b

2
· |NG({v1, . . . , va})|.

Consequently,

e(H) <
∑

{v1,...,va}∈([n]
a )

b

2
· |NG(v1, . . . , va)| = b

2

∑
v∈V (G)

(
deg(v)

a

)
< b

∑
v∈V (G)

deg(v)a < b · na+1.

This implies that d(H) < ab·na+1

t(G) . Using Lemma 2.3,

α(H) >
k − 1

k
· t(G)(

ab·na+1

t(G)

) 1
a−1

= c · t(G)1+
1

a−1 · n−
a+1
a−1 ,

where c = (k − 1)/(k(ab)1/(a−1)). Recalling that t(G) ≥ εn3− 1
a and letting ε′ = c · ε1+

1
a−1 , we obtain

α(H) > ε′n
a

a−1 ·
3a−1

a · n−
a+1
a−1 = ε′n2.

Let I be a maximum independent set of H. Create an auxiliary graph H ′ with vertex set I, and join two

vertices of H ′ iff the triangles corresponding to them share an edge. Every triangle from I can be adjacent

to at most 3(a−1) other triangles from I. Therefore, degH′(i) < 3a for every i ∈ I, and hence by Lemma 2.3

H ′ has an independent set of size at least |I|6a >
ε′n2

6a . The triangles corresponding to this independent set are

edge-disjoint. Therefore t(G) ≥ δn3 where δ = δ( ε
′

6a ) is obtained from Lemma 2.1. However t(G) < cbn
3− 1

a

by (3.1) and this implies that δn3 ≤ cb
3 · n

3− 1
a , a contradiction for sufficiently large n.

Plugging in a = b = 2 in Theorem 1.1, we get the bound ex(n,K3,K1,2,2) = o(n5/2). We now describe a

lower bound construction for ex(n,K3,K1,2,2).

Proposition 3.1. When n is a multiple of 4,

ex(n,K3,K1,2,2) ≥ n2

4
.
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Proof of Proposition 3.1. Let Hn = (A,B) be the complete bipartite graph with |A| = |B| = n
2 , with

additional edges in both the parts such that Hn[A] and Hn[B] are matchings of size n
4 . Observe that the

neighborhood of every vertex in Hn consists of n4 edge-disjoint triangles sharing a common vertex, and hence

is C4-free. Thus Hn is K1,2,2-free. On the other hand, every triangle of Hn either has an edge inside A or an

edge inside B, implying

t(Hn) = e(A) · |B|+ e(B) · |A| = 2 · n
4
· n

2
=
n2

4
.

This proves that whenever 4 | n, ex(n,K3,K1,2,2) ≥ n2/4.

4 Suspension of even cycles

Our goal in this section is to prove Theorem 1.2. Before proceeding with the proof, we prove Lemma 4.2

which gives an upper bound on the number of paths of length k in a C2k-free graph. The main idea behind the

lemma is the technique used in [23, 20, 24] to prove upper bounds on ex(n,C2k) by analyzing the breadth-first

search tree from any vertex.

Given a graph G and a vertex r ∈ V (G), a breadth-first search tree T of G rooted at r is constructed as

follows. Let L0 = {r}. For i ≥ 1, let Li ⊆ V (G) be the set of all vertices in V (G) which are at distance i

from vertex r. The vertex subset Li is called the i’th level of T . The tree T consists of vertex set V (G) and

only the edges of G between levels Li and Li+1, i ≥ 0.

For i ≥ 0, let G[Li] be the subgraph of G induced by Li, and let G[Li, Li+1] be the bipartite subgraph of G

with parts (Li, Li+1) and edges exactly the edges of G that have one endpoint in Li and another in Li+1.

We now quote Lemma 3.5 from [24] in the form that we shall be using.

Lemma 4.1 (Verstraëte [24]). Let T be a breadth-first search tree in a graph G, with levels L0, L1, . . ..

Suppose G[Li] or G[Li, Li+1] has a cycle of length k with a chord, respectively. Then, for some m ≤ i, G

respectively contains cycles C2m+1, C2m+2, . . . , C2m+k−1, or cycles C2m+2, C2m+4, . . . , C2m+` where ` is the

largest even integer less than k.

Let pk(G) denote the number of paths of length k in a graph G. Here each subgraph isomorphic to Pk is

counted twice, once for each ordering of its vertices along the path.

Lemma 4.2. Let k ≥ 2 be an integer, 0 < ε < 1 and n > (20k/ε)k. Let F be a C2k-free graph on n vertices

with minimum degree at least εn1/k. Then

pk(F ) ≤
(

2k

ε

)(k−1)k

n2.

Proof of Lemma 4.2. We first prove that F has bounded maximum degree. Suppose for contradiction that

there exists v ∈ V (F ) with

deg(v) ≥
(

2k

ε

)k−1
· n1/k.

Consider the breadth-first search tree of F starting at v. For i ≥ 0, let Li be the ith level of this breadth-first

search tree. By assumption, |L1| ≥
(
2k
ε

)k−1 ·n1/k. Denote by e(Li, Li+1) the number of edges in G[Li, Li+1].

Let us prove that for every 1 ≤ i < k,

e(Li) ≤ (k − 1)|Li| and e(Li, Li+1) ≤ (k − 1)(|Li|+ |Li+1|). (4.1)

Indeed, if e(Li) > (k − 1)|Li|, then by Lemma 2.4, F [Li] contains a cycle of length ` with a chord, where

` ≥ 2k − 1. Now, apply Lemma 4.1 to obtain an integer m ≤ i such that F contains cycles of lengths
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2m + 1, 2m + 2, . . . , 2m + ` − 1. Since ` ≥ 2k − 1 and 1 ≤ m < k, we have 2m + 1 ≤ 2k ≤ 2m + ` − 1.

Then F contains a C2k, contradiction. Similarly, if e(Li, Li+1) > (k − 1)(|Li| + |Li+1|), then Lemma 2.4

gives us a cycle of length ` in F [Li, Li+1] where ` ≥ 2k − 1. Then Lemma 4.1 gives an integer m ≤ i such

that F contains cycles of lengths 2m + 2, 2m + 4, . . . , 2m + `. As ` ≥ 2k − 1 and 1 ≤ m < k, we have

2m+ 2 ≤ 2k ≤ 2m+ 2k − 1. This implies that F contains a C2k, again a contradiction.

Claim 4.3. For every i ≥ 0,

|Li+1| ≥
εn1/k

2k
· |Li|. (4.2)

Proof of Claim 4.3. We use induction on i. Note that |L0| = 1 and

|L1| = deg(v) ≥
(

2k

ε

)k−1
· n1/k > εn1/k

2k
=
εn1/k

2k
|L0|.

Moreover, for i ≥ 1 and any vertex v ∈ Li, NG(v) ⊆ Li−1 ∪ Li ∪ Li+1. Thus, (4.1) implies

k(|Li|+ |Li+1|) + 2k|Li|+ k(|Li|+ |Li−1|) > e(Li, Li+1) + 2e(Li) + e(Li, Li−1)

=
∑
v∈Li

deg(v)

≥ εn1/k · |Li|.

