1. (10 pts.)
 a) Find \(k \) so that the following function is continuous on *any* interval:
 \[
 f(x) = \begin{cases}
 3x & , \quad x \leq 2 \\
 kx^2 - 6 & , \quad x > 2
 \end{cases}
 \]
 Solution: We need to check continuity at \(x = 2 \). We have:
 \[
 \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} 3x = 6.
 \]
 Moreover,
 \[
 \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (kx^2 - 6) = 4k - 6.
 \]
 So, in order for the limit to exist, we must have that \(4k - 6 = 6 \), which gives \(k = 3 \). Now, for \(k = 3 \), we also have that \(\lim_{x \to 2^-} f(x) = f(2) = 6 \).
 So, the function is continuous at \(x = 2 \) and therefore it is continuous on any interval. Hence, the answer is \(k = 3 \).

 b) Let \(g(x) = 2 \sin x + 3 \cos x \). Show that there exists a number \(c \), with \(0 \leq c \leq \pi \), such that \(g(c) = 0 \).
 Solution: The given function is continuous on the interval \([0, \pi]\), since it is a sum of continuous functions. We also have that:
 \[
 g(0) = 2 \sin 0 + 3 \cos 0 = 0 + 3 = 3
 \]
 \[
 g(\pi) = 2 \sin \pi + 3 \cos \pi = 0 - 3 = -3.
 \]
 So, for \(k = 0 \) which lies between \(g(0) \) and \(g(\pi) \), by the Int. Value Thm, there exists a number \(c \) in the interval \([0, \pi]\) (i.e. \(0 \leq c \leq \pi \)), such that \(g(c) = k = 0 \).

2. (10 pts.) Let \(f(x) = \frac{x^2 + 4x + k}{x + 2} \).
 a) Find \(k \) such that \(\lim_{x \to -2} f(x) \) exists.
 Solution: We notice that for the denominator \(\lim_{x \to -2} (x + 2) = 0 \).
 Therefore, the limit of the given function can only exist if the same is true for the numerator i.e.
 \[
 \lim_{x \to -2} (x^2 + 4x + k) = 0 \Rightarrow 4 - 8 + k = 0 \Rightarrow k = 4.
 \]
 b) Is \(f \) continuous on the interval \([-\pi, 1]\) ?
 Solution: The function is not continuous on the interval \([-\pi, 1]\), since the latter contains the root of the denominator.
 c) Compute \(\lim_{x \to 0} f(x) \).
 Solution: We have the following:
 \[
 \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2 + 4x + 4}{x + 2} = \frac{\lim_{x \to 0} (x^2 + 4x + 4)}{\lim_{x \to 0} (x + 2)} = \frac{0 + 0 + 4}{0 + 2} = \frac{4}{2} = 2.
 \]