Name (print) ___________________________ Discussion hour (T Th ______)

1. (10 pts.)

a) Compute the derivatives of the functions :

- \(f(x) = 6 \sqrt[3]{x} + \frac{4}{\sqrt[3]{x}} \)

Solution : We can write the function as \(f(x) = 6 x^{\frac{1}{3}} + 4 x^{-\frac{1}{3}} \) and so, by using the power rule, we get:

\[
 f'(x) = 6 \left(x^{\frac{1}{3}} \right)' + 4 \left(x^{-\frac{1}{3}} \right)' = 6 \left(\frac{1}{3} \right) x^{-\frac{2}{3}} + 4 \left(-\frac{1}{4} \right) x^{-\frac{4}{3}} = 2 x^{-\frac{2}{3}} - x^{-\frac{4}{3}}.
\]

So answer is \(f'(x) = 2 x^{-\frac{2}{3}} - x^{-\frac{4}{3}} \) or \(f'(x) = \frac{2}{x^{2/3}} - \frac{1}{x^{4/3}} \). (3 pts.)

(Equivalent forms of final answer are acceptable and get full credit.)

- \(g(x) = \frac{\sqrt{x}(1 + 2x)}{x^2} \)

Solution : We can write the function in the following way :

\[
 g(x) = \frac{\sqrt{x}(1 + 2x)}{x^2} = \frac{x^{\frac{1}{2}}(1 + 2x)}{x^2} = x^{\frac{1}{2}-2} + 2x^{\frac{3}{2}-2} = x^{-\frac{3}{2}} + 2x^{-\frac{1}{2}}.
\]

So, by using the power rule we get \(g'(x) = -\frac{3}{2} x^{-\frac{3}{2}} - x^{-\frac{3}{2}} \). (3 pts.)

(Again, equivalent forms of final answer are acceptable and get full credit.)

b) Find the equation of the line tangent to the graph of \(f \) at \(x = 1 \).

Solution : We are interested in the point \((1, f(1)) \) i.e. \((1, 10) \). The slope at that point is \(m = f'(1) = 1 \) (using the formula of \(f' \) that we computed above). So the equation of the tangent line at that point is : \(y - 10 = x - 1 \Rightarrow y = x + 9 \). (4 pts.)

2. (10 pts.)

a) Compute the derivative of the function : \(h(x) = 2\sqrt{x} - \left(\frac{1}{3} \right)^x \).

Solution : \(h'(x) = 2 \left(x^{\frac{1}{2}} \right)' - \left[\left(\frac{1}{3} \right)^x \right]' \Rightarrow h'(x) = x^{-\frac{1}{2}} - \left(\ln \frac{1}{3} \right) \left(\frac{1}{3} \right)^x \). (5 pts.)
b) Suppose that \(P(t) = 50 \times (1.2)^t \), expresses the growth of price \(P \) (in dollars) as a function of time \(t \) (in years). Find the rate, in dollars per year, at which the price \(P \) is increasing.

Solution: We actually want to find the derivative function \(P' \). A direct differentiation gives:

\[
P'(t) = 50 \left(\ln 1.2 \times 1.2\right)^t \Rightarrow P'(t) = 50(\ln 1.2)(1.2)^t \approx 9.12(1.2)^t.
\]

(5 pts.)
1. (10 pts.)
 a) Compute the derivatives of the functions :

 \[f(x) = 8\sqrt[4]{x} + \frac{3}{\sqrt[3]{x}} \]

 Solution : We can write the function as
 \[f(x) = 8x^{\frac{1}{4}} + 3x^{-\frac{1}{3}} \]
 and so, by using the power rule, we get:
 \[f'(x) = 8\left(\frac{1}{4}\right)x^{-\frac{3}{4}} + 3\left(-\frac{1}{3}\right)x^{-\frac{4}{3}} = 2x^{-\frac{3}{4}} - x^{-\frac{4}{3}}. \]

 So answer is \[f'(x) = 2x^{-\frac{3}{4}} - x^{-\frac{4}{3}} \] or \[f'(x) = \frac{2}{x^{3/4}} - \frac{1}{x^{4/3}}. \] (3 pts.)

 (Equivalent forms of final answer are acceptable and get full credit.)

 \[g(x) = \frac{\sqrt[3]{x}(1 + 2x^{\frac{2}{3}})}{x^2} \]

 Solution : We can write the function in the following way :
 \[g(x) = \frac{x^{\frac{1}{3}}(1 + 2x^{\frac{2}{3}})}{x^2} = \frac{x^{\frac{1}{3}} + 2x}{x^2} = x^{-\frac{5}{3}} + 2x^{\frac{1}{3}} = x^{-\frac{5}{3}} + 2x^{-1}. \]

 So, by using the power rule we get \[g'(x) = -\frac{5}{3}x^{-\frac{5}{3}} - 2x^{-2}. \] (3 pts.)

 (Again, equivalent forms of final answer are acceptable and get full credit.)

 b) Find the equation of the line tangent to the graph of \(f \) at \(x = 1. \)

 Solution : We are interested in the point \((1, f(1))\) i.e. \((1, 11)\). The slope at that point is \(m = f'(1) = 1 \) (using the formula of \(f' \) that we computed above). So the equation of the tangent line at that point is : \(y - 11 = x - 1 \Rightarrow y = x + 10. \) (4 pts.)

2. (10 pts.)
 a) Compute the derivative of the function : \(h(x) = 6\sqrt{x} - \left(\frac{1}{2}\right)^x. \)

 Solution : \[h'(x) = 6\left(\frac{1}{2}\right)^x - \left[\left(\frac{1}{2}\right)^x\right]' \Rightarrow h'(x) = 2x^{-\frac{3}{4}} - \left(\ln \frac{1}{2}\right)\left(\frac{1}{2}\right)^x. \] (5 pts.)
b) Suppose that $P(t) = 60(1.3)^t$, expresses the growth of price P (in dollars) as a function of time t (in years). Find the rate, in dollars per year, at which the price P is increasing.

Solution: We actually want to find the derivative function P'. A direct differentiation gives:

$$P'(t) = 60 \left[(1.3)^t\right]' \Rightarrow P'(t) = 60(\ln 1.3)(1.3)^t \approx 15.74(1.3)^t.$$ (5 pts.)

*** END OF VERSION 2 ***