Consequently,

|Li+1| >
(
εn1/k

k
− 4

)
· |Li| − |Li−1|. (4.3)

By the induction hypothesis we may assume that |Li−1| ≤ 2k
εn1/k · |Li|. Thus, (4.3) implies

|Li+1| >
(
εn1/k

k
− 4− 2k

εn1/k

)
· |Li| >

εn1/k

2k
· |Li|

since n > (20k/ε)k. This finishes the proof of Claim 4.3.

Now, by applying Claim 4.3 iteratively, we obtain

|Lk| ≥
(
εn1/k

2k

)k−1
· |L1| ≥

(
εn1/k

2k

)k−1
·
(

2k

ε

)k−1
· n1/k = n,

a contradiction. Thus, deg(v) ≤
(
2k
ε

)k−1 · n1/k for every v ∈ V (F ). Therefore, if ∆(F ) is the maximum

degree of F ,

pk(F ) ≤ n ·∆(F )k ≤
(

2k

ε

)k(k−1)
· n2,

as desired.

For a graph G and edge uv ∈ E(G), the codegree of uv is degG(u, v) = |NG({u, v})|.

Proof of Theorem 1.2. Fix ε > 0 and let n be sufficiently large. Suppose G = (V,E) is a graph on n vertices

satisfying t(G) ≥ εn2+ 1
k . We wish to show that G contains a copy of Ĉ2k. Suppose, on the contrary, that G

is Ĉ2k-free. First, we iteratively delete edges of G with codegree less than εn1/k

10 in the current graph, until

there are no such edges left. Since we delete fewer than e(G) · εn
1/k

10 triangles, we are left with a graph G′

satisfying

t(G′) > t(G)− e(G) · εn
1/k

10
> εn2+

1
k − εn2+

1
k

10
≥ 9ε

10
· n2+ 1

k ,
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and degG′(u, v) ≥ εn1/k

10 for every uv ∈ E(G′).

Next, create an auxiliary graph H whose vertices are the triangles of G′, and two vertices of H are adjacent

iff their corresponding triangles share a common edge. By Lemma 2.3, α(H) > t(G′)
2d(H) . Let

γ :=
(ε/20)k

2

k(k−1)k
> 0.

If t(G′)
2d(H) >

γ
2n

2, then this gives us γ
2n

2 edge-disjoint triangles in G, and this implies that t(G) > δn3 where

δ = δ(γ2 ) from Lemma 2.1. However, we also have t(G) < ckn
2+ 1

k by (1.1) and this is a contradiction since

n is sufficiently large. Therefore, we may assume t(G′)
d(H) ≤ γn

2 and this implies

d(H) ≥ t(G′)

γn2
≥ 9ε

10γ
· n1/k

and hence

e(H) ≥ 9εn1/k

20γ
· t(G′) ≥ 81ε

200γ
· n2+ 2

k .

Let us now bound X, the number of copies of P̂k in G′ in two different ways. For every v ∈ V (G′), let G′v
denote the subgraph of G′ induced by NG′(v). Let δ(F ) denote the minimum degree of F for any graph F .

By the assumption on the minimum codegree of edges in G′, δ(G′v) ≥ εn1/k

10 . Hence applying Lemma 4.2 with

ε replaced by ε
10 ,

X ≤
∑

v∈V (G′)

pk(G′v) ≤ n ·
(

20k

ε

)k(k−1)
· n2

=

(
20k

ε

)k(k−1)
· n3.

(4.4)

On the other hand, we can first fix two adjacent triangles in G′ and then keep growing it to a P̂k by using

the minimum codegree condition of G′. Since δ(H) ≥ εn1/k

10 , this implies that for large enough n,

X ≥ 1

2
e(H) · (δ(H)− 2) · (δ(H)− 3) · · · (δ(H)− k + 1)

≥ 1

2
e(H) · (δ(H)− k)k−2

≥ 81ε

400γ
· n2+ 2

k ·
(
εn1/k

20

)k−2
=

81εk−1

20k · γ
· n3.

(4.5)

The factor 1
2 in (4.5) is to balance out over-counting the same P̂k from its two ends. Comparing (4.4) and

(4.5), we obtain (
20k

ε

)k(k−1)
≥ 81εk−1

20k · γ
,

implying

γ ≥ 81εk
2

20k2 · kk(k−1)
= 81 · (ε/20)k

2

kk(k−1)
> 81γ,

a contradiction. This completes the proof of Theorem 1.2.

5 Suspension of paths

In this section, we prove Proposition 1.3 and Theorem 1.4.
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5.1 Proof of Proposition 1.3

First, we show the upper bound in (1.4). Let k ≥ 3 be fixed, and let G be a graph on n vertices which is

P̂k-free. We need to show that t(G) ≤ (k−1)
12 · n2 + (k−1)2

12 · n.

Note that the neighborhood of every vertex v ∈ V (G) is Pk-free. Thus by Lemma 2.4, the average degree of

the subgraph of G induced by NG(v) is at most k − 1. Hence,

e(NG(v)) ≤ k − 1

2
· degG(v).

Summing up this inequality over all vertices v ∈ V (G),

3t(G) =
∑

v∈V (G)

e(N(v)) ≤ k − 1

2
· 2e(G) = (k − 1)e(G),

giving us

t(G) ≤ k − 1

3
· e(G). (5.1)

This, in conjunction with Lemma 2.2, gives us

k − 1

3
· e(G) ≥ t(G) ≥ e(G)

3n
· (4e(G)− n2),

which simplifies to

e(G) ≤ n2

4
+

(k − 1)n

4
.

The conclusion of the upper bound follows from plugging this inequality back into (5.1).

Now we prove the lower bound in (1.4). Let n be a multiple of 4
⌊
k−1
2

⌋
. We shall construct a P̂k-free graph

Fn,k on n vertices with t(Fn,k) ≥
⌊
k−1
2

⌋
· n

2

8 .

Let Fn,k = (A,B) be the complete bipartite graph with parts A,B with |A| = |B| = n
2 , with additional edges

in A such that Fn,k[A] is a disjoint union of Kb k−1
2 c,b k−1

2 c. Then,

e(A) =
⌊
k−1
2

⌋2 · n

4b k−1
2 c

=
⌊
k−1
2

⌋
· n4 .

Every triangle of Fn,k consists of an edge from Fn,k[A] and a vertex from B. Hence,

t(Fn,k) =
⌊
k−1
2

⌋
· n4 ·

n
2 =

⌊
k−1
2

⌋
· n

2

8 .

Further, Fn,k is P̂k-free, since the neighborhood of every vertex in B is a disjoint union of Kb k−1
2 c,b k−1

2 c, and

the neighborhood of every vertex in A is isomorphic to Kb k−1
2 c,n2 . �

5.2 Proof of Theorem 1.4

We will use some ideas from [9], and define the concepts of triangle-connectivity and blocks. In what follows,

a triangle T in a graph G is a set of three edges {ab, bc, ca} that form a K3 in G. Subsequently, we shall

denote such a triangle simply as abc.

