
MATH 425 Hour Exam I Solution Radford 02/22/2009

For a commutative ring R with unity recall that R× denotes the multiplicative group of units of
R. Z denotes the ring of integers, Q and R denote the field of rational numbers and real numbers
respectively.

1. (25 points)

(a) Let a ∈ R. Since 1 ∈ R× and a = 1a, a ∼ a (5). Let a, b ∈ R and suppose a ∼ b. Then
a = ub for some u ∈ R×. Since R× is a multiplicative group, u−1 ∈ R× and the calculation
b = 1b = (u−1u)b = u−1(ub) = u−1a shows that b ∼ a (5). Let a, b, c ∈ R and suppose a ∼ b, b ∼ c.
Then a = ub, b = vc for some u, v ∈ R×. Since R× is a multiplicative group, uv ∈ R× and the
calculation a = ub = u(vc) = (uv)c shows that a ∼ c (5).

(b) Let a, b ∈ R and suppose a ∼ b. Then a = ub for some u ∈ R×. We show Ra ⊆ Rb. Let x ∈ Ra.
Then x = ra for some r ∈ R. Therefore ra = r(ub) = (ru)b ∈ Rb. We have shown a ∼ b implies
Ra ⊆ Rb (5). Since b ∼ a by part (a), Rb ⊆ Ra. Therefore Ra = Rb (5).

Comment: The conclusions of parts (a) and (b) hold for any ring R with unity and “∼” defined
for a fixed subgroup H of R× defined by a ∼ b if and only if a = ub for some u ∈ H.

2. (25 points)

(a) 7x4 + 15x3 + 12 ∈ Q[x] is irreducible by the Eisenstein Criterion (5) with p = 3; 3 6 |7, 3|15,
3|12, 3|0 (the other coefficients), and 32 6 |12 (5).

Comment: 7x4 + 15x3 + 12 ∈ Z[x] is primitive and therefore is irreducible in Z[x] also.

(b) We apply the mod p test to f(x) = 7x4 + 15x3 + 9 ∈ Q[x] with p = 2. Reduction of coefficients
yields g(x) = x4+x3+1 ∈ Z2[x] which has the same degree as f(x). Thus f(x) ∈ Q[x] is irreducible
if g(x) ∈ Z2[x] is (5).

Now g(0) = g(1) = 1. Therefore g(x) has no roots in Z2 and hence no linear factors (5).
Suppose g(x) is reducible. Then g(x) is the product of quadratic factors which means g(x) =
(x2 +x+1)2 = x4 +x2 +1 by the hint, contradiction. Therefore g(x) is irreducible (5) which means
f(x) is irreducible.

Comment: f(x) = 7x4 +15x3 +9 ∈ Z[x] is primitive. Since f(x) ∈ Q[x] is irreducible f(x) ∈ Z[x]
is also.

3. (25 points)

(a) We show that R is an additive subgroup of M2(R). R 6= ∅ as

(
0 0
0 0

)
=

(
0 0

d·0 0

)
∈ R where

m = n = 0 (1). Suppose

(
m n
dn m

)
,

(
m′ n′

dn′ m′

)
∈ R. Then

(
m n
dn m

)
+

(
m′ n′

dn′ m′

)
=

(
m + m′ n + n′

dn + dn′ m + m′

)
=

(
m′′ n′′

dn′′ m′′

)
∈ R, (1)
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where m′′ = m + m′, n′′ = n + n′. Also −
(

m n
dn m

)
=

(
−m −n
−dn −m

)
=

(
m′ n′

dn′ m′

)
∈ R, where

m′ = −m and n′ = −n (4). Thus R is an additive subgroup of M2(R).
The calculation

(
m n
dn m

) (
m′ n′

dn′ m′

)
=

(
mm′ + dnn′ mn′ + nm′

dnm′ + mdn′ dnn′ + mm′

)
=

(
m′′ n′′

dn′′ m′′

)
∈ R, (2)

where m′′ = mm′+dnn′, n′′ = mn′+m′n, shows that R is closed under multiplication (5). Therefore
R is a subring of M2(R).

R = {
(

m n
dn m

)
|m,n ∈ Z}.

(b) Let m + n
√

d,m′ + n′
√

d ∈ Z[
√

d], where m,m′, n, n′ ∈ Z. Using (1) we calculate

f((m + n
√

d) + (m′ + n′
√

d))

= f((m + m′) + (n + n′)
√

d)

=

(
m + m′ n + n′

d(n + n′) m + m′

)

=

(
m n
dn m

)
+

(
m′ n′

dn′ m′

)

= f(m + n
√

d) + f(m′ + n′
√

d) (3)

and using (2) we calculate

f((m + n
√

d)(m′ + n′
√

d))

= f((mm′ + dnn′) + (mn′ + m′n)
√

d)

=

(
mm′ + dnn′ mn′ + nm′

d(nm′ + mn′) dnn′ + mm′

)

=

(
m n
dn m

) (
m′ n′

dn′ m′

)

= f(m + n
√

d)f(m′ + n′
√

d) (3)

Therefore f is a ring homomorphism.

Suppose

(
m n
dn m

)
∈ R. Then m,n ∈ Z; thus m + n

√
d ∈ Z[

√
d] and f(m + n

√
d) =

(
m n
dn m

)
. Therefore f is surjective (2).

Suppose m+n
√

d,m′+n′
√

d ∈ Z[
√

d], where m,m′, n, n′ ∈ Z, and f(m+n
√

d) = f(m′+n′
√

d).

Then

(
m n
dn m

)
=

(
m′ n′

dn′ m′

)
which means m = m′ and n = n′. Therefore m+n

√
d = m′+n′

√
d.

We have shown thatf is injective (2) and thus f is a ring isomorphism.

(c) N(m + n
√

d) = |m2 − dn2| = |Det

(
m n
dn m

)
| = |Detf(m + n

√
d)| (5).
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4. (25 points)

(a) Let x ∈ R and suppose that N(x) is a prime integer. Note N(0) = 0. Since N(x) 6= 0, 1 it
follows x 6= 0, x 6∈ R× (1). Suppose x = yz, where y, z ∈ R. Since N(y)N(z) = N(yz) = N(x)
is a prime integer, and the values of N are non-negative integers, either N(y) = 1, in which case
y ∈ R×, or N(z) = 1, in which case z ∈ R×. Therefore x is irreducible (4).

(b) N(
√

5) = N(0 + 1
√

5) = |02 − 5·12| = 5. Thus
√

5 ∈ R is irreducible by part (a) (3).
Let x = 1±√5. Then N(x) = N(1 + (±1)

√
5) = |12− 5(±1)2| = 4 6= 0, 1. Thus x 6= 0, x 6∈ R×.

Suppose x = yz, where y, z ∈ R. By the reasons cited in part (a), N(y) = 1, 2, or 4. N(y) 6= 2
by our given. Thus N(y) = 1, in which case y ∈ R×, or N(y) = 4, in which case N(z) = 1 and thus
z ∈ R×. Thus x is irreducible (4).

(c) Observe 5 =
√

5
√

5 is the product of irreducibles by part (c) and is therefore reducible (2).
19 = (2

√
5 + 1)(2

√
5 − 1) (3). Since N(2

√
5 ± 1) = 19 neither factor is unit. Thus 19 ∈ R is

reducible (3).

(d) Since prime implies irreducible in an integral domain, neither 5 nor 9 are prime elements of
Z[
√

5] by part (c) (5).

Comment: There were other nice factorizations of 19 into two irreducibles which students came
up with:

19 = (8 + 3
√

5)(8− 3
√

5) = (12 + 5
√

5)(12− 5
√

5).
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