1. (20 points total) We are assuming (i) \(A \cap B \subseteq A \cap C \) and (ii) \(A \cup B \subseteq A \cup C \).
 (a) We wish to show \(B \subseteq C \). Let \(b \in B \). Suppose that \(b \in A \). Then \(b \in A \cap B \) which means \(b \in A \cap C \) by (i). Therefore \(b \in C \). (4) Now suppose \(b \not\in A \). Since \(b \in B \) it follows \(b \in A \cup B \). Therefore \(b \in A \cup C \) by (ii). Since \(b \not\in A \) necessarily \(b \in C \). (4) In any event \(b \in C \). We have shown \(B \subseteq C \). (4)

(b) We are given \(A \cap B = A \cap C \) and \(A \cup B = A \cup C \). In particular \(A \cap B \subseteq A \cap C \) and \(A \cup B \subseteq A \cup C \). Thus \(B \subseteq C \) by part (a). (3) The equations also imply \(A \cap C \subseteq A \cap B \) and \(A \cup C \subseteq A \cup B \). Therefore \(C \subseteq B \) by part (a) as well. (3) We have shown \(B = C \). (2)

2. (20 points total) The functions \(f : X \rightarrow Y \) and \(g : Y \rightarrow X \) satisfy \(g \circ f = I_X \). The latter is equivalent to \(g(f(x)) = x \) for all \(x \in X \). (4) We use this equivalence in our proofs.
 First of all we show \(f \) is injective. Suppose \(x, x' \in X \) and \(f(x) = f(x') \). (3) Then \(x = x' \) since \(x = g(f(x)) = g(f(x')) = x' \). (3) Therefore \(f \) is injective. (2)
 Next we show that \(g \) is surjective. Suppose \(x \in X \) and set \(y = f(x) \). (3) Then \(g(y) = g(f(x)) = x \). (3) Therefore \(f \) is surjective. (2)

3. (20 points total) \(f : [1/2, \infty) \rightarrow [-1/4, \infty) \) is defined by \(f(x) = x^2 - x = (x - 1/2)^2 - 1/4 \). We base arguments on facts derived about increasing functions and quadratics in class; that increasing functions are injective and the function \(g : [0, \infty) \rightarrow [0, \infty) \) given by \(g(x) = x^2 \) is bijective.
 (a) For \(x \geq 1/2 \) observe that \(x - 1/2 \geq 0 \) and therefore \(f(x) \) is increasing (as \(g \) is increasing). Therefore \(f \) is increasing and hence injective. (6)
 (b) Let \(y \in [-1/4, \infty) \) or equivalently \(y \geq -1/4 \). Then \(y + 1/4 \geq 0 \) so \(\sqrt{y + 1/4} \) exists. Since the latter is non-negative \(x = \sqrt{y + 1/4} + 1/2 \geq 1/2 \) which means \(x \in [1/2, \infty) \). (4) The calculation
 \[
 f(x) = f(\sqrt{y + 1/4} + 1/2) = (\sqrt{y + 1/4} + 1/2)^2 - 1/4 = (\sqrt{y + 1/4})^2 - 1/4 = (y + 1/4) - 1/4 = y
 \]
 shows that \(y = f(x) \). (4) Therefore \(f \) is surjective.

Comment: Given \(y \) one discovers the solution \(x \) to \(y = f(x) \) by working backwards. Here we omit those details and show that our \(x \) is indeed a solution.
 (c) From part (b) the inverse \(f^{-1} : [-1/4, \infty) \rightarrow [1/2, \infty) \) is given by
 \[
 f^{-1}(y) = \sqrt{y + 4} + 1/2 \quad (4)
 \]
for all \(y \in [-1/4, \infty) \), or in more standard notation, \(f^{-1}(x) = \sqrt{x + 1/4} + 1/2 \) for all \(x \in [-1/4, \infty) \).

4. (20 points total) Recall \(G^\text{op}_f = \{(y, x) \mid (x, y) \in G_f\} \) is the graph of a function if and only if (a) \(\forall y \in Y, \exists x \in X, (y, x) \in G^\text{op}_f \) and (b) \((y, x), (y, x') \in G^\text{op}_f \) implies \(x = x' \). This is given.

Therefore \(G^\text{op}_f \) is the graph of a function if and only if (a’) \(\forall y \in Y, \exists x \in X, (x, y) \in G_f \) and (b’) \((x, y), (x', y) \in G_f \) implies \(x = x' \). (6)

Note \((x, y) \in G_f\) if and only if \(x \in X, y \in Y, \) and \(y = f(x) \). Thus (a’) holds if and only if \(f \) is surjective (7) and (b’) holds if and only if \(f \) is injective (7).

5. (20 points total) Here we show two functions are the same by using a modified truth table.

(a) From the table

\[
\begin{array}{cccccc}
 x \in A & x \in B & \chi_A(x) & \chi_B(x) & \chi_{A\cap B}(x) & \chi_A(x)\chi_B(x) \\
 T & T & 1 & 1 & 1 & 1 \\
 T & F & 1 & 0 & 0 & 0 \\
 F & T & 0 & 1 & 0 & 0 \\
 F & F & 0 & 0 & 0 & 0 \\
\end{array}
\]

(6 for the table) we see that \(\chi_{A\cup B} = \chi_A\chi_B \) since these functions agree in all cases as columns 5 and 6 of the table are identical (4).

(b) From the table

\[
\begin{array}{cccccc}
 x \in A & x \in B & \chi_A(x) & \chi_B(x) & \chi_{A\cup B}(x) & \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x) \\
 T & T & 1 & 1 & 1 & 1 \\
 T & F & 1 & 0 & 1 & 1 \\
 F & T & 0 & 1 & 1 & 1 \\
 F & F & 0 & 0 & 0 & 0 \\
\end{array}
\]

(6 for the table) we see that \(\chi_{A\cup B} = \chi_A + \chi_B - \chi_{A\cap B} \) since these functions agree in all cases as columns 5 and 6 of the table are identical (4).