Definition 5.1 (Triangle-connectivity). Given a graph G and two distinct edges e, e′ ∈ E(G), say that e

and e′ are triangle-connected if there is a sequence of triangles {T1, . . . , Tk} of G, such that e ∈ T1, e′ ∈ Tk,

and Ti and Ti+1 share a common edge for every 1 ≤ i ≤ k − 1. A subgraph H ⊆ G is triangle-connected if e

and e′ are triangle-connected for every two distinct e, e′ ∈ E(H).
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It is straightforward to check that triangle-connectivity is an equivalence relation on E(G) (assuming reflex-

ivity as part of the definition).

Definition 5.2 (Triangle block). A triangle block, or simply a block in a graph G is a subgraph H whose

edges form an equivalence class of the triangle-connectivity relation on E(G).

In other words, a subgraph H ⊆ G is a triangle block if it is edge-maximally triangle-connected. By definition,

the triangle blocks of a graph G are edge-disjoint.

5.2.1 Proof of Theorem 1.4 for k = 3.

Suppose G is a graph on n vertices which is P̂3-free. We will prove using induction on n, that

t(G) <
n2

8
+ 3n. (5.2)

This inequality is true for n = 3 as t(G) ≤ 1 for any graph G on 3 vertices. Now, fix an n > 3 and a graph

G on n vertices which is P̂3-free. Assume that (5.2) holds for P̂3-free graphs on less than n vertices.

We may assume without loss of generality that every edge of G lies in a triangle, otherwise we may delete it

from G without changing t(G). For a vertex v ∈ V (G), let t(v) = tG(v) denote the number of triangles in G

containing v. By definition, tG(v) = e(NG(v)).

We first prove that if G has a copy of K4, then t(G) < n2

8 + 3n, hence completing the induction step.

Suppose G has a copy of K4 with vertices labeled a1, a2, a3, a4. Let X = V (G) \ {a1, a2, a3, a4}, and Ai =

NG(ai)∩X, i = 1, . . . , 4. If x ∈ A1∩A2, then we can find a P̂3 formed by a1, x, a2, a3, a4 in the neighborhood

of a1. Thus, A1∩A2 = ∅, and by symmetry the Ai’s are mutually disjoint. Hence, |A1|+ |A2|+ |A3|+ |A4| ≤
|X| = n− 4. This implies that one of the Ai’s has size ≤ n−4

4 . Using Lemma 2.4 in the neighborhood of ai,

t(ai) = 3 + e(Ai) ≤ 3 + |Ai| ≤ 3 +
n− 4

4
=
n+ 8

4
.

Now let G′ = G− ai. As G was P̂3-free, so is G′. Hence by the induction hypothesis,

t(G′) <
(n− 1)2

8
+ 3(n− 1).

This implies,

t(G) = t(G′) + t(ai) <
(n− 1)2

8
+ 3(n− 1) +

n+ 8

4
<
n2

8
+ 3n,

as desired. We may now assume that G is K4-free.

Let Bs denote the book graph on s+ 2 vertices, consisting of s triangles all sharing a common edge.

Claim 5.3. Every triangle block of G is isomorphic to Bs for some s ≥ 1.

Proof of Claim 5.3. Let H ⊆ G be an arbitrary triangle block. If H contains only one or two triangles, it

is isomorphic to B1 or B2. Suppose H contains at least three triangles. Let two of them be abx1 and abx2
(Figure 5.1). If another triangle is of the form ax1y for some y ∈ V (H), then there are two possible cases.

If y 6= x2, then NH(a) contains the 3-path x2bx1y. Otherwise, if y = x2, then the vertices a, b, x1, x2 create

a K4. Similarly, no triangle contains any of the edges bx1, ax2, bx2. Therefore all triangles in H contain ab

and H ∼= Bs for some s ≥ 1.

Claim 5.3 implies that G comprises r edge-disjoint blocks isomorphic to books for some r ≥ 1. Let the blocks

of G be isomorphic to Bs1 , . . . , Bsr , where s1, . . . , sr ≥ 1. Then,

t(G) = s1 + · · ·+ sr and e(G) = 2(s1 + · · ·+ sr) + r = 2t(G) + r.

9



a b

x1 x2

y

y 6= x2
a b

x1 x2

y = x2
a b

x1 x2
x3

B3

Figure 5.1: (left): third triangle on ax1, (right): third triangle on ab

Hence, t(G) < e(G)/2. Finally, we apply Lemma 2.2 on G to obtain

e(G)

2
> t(G) ≥ e(G)

3n
· (4e(G)− n2),

implying

e(G) <
n2

4
+

3n

8
.

Therefore t(G) < n2

8 + 3n
16 <

n2

8 + 3n, completing the induction step. �

5.2.2 Proof of Theorem 1.4 for k = 4.

Suppose ε > 0 and n is sufficiently large. Let G be any graph on n vertices which is P̂4-free, such that

t(G) ≥ n2

8
+ 14εn2.

The very first step of the proof is to remove copies of K4 and K1,2,2 from G while still maintaining t(G) ≥
n2

8 + εn2. We achieve this by means of the triangle removal lemma. First, we make an observation which

follows immediately from Lemma 2.1, (1.1) and Lemma 2.4 for large n.

G cannot have εn2 edge-disjoint triangles. (5.3)

Without loss of generality, we may assume that every edge of G is contained in a triangle. We shall use (5.3)

to remove all copies of the following six graphs in this order: K5; K−5 ; K4; K2,2,2; Q3,2 = K2∨P3; and K1,2,2

(Figure 5.2).

K−5K5 K4 K2,2,2 Q3,2 K1,2,2

Figure 5.2: The graphs K5, K−5 , K4, K2,2,2, Q3,2 and K1,2,2.

• Step 1: Cleaning K5’s.

If G contains a K5 with vertices a1, a2, a3, a4, a5, then it has to be a block by itself. This is because if

there is a vertex x 6= ai with xa1, xa2 ∈ E(G), then NG(a1) contains the path a5a4a3a2x, contradiction.

Hence, all the K5’s in G are edge-disjoint.

If G has more than εn2 copies of K5, then by taking one triangle from each K5, we get εn2 edge-disjoint

triangles in G, contradicting (5.3). Therefore, G has at most εn2 copies of K5.

We now delete one edge from each copy of K5 in G, and lose at most 3εn2 triangles from G. So, we

may assume t(G) ≥ n2

8 + 11εn2, and G is {P̂4,K5}-free.

10



• Step 2: Cleaning K−5 ’s.

Suppose G contains a K−5 . Observe that if we have a new vertex x 6= ai which is adjacent to two

endpoints of any edge of this K−5 , it would create a copy of P̂4 (see Figure 5.3 (left)). Thus, the only

way two K−5 ’s can intersect in an edge is if they share the same five vertices. This would give us a K5

in G, a contradiction. Therefore, the copies of K−5 are all edge-disjoint.

Hence, if G has more than εn2 copies of K−5 , we again obtain at least εn2 edge-disjoint triangles in G,

contradicting (5.3). So G has at most εn2 copies of K−5 .

Deleting one edge from each copy of K−5 in G, we lose at most 3εn2 triangles in the process. After

deletion, we still have t(G) ≥ n2

8 + 8εn2, and we can further assume that G is {P̂4,K
−
5 }-free.

x

x

Figure 5.3: (left): K−5 ’s are edge-disjoint; (right): K4’s are edge-disjoint.

• Step 3: Cleaning K4’s.

First, we claim that any two copies of K4 in G are edge-disjoint. If not, then they can only intersect

in one edge, or three edges. If they intersect in one edge, we find a P̂4, and otherwise we get a K−5
in G (see Figure 5.3 (right); the intersecting edges are illustrated in bold). Hence, all K4’s in G are

edge-disjoint.

Consequently, if there are more than εn2 copies of K4 in G, taking one triangle from each copy gives

us εn2 edge-disjoint triangles, contradicting (5.3) again.

Now, observe that for every K4 in G with vertices {a, b, c, d}, either the edge ab or the edge bc has

codegree exactly 2. Otherwise, let x, y ∈ V (G) be such that xab and ybc are triangles in G. If x = y,

then xabcd is a K−5 , and otherwise xadcy is a P4 in the neighborhood of b. Hence, whenever G contains

a K4, we can remove an edge of codegree 2 from it. Then G loses at most 2εn2 triangles. Thus, we

assume that t(G) ≥ n2

8 + 6εn2, and that G is {P̂4,K4}-free.

• Step 4: Cleaning K2,2,2’s.

By assumption, G contains no copy of P̂4 and K4. Fix a K2,2,2 of G with vertices c1, c2 in the center

and a1, a2, a3, a4 forming the outer C4. Let X = V (G) \ {c1, c2, a1, a2, a3, a4}. Denote Ci = NG(ci)∩X
for i = 1, 2, and Ai = NG(ai) ∩X for i = 1, . . . , 4. Since G is P̂4-free, we deduce that Ai ∩ Ai+1 = ∅
and Ai ∩ Cj = ∅ for every i, j (here we denote A5 := A1). This is shown in Figure 5.4, by assuming

x ∈ A1∩A2 and then x ∈ A1∩C2, and finding copies of P̂4 in either case. This implies that the K2,2,2’s

are themselves triangle blocks of G, hence they are mutually edge-disjoint.

a1

a2a3

a4

c1 c2 x

a1

a2a3

a4

c1 c2
x

Figure 5.4: W4,2 is a block by itself.

So, if G has at least εn2 copies of K2,2,2, then by taking one triangle from each K2,2,2 we obtain at

least εn2 edge-disjoint triangles in G, contradicting (5.3).
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Deleting one edge from each K2,2,2, we lose at most 2εn2 triangles from G. Thus, we may assume that

t(G) ≥ n2

8 + 4εn2, and that G is {P̂4,K4,K2,2,2}-free.

• Step 5: Cleaning Q3,2’s.

Suppose G contains a Q3,2 with the P3 given by vertices a1, c1, c2, a3 and the outer C4 being a1a2a3a4.

Then, if a1c2 or a3c1 or a2a4 is an edge, we get a K4 in G, and if a1a3 is an edge, then the 4-cycle

a1c1c2a3 along with vertices a2, a4 create a K2,2,2 in G. Hence, every copy of Q3,2 in G has to be

induced.

Suppose X = V (G) \ {a1, a2, a3, a4, c1, c2}, and let Ci = NG(ci) ∩X for i = 1, 2 and Ai = NG(ai) ∩X
for i = 1, . . . , 4. Since G is P̂4-free, we deduce that Ai ∩Ai+1 = ∅ and Ai ∩Cj = ∅ for every i, j (here

we denote A5 := A1), and C1 ∩ C2 = ∅. We illustrate this in Figure 5.5, similar to before. Hence, the

Q3,2’s of G are themselves triangle blocks in G.

a1 a2

a3a4

c1

c2

x

a1 a2

a3a4

c1

c2

x

a1 a2

a3a4

c1

c2

x

a1 a2

a3a4

c1

c2

x

Figure 5.5: Q3,2 is a block by itself.

Consequently, if G has more than εn2 copies of Q3,2, then taking one triangle from each Q3,2 we obtain

at least εn2 edge-disjoint triangles in G, again contradicting (5.3). We delete an outer edge from each

copy of Q3,2, losing at most εn2 triangles of G. Hence, we can assume that t(G) ≥ n2

8 + 3εn2, and that

G is {P̂4,K4,K2,2,2, Q3,2}-free.

• Step 6: Cleaning K1,2,2’s.

We proceed similarly as before. First, if G contains a K1,2,2 with center c and outer cycle a1a2a3a4,

then one cannot have an edge a1a3 or a2a4 since these give rise to K4’s through c. Hence, the K1,2,2’s

in G are induced. Plus, none of the edges aic lie in a new triangle since it leads to a P̂4: they all have

codegree 2. We now do a case analysis to see that the K1,2,2’s in G are edge-disjoint. Let A,B ∈
(
V (G)

5

)
be such that G[A] and G[B] are two K1,2,2’s which are not edge-disjoint. Then 2 ≤ |A ∩ B| ≤ 4. Let

the central vertices of G[A] and G[B] be u and v, respectively. Since each central edge of G[A] and

G[B] has codegree 2, u 6= v.

Suppose |A ∩ B| = 2. If u ∈ A ∩ B, then the edge through u with its other endpoint in A ∩ B must

have codegree at least 3. Thus, the central vertices of G[A] and G[B] must lie outside A ∩ B, leading

us to the first configuration in Figure 5.6. But this configuration admits a P4 in the neighborhood of

either vertex of A ∩B, a contradiction. We illustrate G[A ∩B] in boldface.

u v
u v

u v
u v

Figure 5.6: The different ways two induced W4’s can intersect.

Next, suppose |A∩B| = 3. If u ∈ A∩B but v 6∈ A∩B, then one of the central edges of G[A] contains

an external triangle through v. If u, v ∈ A ∩ B, then as u is part of the outer C4 of G[B], uv contains

a triangle from G[B] which is not contained in G[A]. Thus the only possibility for |A ∩ B| = 3 is for
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u and v to be both outside A ∩ B. This gives rise to the second configuration in Figure 5.6, which

contains P̂4 in the neighborhood of one of the vertices of A ∩B.

Finally, if |A∩B| = 4 and u ∈ A∩B but v 6∈ A∩B, then any edge of G[A∩B] through u has codegree

at least 3. If both u and v lie outside A ∩ B, we obtain a K2,2,2, which is the third configuration in

Figure 5.6. Hence, u and v must both lie inside A ∩ B. Since u and v both must be adjacent to all

other vertices of A ∩B, G[A] and G[B] form a Q3,2, the fourth configuration in Figure 5.6.

Therefore, if two K1,2,2’s are not edge-disjoint, they must intersect each other in one of the ways

depicted in Figure 5.6, and we either find a P̂4, K2,2,2 or Q3,2 inside G for each of these intersecting

patterns. Thus, all K1,2,2’s of G are edge-disjoint. Consequently, if G has εn2 copies of K1,2,2, they are

all edge-disjoint, and give us at least εn2 edge-disjoint triangles, again contradicting (5.3).

For each K1,2,2 in G with central vertex x and outer cycle abcd, we observe that either ab or bc has

codegree 1. Otherwise, suppose y, z ∈ V (G) are such that yab and zbc form triangles in G. If y = z,

this creates a Q3,2 in G. Otherwise, yaxcz is a P4 in the neighborhood of b. So, every K1,2,2 has an

outer edge of codegree 1. By deleting one such edge of codegree 1 from each copy of K1,2,2, we remove

at most εn2 triangles from G. Therefore, we may assume that G is {P̂4,K4,K1,2,2}-free, and

t(G) ≥ n2

8
+ εn2.

Let us now analyze the structure of G. We will prove using induction on t(H), that for any subgraph H ⊆ G,

t(H) ≤ e(H)

2
. (5.4)

When t(H) = 1, e(H) ≥ 3, proving the base case. Now suppose t(H) > 1 for some H ⊆ G, and that (5.4)

holds for all subgraphs H ′ with t(H ′) < t(H). Assume without loss of generality that every edge of H lies in

at least one triangle. Call an edge of H light if it is contained in a unique triangle from H. Call edges that

are not light, heavy. We observe that if H contains a triangle with two light edges, then deleting them from

H leads to a graph H ′ ( H with t(H ′) = t(H)− 1 and e(H ′) = e(H)− 2. Using the induction hypothesis on

H ′, t(H ′) ≤ e(H ′)/2, implying t(H) ≤ e(H)/2. Hence, we may further assume that H contains no triangle

with two light edges.

Lemma 5.4. Suppose H contains two triangles xuv and yuv intersecting in the edge uv. Then either: (a)

xu, yv are light and xv, yu are heavy or: (b) xu, yv are heavy and xv, yu are light.

x

u

y

v

x

u

y

v

z1 = z2

x

u

y

v

z1 z2

Figure 5.7: xu and yu cannot both be heavy.

Proof of Lemma 5.4. Suppose that both xu and yu were heavy (Figure 5.7). If x and y were adjacent, this

would create a K4 which is forbidden. So, there exist z1, z2 ∈ V (H) such that z1xu and z2yu form K3’s in H.

If z1 6= z2, N(u) contains a P4, which is forbidden. Otherwise z1 = z2, and this produces a K1,2,2 centered

at u, a contradiction.

Hence one of xu and yu is light. Similarly, one of xv and yv is light. If xu is light, then xv and yu are heavy,

implying that yv is light, and (a) holds. Similarly, if xu is heavy, then (b) holds.

We shall now use Lemma 5.4 and the fact that every triangle in H has two heavy and one light edge, to

analyze the structure of H. First, observe that H cannot have any edge of codegree more than 2. This is
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because if we have an edge uv which lies in three triangles xuv, yuv, zuv, then by Lemma 5.4, either xu, yv

are light or xv, yu are light. Suppose without loss of generality that xu and yv are light, as in Figure 5.8.

Then, by applying Lemma 5.4 on the pairs {xuv, zuv} and {yuv, zuv} respectively, the edges zv and zu must

be light. However, this contradicts the assumption of H containing no triangle with two light edges.

x u

v y

z

Figure 5.8: Codegree of uv ∈ E(H) is at most 2.

Now, let `(H) denote the number of light edges of H and h(H) the number of heavy edges of H. Since

every edge of H can have codegree 1 or 2, and every triangle contains one light and two heavy edges, a

double-counting argument gives,

`(H) + 2h(H) = 3t(H).

On the other hand, every light edge of H lies in a unique triangle, and every triangle contains a unique light

edge. This implies t(H) = `(H). Therefore,

4t(H) = 2`(H) + 2h(H) = 2e(H),

implying t(H) = e(H)
2 . This finishes the induction step, completing the proof of (5.4).

Taking H = G in (5.4), we obtain t(G) ≤ e(G)
2 . By assumption, t(G) ≥ n2

8 + εn2. So, by Lemma 2.2,

e(G)

2
≥ t(G) ≥ e(G)

3n
· (4e(G)− n2),

leading to e(G) ≤ n2

4 + 3n
8 . This gives t(G) ≤ e(G)

2 ≤ n2

8 + 3n
16 , which contradicts the assumption of

t(G) ≥ n2

8 + εn2 for sufficiently large n. This concludes the proof of Theorem 1.4 for k = 4. �

5.2.3 Proof of Theorem 1.4 for k = 5.

Our proof of Theorem 1.4 for k = 5 follows exactly the same structure as that for k = 3 and k = 4, with

more technical details. We shall prove, using induction on n, that if G is P̂5-free, then

t(G) ≤ n2

4
+ 5n. (5.5)

The base case n = 3 is clearly true as t(G) ≤ 1. Assume that (5.5) holds for all graphs G on less than n

vertices, and let us prove that it also holds for G. The first step is to remove all copies of K6 and K−6 from

G via the induction hypothesis.

Suppose G has a copy of K6 with vertices a1, . . . , a6. Then this is a block by itself, since if there is a vertex

x 6= ai such that xa1a2 is a triangle, then NG(a1) contains the 5-path a6a5a4a3a2x. For 1 ≤ i ≤ 6, let

Xi = NG(ai) \ {a1, . . . , a6}. Then Xi ∩Xj = ∅ for every i 6= j. Since
∑6
i=1 |Xi| ≤ n− 6, there is a vertex ai

for which |Xi| ≤ n−6
6 . By Lemma 2.4,

e(Xi) ≤
5− 1

2
· |Xi| ≤

n− 6

3
.

Hence, by (5.5) on G′ = G− {ai}, we get t(G′) ≤ (n−1)2
4 + 5(n− 1). Therefore,

t(G) ≤ t(G′) +
n− 6

3
+ 5 ≤ (n− 1)2

4
+ 5(n− 1) +

n− 6

3
+ 5 <

n2

4
+ 5n,
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completing the induction step for G. Hence, we may assume that G is K6-free.

Now, if G has a copy of K−6 on vertices a1, . . . , a6, it has to be induced. We verify in Figure 5.9 that it

is a block by finding a P̂5 whenever any edge lies in an external triangle. Let Xi = NG(ai) \ {a1, . . . , a6}.
Following exactly the same argument as before, there exists a vertex ai for which |Xi| ≤ n−6

6 . Therefore,

applying Lemma 2.4 and letting G′ = G− {ai},

t(G) ≤ t(G′) +
n− 6

3
+ 5 <

n2

4
+ 5n,

completing the induction step for G.

Figure 5.9: K−6 is a block by itself.

Therefore, without loss of generality we can assume that G is {K−6 , P̂5}-free. Consider G to be a fixed

n-vertex graph. We shall now prove using induction on t(H), that for any subgraph H ⊆ G,

t(H) ≤ e(H). (5.6)

When t(H) = 1, e(H) ≥ 3 proves the base case. Now suppose t(H) > 1 for some H ⊆ G, and that (5.6)

holds for all subgraphs H ′ of G with t(H ′) < t(H). If H has an edge e which lies in at most one triangle,

using the induction hypothesis on H ′ = H − {e} immediately proves (5.6) for H. Hence, we may assume

that all edges of H have codegree at least 2. Call an edge of H light if it has codegree exactly 2, otherwise

call it heavy.

Lemma 5.5. We may assume that H does not contain W5 and K1,2,2 as subgraphs.

This lemma is proved by sequentially removing copies of the graphs illustrated in Figure 5.10 from H, and

the proof can be found in the Appendix. We shall now assume that Lemma 5.5 is true.

K−2,16 K−2,26 K−3,16 K−3,26 K−5 W+
5 W5 W4 = K1,2,2

Figure 5.10: Graphs to be cleaned from H.

Suppose H contains a triangle abc such that abx and acy are triangles, with x 6= y, i.e H contains a P̂3. Refer

to Figure 5.11. Observe that both ax and ay must have codegree at least 2. If xy is an edge in H, we get a

W4. If axz and ayw are triangles for vertices z and w which are not b or c, then there are two possibilities.

Either z 6= w in which case we get a P̂5, or z = w, producing a W5 in H. Therefore {z, w} ∩ {b, c} 6= ∅.

If z = c and w = b, this gives us a K1,2,2 centered at a. Hence we may assume z = c and w 6= b. By

assumption, aw must have codegree at least 2. Note that wb or wx cannot be edges, as they create W4 or

W5 in H centered around a, respectively. Further, we cannot have a new vertex t for which awt is a triangle,

since this creates a P̂5 centered at a. Thus, the only possibility is that wc ∈ E(H).

As H is {K1,2,2,W5}-free, H[a, b, c, x, y, w] is induced. Further, if the edges ax, ab, ay, aw or cb, cx, cw, cy lie

in an external triangle, we can find P̂5’s centered around a or c, respectively. Hence these 8 edges all do not
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a

b c

x y a

b c

x y

w

a

b c

x

y

w

Figure 5.11: abc, abx, acy are triangles with x 6= y.

lie in external triangles, and have codegree exactly 2. Deleting them from H, we obtain a graph H ′ with

t(H ′) = t(H)− 8 and e(H ′) = e(H)− 8, completing the proof of (5.6) for H.

Hence, we may assume that H does not contain any P̂3. Now if ab and ac were heavy in any triangle abc,

we would then find x 6= y for which abx and acy are triangles in H. This leads us to the following crucial

observation:

Every triangle of H has at most one heavy edge. (5.7)

Let us fix a triangle abc in H. Let ab and ac be light. As they must have codegree 2, there is a vertex x for

which xa, xb, xc ∈ E(H), as in Figure 5.12. If the edge xa is light, we can then let H ′ = H − {ab, ax, ac}.
Note that t(H ′) = t(H)− 3 and e(H ′) = e(H)− 3, finishing the proof of (5.6) for H. Finally, if xa is heavy,

then by (5.7), the edges xb and xc must be light. Let H ′ = H − {ab, ac, xb, xc}, then t(H ′) = t(H)− 4 and

e(H ′) = e(H)− 4, completing the induction step of (5.6).

a

b c
x

a

b c
x

Figure 5.12: Edge xa can be light or heavy.

Taking H = G in (5.6), we obtain t(G) ≤ e(G). Using Lemma 2.2,

e(G) ≥ t(G) ≥ e(G)

3n
· (4e(G)− n2),

implying t(G) ≤ e(G) ≤ n2

4 + 3n
4 < n2

4 + 5n. This concludes the proof of (5.6) for G.
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triangles in a C5-free graph. J. Graph Theory, 90(3):227–230, 2019.

[10] Jacob Fox. A new proof of the graph removal lemma. Ann. of Math. (2), 174(1):561–579, 2011.

[11] Dániel Gerbner and Cory Palmer. Counting copies of a fixed subgraph in F -free graphs. European J.

Combin., 82:103001, 15, 2019.

[12] Andrzej Grzesik. On the maximum number of five-cycles in a triangle-free graph. J. Combin. Theory

Ser. B, 102(5):1061–1066, 2012.
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6 Appendix

Our goal in this section is to complete the proof of Lemma 5.5. Recall that H is a subgraph of a {K−6 , P̂5}-free

graph G such that every edge of H has codegree at least 2.

Proof of Lemma 5.5. We wish to show that H does not contain copies of W5 or K1,2,2. We do this via

sequentially cleaning the following graphs from H:

• K−2,16 , the graph obtained from K6 by deleting two intersecting edges,

• K−2,26 , the graph obtained from K6 by deleting two non-intersecting edges,

• K−3,16 , the graph obtained from K6 by deleting a P3,

• K−3,26 , the graph obtained from K6 by deleting a P2 tK2,

• K5,

• K−5 , the graph obtained from K5 by deleting one edge,

• W+
5 , the graph obtained from the 5-wheel graph W5 = Ĉ5 by adding an edge,

• W5, and

• K1,2,2, the 4-wheel graph.

More specifically, whenever H contains a copy of one of these graphs, we would be able to use the induction

hypothesis of (5.6) on some subgraph H ′ ( H and complete the induction step for H.

Before proceeding onto the cleaning steps, we make an important observation:

If abcde is a P4 in NH(x), then NH({a, x}) ⊆ {b, c, d, e}. (6.1)

This is because since xa has codegree at least 2, we must have a vertex y ∈ V (H) with xay being a triangle,

y 6= b. If y 6∈ {c, d, e}, then we get a P̂5 centered around x. Thus y = c or y = d or y = e, implying (6.1).

1. Cleaning K−2,16 : Suppose H has a copy of K−2,16 with vertices {a, b, c, d, e, f} such that the edges ab

and bc are missing. This is an induced subgraph as H has no K−6 . Further, all edges of this subgraph other

than ac cannot belong to external triangles, as verified in Figure 6.1.

Figure 6.1: All edges but ac cannot lie in external triangles.

Now suppose ac lies on an external triangle, acx. By (6.1) on the 4-path fedcx in NH(a), NH({a, x}) ⊆
{c, d, e}. Moreover, ax has codegree at least 2. Thus, xd, xe, or xf is an edge of H. In either case we obtain

P̂5’s in H, as shown in Figure 6.2.

Hence K−2,16 is a block by itself. Let H ′ be the subgraph of H obtained by deleting all edges from this copy

of K−2,16 . Then note that t(H ′) = t(H)− 13 and e(H ′) = e(H)− 13, completing the induction step for H.
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Figure 6.2: acx is a triangle.

2. Cleaning K−2,26 : Let H have a copy of K−2,26 with vertices {a, b, c, d, e, f} such that the edges ab and cd

are missing. Clearly this is an induced subgraph of H. It can be checked that the edges ea, ec, eb, ed cannot

lie on external triangles as otherwise we would get P̂5’s centered at e. Similarly, the edges fc, fa, fd, fb

cannot lie on external triangles.

Now, suppose the edge ad lies in an external triangle adx. Refer to Figure 6.3. As cfedx is a P4 in the

neighborhood of a, (6.1) implies that NH({a, x}) ⊆ {d, e, f, c} and NH({a, c}) ⊆ {f, e, d, x}. If xe ∈ E(H),

this leads to a P̂5 centered at e, given by the 5-path caxdbf . If xf ∈ E(H), we get a P̂5 centered at f , given

by the 5-path bdxac. Thus, xc ∈ E(H), and the edge xa is light. Repeating the same argument for the

4-path bfeax around d, we get xb ∈ E(H), xd is light and ac has codegree 3. Using (6.1) on the 4-path xaefb

in NH(c) and NH(d) respectively, we get NH({c, x}) ⊆ {a, e, f, b} and NH({b, d}) ⊆ {f, e, a, x}. Since we

already know that xe, xf, ab 6∈ E(H), this means that the edge xc is light and bd has codegree 3. Similarly,

bx is light. Now, let

H ′ = H − {ea, ec, eb, ed, fc, fa, fd, fb, xa, xc, xb, xd, ac, bd}.

Clearly e(H ′) = e(H)− 14 and t(H ′) = t(H)− 14, and we are done by induction.

a

bc

d
e

f

x

Figure 6.3: Edge ad lies in triangle adx, x 6∈ {a, b, c, d, e, f}

Therefore, ad cannot lie in any external triangle adx, and is light. Similarly, bc is light. Let H ′ = H −
{ea, ec, eb, ed, fc, fa, fd, fb, ad, bc}. Then t(H ′) = t(H)− 10 and e(H ′) = e(H)− 10, finishing the induction

step for H.

3. Cleaning K−3,16 : Since G has no K−2,16 or K−2,26 which are the only two ways one can delete two edges

from K6, any copy of K−3,16 is induced. Suppose such a copy of K−3,16 exists in G, and is given by the

complete graph on {a, b, c, d, e, f} minus the edges {ab, bc, cd}. By an argument exactly the same as before,

ea, ec, eb, ed, fc, fa, fd, fb are light. Further, if ad lies in an external triangle adx (as in Figure 6.4), then

by repeating the argument for cleaning K−2,26 , we note that xc, xb ∈ E(H), xa, xd are light, and ac, bd have

codegree exactly three. Also, by using (6.1) on the 4-path dxcfe, we have NH({a, d}) ⊆ {x, c, f, e}. As

cd 6∈ E(H), this means NH({a, d}) = {x, f, e}, and therefore ad has codegree three. Finally, (6.1) on the

path cfedx in NH(a) gives us NH({a, c}) ⊆ {f, e, d, x}, whereas cd 6∈ E(H), implying that ac has codegree

three as well. Similarly, bd has codegree three.
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Let H ′ = H−{ea, ec, eb, ed, fc, fa, fd, fb, ac, bd, ad, xa, xd}. Then, t(H ′) = t(H)−13 and e(H ′) = e(H)−13,

and we can proceed by the induction hypothesis on H ′.

a

bc

d
e

f

x

Figure 6.4: adx is an external triangle, ab, bc, ca are non-edges in H.

On the other hand, if the edge ad is light, then we can simply let H ′ = H −{ea, ec, eb, ed, fc, fa, fd, fb, ad},
whence t(H ′) = t(H) − 9 and e(H ′) = e(H) − 9, and the induction step would be complete. Hence we can

assume that H is K−3,16 -free.

4. Cleaning K−3,26 : Suppose H contains a K−3,26 on vertices {a, b, c, d, e, f} such that edges ab, cd, de are

missing. Since H is K−2,16 and K−2,26 -free, this subgraph is induced. As the edges bd and ad must have

codegree at least two, there exist x, y ∈ V (H) \ {a, b, c, d, e, f} such that bdx and ady are triangles in H. We

consider two different cases.

• Case 1. x = y (Figure 6.5 (left)): Since NH(b) contains the 4-path cefdx, (6.1) gives NH({b, x}) ⊆
{d, f, e, c}. If xf ∈ E(H), then NH(f) contains the 5-path xadbce. If both xc and xe were edges in H,

then H[{a, b, c, e, f, x}] would be a K−2,26 with edges xf, ab missing. Therefore, only one of xc and xe

can be an edge. By symmetry, assume xc ∈ E(H) and xe 6∈ E(H).

As this fixes edges and non-edges between any pair of vertices from {a, b, c, d, e, f, x}, H[{a, b, c, d, e, f, x}]
is induced. Consider the 5-wheel (f, adbcea), where the first tuple denotes the central vertex and the

second tuple is the outer C5. Since none of the edges fa, fb, fc, fd, fe can lie in triangles with a vertex

y 6∈ {a, b, c, d, e, f, x} (it would give a P̂5 around f), they all have exhausted their codegrees. Similarly,

(c, befaxb), (b, cxdfec), and (a, dxcefd) are W5’s in H. Let

H ′ = H − {cb, cx, ca, cf, ce, fe, fb, fd, fa, be, bx, bd, ad, ax, ae}.

Then, e(H ′) = e(H)− 15 and t(H ′) = t(H)− 13 (4 triangles through x, 7 through f but not x, and 2

not through x or f). We can then proceed with the induction hypothesis on H ′.
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Figure 6.5: bdx and ady are triangles, (left: x = y, right: x 6= y)
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• Case 2. x 6= y (Figure 6.5 (right)): Without loss of generality assume by, ax 6∈ E(H), as these would

lead us to Case 1. As NH(b) contains the 4-path xdfec, by (6.1), NH({b, x}) ⊆ {d, f, e, c}. Note that if

xf ∈ E(H), then NH(f) contains the path ecbxda of length 5. Hence, NH({b, x}) ⊆ {d, e, c}. Further,

both xc and xe cannot be edges in H, as then H[{a, b, c, e, f, x}] ⊇ K−3,16 with the edges ba, ax, xf

missing. As codegree of bx is at least 2, exactly one of xc and xe is an edge in H. By symmetry, assume

xc ∈ E(H) and xe 6∈ E(H).

Now by (6.1) on the 4-path ydfec in NH(a), we get NH({a, y}) ⊆ {d, f, e, c}. If yf ∈ E(H), then

NH(f) contains the path aydbce of length 5, and if yc ∈ E(H), then NH(c) contains the path xbefay

of length 5. Therefore, NH({a, y}) = {d, e}, and ye ∈ E(H).

Finally, let us consider the 4-path yafbc in NH(e). Using (6.1),

NH({y, e}) ⊆ {a, f, b, c}.

However, yf, yc 6∈ E(H) from our argument in the last paragraph, and by 6∈ E(H) as we are in Case 2.

This is a contradiction, as the edge ye must have codegree at least 2.

5. Cleaning K5: If H contains a copy of K5 on vertex set {a, b, c, d, e}, then we claim that it is a block

by itself. Suppose x ∈ V (H) \ {a, b, c, d, e} is such that abx is a triangle in H. Since xbcde is a P4 in NH(a),

(6.1) implies that NH({a, x}) ⊆ {b, c, d, e}. Further, ax must have codegree at least 2. Thus, xc, xd, or xe is

an edge. In either case, H[{a, b, c, d, e, x}] ⊇ K−2,16 , a contradiction.

6. Cleaning K−5 : Let H have a copy of K−5 on vertices a, b, c, d, e such that ab 6∈ E(H). If the edge bc lies

in an external triangle bcx as shown in Figure 6.6, then note that xb has codegree at least two, and (6.1) on

the 4-path xbdea in NH(c) tells us that NH({c, x}) ⊆ {b, d, e, a}. If xe ∈ E(H) then G[a, b, c, d, e, x] contains

the graph K−3,16 with edges dx, xa, ab missing. If xd ∈ E(H), then we have the K−3,16 with edges ex, xa, ab

missing. Finally, if xa ∈ E(H), then G[a, b, c, d, e, x] contains K−3,26 with edges ex, xd, ab missing. Thus, the

edge bc cannot lie on an external triangle.

a b

c

d

e

x
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b c

d

e

x

Figure 6.6: K−5 is a block by itself.

Thus by symmetry, ae, ad, ac, be, bd, bc cannot lie on external triangles. Now suppose that the edge cd lies on

an external triangle cdx. By (6.1) on any P̂4 centered at c, NH({c, x}) ⊆ {d, e, a, b}. If either xa or xb is an

edge, we obtain a K−3,16 with missing edges ab, bx, xe or ba, ax, xe, respectively. So assume xa, xb 6∈ E(H).

Thus ex ∈ E(H), and cx has codegree 2. Similarly, dx has codegree 2. Now using (6.1) on the 4-path xdbca

in NH(e), we have NH({e, x}) ⊆ {a, b, c, d}. Since xa, xb 6∈ E(H), ex must have codegree 2. Thus, the edges

xc, xd, xe all have codegree 2. Let H ′ = H − {xc, xd, xe}, then t(H ′) = t(H)− 3 and e(H ′) = e(H)− 3, and

we can proceed by induction.

Hence, we may assume that cd also does not lie on external triangles. Let H ′ = H−{ac, ad, ae, bc, bd, be, cd}.
Then, t(H ′) = t(H)−7 and e(H ′) = e(H)−7, completing the induction hypothesis for H again. So, without

loss of generality we can assume that G is {K−5 , P̂5}-free.
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7. Cleaning W+
5 : Let H contain a W+

5 , given by central vertex x, outer cycle abcde with an edge

ac ∈ E(H). If ad ∈ E(H), then a, b, c, d, x form a K−5 in H. Therefore by symmetry, all copies of W+
5 in H

are induced.

Now let us fix such a W+
5 in H with vertices labeled as above. As cd and ae must have codegree at least 2,

there exist y, z ∈ V (H)\{a, b, c, d, e, x} such that aey and cdz are triangles in H. Then, we have two possible

cases:

• Case 1: y = z. Refer to Figure 6.7. Note that if yx ∈ E(H), then NH(x) would contain the P5 given

by yabcde. Hence yx 6∈ E(H). Using (6.1) on the 4-path yexcb, NH({a, y}) ⊆ {e, x, c, b}. Suppose

yb ∈ E(H). Note that (y, abcdea), (c, aydxba), (a, cybxec) form W+
5 ’s in H. As (6.1) together with

the fact that every W+
5 of H is induced imply that each central edge of any copy of W+

5 in H does

not lie on external triangles, the edges xa, xb, xc, xd, xe; ya, yb, yc, yd, ye; cb, ca, cd; ab, ae cannot lie in

external triangles. Thus, we can delete these 15 edges from H, and only lose 13 triangles (6 through x,

6 through y, and the triangle abc). Our proof would then be complete by induction.

Hence, assume yb 6∈ E(H). From NH({a, y}) ⊆ {e, x, c, b} this implies that codegree of ay is exactly

2. Similarly, cy has codegree 2. Further, (6.1) on the path of length four bxcye in NH(a) implies

that NH({a, b}) ⊆ {x, c, y, e}. Since by, be 6∈ E(H), this implies that NH({a, b}) = {x, c}, and ab has

codegree 2. Similarly, bc has codegree 2. Let H ′ = H−{xa, xb, xc, xd, xe, ab, bc}. Then, t(H ′) = t(H)−7

and e(H ′) = e(H)− 7, again concluding the induction step.
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Figure 6.7: Case 1: y = z, aey and cdy are triangles in H.

• Case 2: y 6= z. Since NH(a) contains the path yexcb of length 4, we must have NH({a, y}) ⊆ {e, x, b, c}.
If yx ∈ E(H), we obtain the 5-path yabcde in NH(x), and if yc ∈ E(H) we obtain the 5-path yabxdz

in NH(c). On the other hand, ay must have codegree at least 2. Thus NH({a, y}) = {b, e} and ay is

light. By a symmetric argument, zb ∈ E(H) and cz is also light. Refer to Figure 6.8. Since NH(b)

contains the P4 given by zcxay, we have NH({b, y}) ⊆ {a, x, c, z}. However, we have already observed

that yx, yc 6∈ E(H). Hence zy ∈ E(H), and by is light. Similarly, bz is light.

a

b

c

d e

x
yz

Figure 6.8: Case 2: y 6= z, aey and cdz are triangles in H.

Now, observe that we have produced two W+
5 ’s given by (c, zdxabz) and (a, yexcby), both with the

extra edge ac. By (6.1) in NH(c) and NH(b), all of the central edges cannot lie in external triangles.

Let

H ′ = H − {cz, cd, cx, cb, ay, ae, ax, ab, ac, by, bz}.
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It is clear that e(H ′) = e(H)− 11, and that deleting these edges, we delete 6 triangles through c and 4

triangles through a that do not contain c, and the triangle byz through b which does not contain a or

c. Hence, t(H ′) = t(H)− 11. This completes our induction step.

We may therefore assume that H is W+
5 -free.

8. Cleaning W5: Suppose H has a copy of W5 given by (x, abcdea). As H is W+
5 -free, H[{a, b, c, d, e, x}] ∼=

W5. By (6.1) applied to NH(x), every central edge is light. Thus, we may let H ′ = H − {xa, xb, xc, xd, xe},
whence t(H ′) = t(H)− 5 and e(H ′) = e(H)− 5, allowing us to complete the induction step for H.

9. Cleaning K1,2,2: Finally, let H contain a K1,2,2 with central vertex x and outer cycle abcd. Since H is

K−5 -free, H[{a, b, c, d, x}] ∼= K1,2,2. We claim that none of the edges xa, xb, xc, xd lie on an external triangle.

For the sake of contradiction, assume y ∈ V (H)\{a, b, c, d, x} is such that xay is a triangle in H (Figure 6.9).

By (6.1) in NH(a), we have NH({a, y}) ⊆ {x, d, c, b}. If yd ∈ E(H), we obtain the 5-wheel (x, ydcbay), and

if yb ∈ E(H), we obtain the 5-wheel (x, yadcby). Since |NH({a, y})| ≥ 2, we must have NH({a, y}) = {x, c}.
But then, H[{c, x, b, y, a}] ∼= K−5 , a contradiction.
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Figure 6.9: xa cannot lie in an external triangle xay.

Hence, the edges xa, xb, xc, xd all have codegree 2. Let H ′ = H −{xa, xb, xc, xd}, then t(H ′) = t(H)− 4 and

e(H ′) = e(H)− 4, finishing the induction step in this case as well.

Hence, after these cleaning procedures, we may assume that H is a {W5,K1,2,2}-free subgraph of G such that

every edge of H has codegree at least 2. This concludes the proof of Lemma 5.5.
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